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Muscle glycogen depletion has been proposed as one of the
main causes of fatigue during exercise. However, few studies
have addressed the contribution of liver glycogen to exercise
performance. Using a low-intensity running protocol, here, we
analyzed exercise capacity in mice overexpressing protein tar-
geting to glycogen (PTG) specifically in the liver (PTGOE mice),
which show a high concentration of glycogen in this organ.
PTGOE mice showed improved exercise capacity, as determined
by the distance covered and time ran in an extenuating
endurance exercise, compared with control mice. Moreover,
fasting decreased exercise capacity in control mice but not in
PTGOE mice. After exercise, liver glycogen stores were totally
depleted in control mice, but PTGOE mice maintained signifi-
cant glycogen levels even in fasting conditions. In addition,
PTGOE mice displayed an increased hepatic energy state after
exercise compared with control mice. Exercise caused a
reduction in the blood glucose concentration in control mice
that was less pronounced in PTGOE mice. No changes were
found in the levels of blood lactate, plasma free fatty acids, or
β-hydroxybutyrate. Plasma glucagon was elevated after exercise
in control mice, but not in PTGOE mice. Exercise-induced
changes in skeletal muscle were similar in both genotypes.
These results identify hepatic glycogen as a key regulator of
endurance capacity in mice, an effect that may be exerted
through the maintenance of blood glucose levels.

Glycogen is the storage form of glucose in mammals.
Glycogen synthesis is catalyzed by glycogen synthase (GS).
There are two mammalian isoforms of GS. One, encoded by
the Gys2 gene, is expressed only in the liver (1), whereas a
second gene, Gys1, is expressed in the skeletal muscle, cardiac
muscle, adipose tissue, kidneys, and brain (2). GS is regulated
by covalent phosphorylation (3) and allosteric effectors (4).
Dephosphorylation and thus activation of GS is catalyzed by
protein phosphatase 1. A family of scaffolding proteins target
the protein phosphatase 1 catalytic subunit to glycogen par-
ticles, where the enzymes of glycogen metabolism are
concentrated. There are seven scaffolding proteins, among
them the ubiquitously distributed protein targeting to
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glycogen (PTG). Overexpression of PTG has been used to
activate GS and thus promote glycogen synthesis (5–10).

Carbohydrate and fat are the main substrates used during
prolonged endurance-type exercise (11–13). The relative
contribution of each is determined primarily by the intensity
and duration of exercise (11, 12). During moderate- to high-
intensity exercise, carbohydrate is the main source of sub-
strate. Given that carbohydrate stores in the form of glycogen
(primarily in the liver and muscle) are relatively small,
endurance-type exercise performance/capacity is often limited
by endogenous carbohydrate availability (13).

The importance of muscle glycogen availability during
prolonged exercise has received much attention over the last
50 years (13–15), and a strong association has been reported
between muscle glycogen depletion, impaired muscle per-
formance, and fatigue (16–21). In contrast, little attention
has been paid to the contribution of liver glycogen during
exercise. Liver glycogen stores are mobilized during exercise
in response to the increased glucose demands of contracting
skeletal muscle (22–24). Accordingly, continuous exercise
lasting >60 min in humans substantially depletes liver
glycogen (25). Interestingly, in humans, liver glycogen
sparing in an endurance-trained state may account partly for
training-induced performance/capacity adaptations during
prolonged (>90 min) exercise (13). Liver GS KO mice,
which have a 95% reduction in the liver glycogen content,
have a decreased capacity for exhaustive high-intensity
running compared with control mice. This difference dis-
appears after an overnight fast, which reduces the liver
glycogen of control mice to levels comparable with those of
Gys2 KO animals (26). These results indicate that the lack of
liver glycogen impairs endurance capacity. We sought to
analyze endurance capacity in animals overexpressing PTG
specifically in the liver (PTGOE mice) and that maintain
relatively high levels of hepatic glycogen even after fasting.
To extrapolate our results to endurance sports such as
marathon running or cycling, a low-intensity running pro-
tocol was used. We show that PTGOE mice indeed have a
greater endurance capacity than control animals. Impor-
tantly, fasting did not significantly reduce the capacity of
PTGOE mice. All together, these results highlight the role of
liver glycogen in resistance to fatigue.
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Hepatic glycogen enhances exercise capacity
Results

Generation of mice with liver-specific PTG overexpression

To study the role of increased liver glycogen storage in
endurance capacity, we generated PTGOE mice (see
Experimental procedures). The mRNA level of Ptg in the livers
of these mice was 8-fold greater than that of control animals
(Fig. S1A). PTGOE mice showed an increase in hepatic
glycogen compared with control mice both in fed and fasting
conditions (Fig. 1A), as previously described (27). There was
no difference in the glycogen content of muscles (Fig. 1B).
Before the exercise experiments, the body weight was equiv-
alent between control and PTGOE mice. After overnight fast-
ing, the weight of the animals of both genotypes was similarly
diminished compared with fed mice (Fig. S2).
PTGOE mice showed enhanced endurance exercise capacity

To assess capacity for endurance exercise, control and
PTGOE mice were forced to run to exhaustion under fed and
fasting conditions. PTGOE mice ran significantly more (≈30%
of the distance and of the time ran) than control mice both in
fed and fasting conditions (Fig. 1, C and D). Interestingly,
fasting induced a decrease (≈35% of the distance and of the
time ran) for endurance exercise capacity in control mice but
not in PTGOE animals (Fig. 1, C and D). Upon completion of
the exercise, liver glycogen stores were totally depleted in fed
control mice but not in fed PTGOE ones, which were able to
maintain liver glycogen at 30 mg/g of tissue (Fig. 1A). Strik-
ingly, glycogen stores were not depleted in fasted PTGOE

mouse livers even after exhaustive exercise (Fig. 1A). Muscle
glycogen was depleted similarly in both genotypes under fed
and fasting conditions (Fig. 1B).

It has been suggested that a decrease in systemic glucose
limits endurance exercise (28). In our experiments, basal blood
glucose was similar between genotypes under fed conditions.
However, fasting and exercise caused a reduction in blood
glucose concentration in control mice, and this reduction was
less pronounced in PTGOE mice (Fig. 1E). We also monitored
blood glucose every hour during the run-to-exhaustion test.
Glucose levels were maintained above 3.9 mM (70 mg/dl) for
longer in PTGOE mice than control animals in both fed
(Fig. 1F) and fasting conditions (Fig. 1G). In fact, in fasting
conditions, glucose levels were higher in PTGOE mice
throughout the test. Lactate is a gluconeogenic precursor
released from skeletal muscle during exercise and taken up by
the liver to be converted to pyruvate and used in gluconeo-
genesis. Blood lactate was similar between the two genotypes
in all conditions (Fig. 1H).
Liver and muscle metabolites

It has been described that the levels of G6P in the liver
decrease immediately after exercise (29). Liver G6P was almost
undetectable after exercise and/or fasting in control mice. In
contrast, PTGOE mice maintained relatively high levels of G6P,
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about 65% of that observed in control fed animals, after ex-
ercise and also in fasting conditions (Fig. 2A). In the muscle,
G6P was similarly depleted after exercise in both genotypes
under fed and fasting conditions (Fig. 2B).

Hepatic TAGs acutely accumulate during and after exercise
in rodents (30). We found that exercise and fasting increased
hepatic TAG concentration in fed control and PTGOE mice
(Fig. 2C). Fasted PTGOE mice showed lower liver TAG levels
than control mice before exercise, but after exercise, the
concentration of TAG was similar in the two genotypes
(Fig. 2C). Exercise did not significantly alter TAG concentra-
tion in muscle (Fig. 2D).

Plasma hormones and metabolites

Exercise is characterized by complex endocrine responses
(31). If exercise is sustained, a decrease in insulin secretion and
increases in glucagon are observed (32). In fed control mice,
plasma insulin was significantly reduced after exercise
(Fig. 3A). Insulin concentration was already lower in resting
PTGOE mice, as previously described (27) and it was not
further reduced after exercise. Glucagon increased dramati-
cally after exercise in both genotypes, but this increment was
lower in PTGOE mice under fed and fasting conditions
(Fig. 3B).

During exercise, FFAs and β-hydroxybutyrate become a
major fuel source for other organs (33, 34). Under fed condi-
tions, exercise increased plasma FFAs and β-hydroxybutyrate
levels similarly in both genotypes (Fig. 3, C and D). In fasted
conditions, plasma FFAs (Fig. 3C) and β-hydroxybutyrate
(Fig. 3D) were lower in sedentary PTGOE than control mice as
we previously described (27). However, exercise increased the
levels of FFAs and β-hydroxybutyrate to similar levels in both
genotypes (Fig. 3, C and D).

Liver and muscle nucleotides

Exercise causes a drop in hepatic ATP (31). Our results
showed that liver ATP concentration decreased and AMP
concentration increased in control mice after exercise (Fig. 4,
A and B). Fasted control mice also showed lower ATP and
higher AMP levels than fed control counterparts (Fig. 4, A and
B), as previously shown (35). Remarkably, the ATP and AMP
levels of exercised fed and fasted PTGOE mice were maintained
at similar levels to those of fed sedentary mice. The energy
state of muscle is less sensitive to changes in metabolic de-
mand than that of the liver (36). Therefore, muscle ATP levels
were similar in all the groups (Fig. 4C). However, AMP con-
centration was significantly increased after exercise and fasting
similarly in both genotypes (Fig. 4D).

Liver metabolism enzymes

The liver has to adapt to an enormous metabolic challenge
during exercise. We studied the expression of enzymes known
to be regulated by exercise in this organ (37). The protein level
of Pepck was higher at exhaustion in control and PTGOE mice
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Figure 1. PTGOE mice showed enhanced endurance exercise capacity. A, liver glycogen, (B) muscle glycogen, (C) running distance, (D) running time, (E–
G) blood glucose, and (H) blood lactate in sedentary and exercised control and PTGOE mice under fed and fasting conditions (n = 8–12 in experiments A–E
and H; n = 3 in experiments F and G). All values are the mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001. PTG, protein targeting to glycogen; PTGOE,
overexpressing PTG specifically in the liver.
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Figure 2. Liver and muscle metabolites. A, liver glucose-6-phosphate, (B) muscle glucose-6-phosphate, (C) liver triacylglycerol, and (D) muscle tri-
acylglycerol in sedentary and exercised control and PTGOE mice under fed and fasting conditions (n = 8–12 in all experiments). All values are the mean ±
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Hepatic glycogen enhances exercise capacity
under fed and fasting conditions (Fig. 5, A and B). The mRNA
expression of Pepck and glucose-6-phosphatase (G6pase) was
similarly upregulated in control and PTGOE mice after exercise
(Fig. 5, C and D). Pyruvate dehydrogenase kinase 4 (Pdk4)
phosphorylates and inactivates the pyruvate dehydrogenase
complex, thus inhibiting glucose oxidation and promoting
gluconeogenesis (38). Pdk4 mRNA expression was also simi-
larly upregulated in exercised control and PTGOE mice
(Fig. 5E). Peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (Pgc1α) has been identified as an important
regulator of hepatic gluconeogenesis (39). The mRNA
expression of Pgc1α was increased in exercised mice compared
with sedentary mice, but there were no changes between the
genotypes (Fig. 5F). NR4A orphan nuclear receptors are
induced by multiple extracellular signals and hormones in a
cell type–specific manner (40, 41). In the liver, NR4A receptors
4 J. Biol. Chem. (2021) 297(2) 100976
are transcriptional modulators of hepatic glucose metabolism.
Interestingly, we found that hepatic gene expression of NR4A
member 3 (Nr4a3) was increased in control exercise mice but
not in PTGOE mice (Fig. 5G). We also measured the hepatic
expression of genes implicated in glycogen metabolism. The
expression of Gys2 was upregulated in control but not in
PTGOE mice after exercise and fasting (Fig. S1B). Glycogen
phosphorylase was downregulated after fasting in control but
not in PTGOE mice (Fig. S1C). Glycogen branching enzyme
(Gbe-1) and phosphoglucomutase (Pgm2) were upregulated
after fasting in control mice but not in PTGOE mice (Fig. S1, D
and E). Sedentary fed PTGOE animals showed a lower gluco-
kinase (Gk) mRNA expression than control mice (Fig. S1F),
probably as a consequence of hypoinsulinemia. Moreover, Gk
gene expression was downregulated after exercise in control
but not in PTGOE mice under fed conditions (Fig. S1F).
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Hepatic glycogen enhances exercise capacity
Muscle metabolism enzymes

Exercise is associated with profound changes in skeletal
muscle.We sought to determine whether the increased exercise
capacity observed in PTGOE mice is associated with changes in
some of the main genes related to muscle metabolism. In
muscle, fasting, but not exercise, induced the expression of
Pepck (Fig. 6A) and Pdk4 (Fig. 6B) in both genotypes. Exercise
induced an increase in the expression of hexokinase-2 (Fig. 6C),
Pgc1α (Fig. 6D), and Nr4a3 (Fig. 6E) in muscle under fed and
fasting conditions, but there were no differences between the
genotypes. Exercise upregulated the expression of uncoupling
protein 3 (Fig. 6F) and muscle RING-finger protein-1 (Fig. 6G)
under fed but not under fasting conditions because fasting
already induced an increase in these genes.

Discussion

Many mechanisms may be involved in the occurrence of
fatigue, including changes in the internal environment (blood,
extracellular fluid), changes within muscle fibers, and effects
on the central nervous system (central fatigue) (42). It has been
proposed that depletion of liver and muscle glycogen leads to
exhaustion (13, 16). The importance of muscle glycogen for
performance was subsequently confirmed in numerous studies
in humans (43–45). However, studies addressing the contri-
bution of liver glycogen to exercise capacity are limited in
humans presumably because of the methodological limitations
when attempting to assess liver glycogen content in these
subjects (13). In an effort to elucidate the role of hepatic
glycogen in endurance capacity, we generated PTGOE mice
with a high concentration of hepatic glycogen. Using a low-
intensity running protocol, we found that these mice were
able to run for greater distances and longer, thereby indicating
that liver glycogen is strongly associated with endurance ca-
pacity. Fasting completely depleted liver glycogen in control
mice, and fasted animals ran significantly less than fed mice, as
previously described (26). In contrast, PTGOE mice maintained
J. Biol. Chem. (2021) 297(2) 100976 5
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Hepatic glycogen enhances exercise capacity
sizeable concentrations of hepatic glycogen even after fasting
and showed a similar endurance capacity to fed animals. These
results confirm a key role of liver glycogen in exercise per-
formance in mice.

In this study, we show that the key factor by which increased
liver glycogen stores contributes to endurance capacity is the
preservation of blood glucose. Hepatic glucose output is the
primary source of the increased glucose available to exercising
muscle (46). During prolonged exercise, glucose utilization by
working muscle may outstrip glucose production, resulting in
the gradual development of hypoglycemia (46). Several studies
show that the strongest correlation to endurance is the
maintenance of blood glucose above 3.9 mM (70 mg/dl) (28,
47). We found an increase in blood glucose after 1 h of exercise
and a gradual decline during the running test in both geno-
types, but blood glucose declined more slowly in PTGOE mice.
6 J. Biol. Chem. (2021) 297(2) 100976
Fed control mice showed hypoglycemia (blood glucose levels
<3.9 mM) at the time of exhaustion, that is, after 5 h of
running in fed conditions or after 3 h of running in fasting
conditions. In contrast, PTGOE mice maintained a blood
glucose concentration above 3.9 mM throughout the test in
both conditions, probably because of higher glycogenolysis, in
keeping with higher glycogen stores, which is reflected in the
maintenance of substantial levels of G6P even at exhaustion.
Moreover, the fall in blood glucose during prolonged exercise
is accompanied by a reduction in insulin (48) and a rise in
glucagon concentrations (49), particularly if a degree of hy-
poglycemia ensues. PTGOE mice showed a lower glucagon
concentration than control mice after running under fed and
fasting conditions. This observation is in line with the absence
of hypoglycemia in these mice. Moreover, plasma insulin
concentration under fed condition was lower in sedentary
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PTGOE mice than control mice (27, 35). This observation
could be explained by the improved glucose tolerance
observed in these mice (27). Furthermore, the levels of insulin
were not reduced after exercise in PTGOE mice.

Gluconeogenesis is important for maintaining blood glucose
levels during exercise (50), and this process is regulated at the
transcriptional level by key enzymes, namely Pepck and
G6pase, which are increased during exercise (51). At exhaus-
tion, the hepatic expression of Pepck, G6pase, Pdk4, and Pgc1α
was equally upregulated in fed control and PTGOE mice,
thereby indicating that gluconeogenesis was similarly
increased in the livers of both groups of mice. Thus, the ability
of PTGOE mice to preserve glucose levels during exercise was
not the result of an increased expression of these genes.

The NR4A family of nuclear hormone receptors has been
shown to regulate varied processes across a host of tissues (52).
Nr4a3, also known as NOR1, has been identified as one of the
most exercise responsive genes in the skeletal muscle of
humans (53), but the role of hepatic Nr4a3 in exercise has not
been explored. Interestingly, exercise induced the expression
of hepatic Nr4a3 in control but not in PTGOE mice, which
could be explained by the circulating levels of glucagon.
Indeed, the hepatic expression of Nr4a3 is potently induced by
glucagon in vivo in a cAMP-dependent manner (54), and
PTGOE mice showed lower plasma glucagon at exhaustion
than control mice.

During exercise, adipose tissue lipolysis is stimulated by
hormonal changes, resulting in increased availability and tissue
utilization of FFAs. In the circulation, the concentration of β-
hydroxybutyrate increased after exercise, indicating an accel-
eration of ketogenesis. Plasma FFAs and β-hydroxybutyrate
were similar in both genotypes after exercise, indicating that
differences in adipose tissue lipolysis did not affect endurance
capacity. Fasting and exercise in mice induced hepatic steatosis
as a result of excessive uptake of circulating FFAs derived from
adipose tissue lipolysis. The amount of hepatic TAG content
was lower in fasted PTGOE mice than control mice, which
could be attributable to a lower flux of FFAs reaching the liver,
as previously described (27). However, hepatic steatosis was
present to a similar extent in exercised control and PTGOE

mice, and this finding correlates with the amount of circulating
FFAs detected.

Exercise results in a deficit in the energy status of the liver as
defined by increased hepatic AMP concentrations and decreased
ATP concentrations (36). Strikingly, exercised PTGOE mice
maintained ATP and AMP at the same level as sedentary coun-
terparts, both in fed and fasting conditions. Thus, increasing liver
glycogenmaintainedhepatic energy statusduring exercise. In this
regard, we previously demonstrated that liver glycogenmaintains
hepatic energy state during fasting (35) and diabetes (27, 55, 56).
In mice, metabolic stress and a physiological rise in glucagon
caused a decrease in the hepatic energy state (57). PTGOE mice
did not show higher levels of glucagon, which would explain the
maintenance of hepatic energy status.

A strong association has been suggested between muscle
glycogen depletion, impaired muscle performance, and fatigue
development during exercise (16, 17). Thus, we analyzed
whether the increased exercise capacity observed in PTGOE

mice is associated with changes in skeletal muscle. We found
that muscle glycogen, G6P, TAG, ATP, and AMP content were
similarly changed in both genotypes after exercise. This
observation thus indicates that these metabolites did not have
an effect on endurance capacity in this model. Plasma lactate,
an indicator for muscle glycolysis, was similar in both geno-
types, thus indicating that lactate was not related to the
increased performance in PTGOE mice. We also analyzed
genes whose gain of function in skeletal muscle increases
endurance performance in mice (58). The expression of Pepck,
hexokinase-2, Pgc1α, Nr4a3, uncoupling protein 3, and RING-
finger protein-1 in skeletal muscle was similar in both geno-
types, thus indicating that they were not involved in the
increased performance of the PTGOE mice.

In conclusion, these results identify hepatic glycogen as a
key regulator of endurance capacity in mice, an effect that may
be exerted through the maintenance of blood glucose. Thus, in
endurance sports such as marathon running and long-distance
cycling, increasing liver glycogen stores could maintain blood
glucose and delay the onset of hypoglycemia or “hitting the
wall.”

Experimental procedures

Animals

All procedures were approved by the Barcelona Science
Park Animal Experimentation Committee and carried out in
accordance with the European Community Council Directive
and the National Institutes of Health guidelines for the care
and use of laboratory animals. PTGOE mice were generated as
previously described (27). Briefly, the PTG cDNA under the
control of the ubiquitous CAG promoter (cytomegalovirus
immediate early enhancer/chicken b-actin promoter fusion)
was introduced into an innocuous locus by homologous
recombination. A loxP-flanked transcription stop cassette was
included between the CAG promoter and the PTG cDNA to
allow the expression to depend on the action of a Cre
recombinase. The resulting mouse line was bred with an al-
bumin promoter Cre recombinase–expressing animal (The
Jackson Laboratory), which drove the expression of PTG
specifically to the liver. The PTGOE mice were backcrossed to
C57BL/6. Studies were performed in 5-month-old male mice.
Ad libitum–fed animals or, when indicated, 16-h overnight-
fasted animals were used. Fed and fasted mice were enrolled
in the exercise protocol at 8.00 AM. For fasted mice, food was
removed at 4.00 PM on the day before the experiment, and
animals were fasted for 16 h until the next morning at 8.00 AM
when the experimental runs started. Immediately after reach-
ing exhaustion, the mice were sacrificed by cervical dislocation,
and the tissues (liver and muscle) were collected in liquid ni-
trogen and stored at −80 �C for further analysis. Littermates of
the same age were used as controls.

Exercise protocol

A motorized, speed-controlled treadmill was used to exer-
cise the mice (LE8710; Harvard Apparatus). Before running
J. Biol. Chem. (2021) 297(2) 100976 9
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until exhaustion, mice were preadapted to the treadmill for
four consecutive days (3 min/day). For the experimental run,
mice ran at 8.00 AM on a treadmill set at a 20� incline with an
initial belt speed of 12 cm/s. The speed was increased by 1 cm/
s at 2, 5, 10, 20, 30, 40, 50, and 60 min after initiation of the
exercise, followed by the exhaustion run at 20 cm/s until mice
failed.

Blood metabolite and hormone levels

Whole-blood samples were collected from the tail into
EDTA-microvettes (Sarstedt Inc) and were then centrifuged at
1000g for 10 min at 4 �C. Supernatants were aliquoted and
stored at −20 �C. Plasma insulin and glucagon were deter-
mined by ELISA (Crystal Chem). Plasma free fatty acids (FFAs)
(Abcam) and β-hydroxybutyrate (Sigma-Aldrich) were
measured using a commercial kit.

Blood glucose and lactate levels were measured using a
glucometer (Bayer Contour Next, Bayer Healthcare) and a
lactometer (Lactate Scout 4 analyzer, EKF Diagnostics) with
tail-tip bleeding.

Biochemical analysis

Glycogen content was determined in samples of frozen
tissue by measuring amyloglucosidase-released glucose from
glycogen as previously described (59). The intracellular con-
centration of ATP and AMP was measured by HPLC as pre-
viously described (55). Hepatic and muscle triacylglycerols
(TAGs) were quantified in 3 mol/l KOH and 65% ethanol
extracts as previously described (60). The intracellular con-
centration of glucose-6-phosphate (G6P) was measured in
perchloric acid extracts with a fluorometric assay, as described
(61).

Western blot analysis

Liver samples were homogenized in 50 mM Tris/HCl (pH
7.4), 150 mM NaCl, 1 mM EDTA, 5 mM sodium pyrophos-
phate, 1 mM sodium orthovanadate, 50 mM NaF, 1% NP-40,
1 mM PMSF, and a protease inhibitor cocktail tablet
(Roche). Immunoblot analysis of homogenates was performed
using the following antibodies: phosphoenolpyruvate carbox-
ykinase (PEPCK) (a kind gift from Dr E. Beale) at a dilution of
1:100.000. Proteins were detected by the ECL method
(Immobilon Western Chemiluminescent HRP Substrate, Mil-
lipore, Sigma-Aldrich). The loading control of the WB mem-
brane was performed using the REVERT total protein stain.

RNA extraction and quantitative RT-PCR

Liver and muscle RNA extraction, RT-PCR, and quantitative
real-time PCR analysis were performed as previously described
(62). The following TaqMan probes (Applied Biosystems) were
used for quantitative real-time PCR: Ptg (Mm01204084_m1),
Gys2 (Mm00523953_m1), Pygl (Mm01289790_m1), Gbe-1
(Mm00472359_m1), Pgm2 (Mm00728285_s1), Gk (Mm004
39129_m1), Pepck (Mm00440636_m1), G6pase (Mm00839
363_m1), Pdk4 (Mm01166879_m1), Pgc1α (Mm0044718
0_m1), Nr4a3 (Mm00450071_g1), Ucp3 (Mm00494077_m1),
10 J. Biol. Chem. (2021) 297(2) 100976
Murf1 (Mm01185221_m1), Hk2 (Mm00443385_m1), and 18S
(Mm03928990_g1). 18S was used as a housekeeping gene.

Statistical analysis

Data are expressed as the mean ± SEM. p Values were
calculated using two-way ANOVA with post hoc Tukey’s test
as appropriate or two-tailed t test.

Data availability

The data are available on request from the corresponding
author (Iliana López-Soldado, IRB Barcelona, iliana.lopez@
irbbarcelona.org).
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