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antibiotics. However, they show an increased threshold in 
their minimum inhibitory concentration (MIC) against the 
antibiotic of interest when compared as they are enveloped 
within an extracellular matrix (Lebeaux et al., 2014). The 
basic assumption regarding the protective role played by the 
biofilm is that of reduced diffusion of antibiotics into the 
inner layers of the biofilms and their effective access to the 
sessile bacteria (Mah et al. 2003; Singh et al. 2021).

P. aeruginosa produces numerous virulence factors that 
aid in its colonisation during an infection. Virulence factors 
such as mucoid exopolysaccharides, rhamnolipids, haemo-
lysins, proteases, lipopolysaccharides, pili, and lipases are 
common tools used by P. aeruginosa to invade, adhere and 
colonise the host. The arsenal of virulence factors makes P. 
aeruginosa a potent pathogen (Schaber et al. 2004; Schro-
eder et al. 2017).

Many processes involving virulence are modulated by 
the hierarchical quorum sensing (QS) circuits documented 
in P. aeruginosa. These traits are involved in the pathoge-
nicity of the bacteria (Lee and Zhang 2014). It has been 
proposed that targeting the QS system of P. aeruginosa by 

Introduction

In humans, Pseudomonas aeruginosa strains can cause 
infections and diseases such as wound infections, periodon-
titis, keratitis and chronic pneumonia during cystic fibrosis 
(CF). These usually occur in individuals with compromised 
immune systems (Gellatly and Hancock 2013). The diver-
sity of genetic variation amongst P. aeruginosa strains is 
highlighted by the presence of non-mucoid, mucoid and 
heavily mucoid phenotypes (Workentine et al. 2013).

An important factor contributing toward the pathogen-
esis of P. aeruginosa is its remarkable ability to switch 
between planktonic and sessile modes of growth in the onset 
of chronic infections. The sessile cells, compared to plank-
tonic cells, do not show an enhanced resistance towards 

	
 Dr Rachith Kalgudi
rachith.kalgudi@gmail.com

1	 School of Life Sciences, University of Westminster, 115 New 
Cavendish Street, W1W 6UW London, UK

Abstract
Quorum quenching (QQ), a mechanism which inhibits, interferes or inactivates quorum sensing, has been investigated 
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strains) modulate their gene expression to form biofilms, their quorum sensing (QS) mediated biofilm to be formed, and 
their virulence expressed. The mRNA expression of the AHL-mediated QS circuit and AHL-mediated virulence factors 
in P. aeruginosa was investigated in presence of QQs. qPCR analysis showed that farnesol and tyrosol actively reduce 
the expression of the synthase protein, LasI and RhlI, and prevent production of 3OC12-HSL and C4-HSL, respectively. 
Also, the use of farnesol and tyrosol significantly moderated gene expression for exo-proteins toxA, aprA, LasB, as well 
as rhlAB, which are responsible for rhamnolipid production. Our findings were promising, identifying several suppressive 
regulatory effects of furanone and Candida albicans QS signal molecules, tyrosol, and farnesol on the AHL-mediated P. 
aeruginosa QS network and related virulence factors.
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production between the non-mucoid and mucoid pheno-
types along with other QQs and biofilm dispersal agents.

This study investigated the effect of quorum quenching 
(QQ) on biofilm formation and virulence factor secretion of 
three strains of P. aeruginosa: P. aeruginosa NCTC 10,662 
(non-mucoid), P. aeruginosa PAO1 (mucoid) and P. aerugi-
nosa RBHi (a heavily mucoid CF isolate).

Materials and methods

Preparation of bacterial inoculum, biofilm 
formation and dispersal

P. aeruginosa NCTC 10,662 (non-mucoid), P. aeruginosa 
PAO1 (semi mucoid) and P. aeruginosa RBHi (heavily 
mucoid) were selected as model phenotypes for this study.

P. aeruginosa PAO1 and P. aeruginosa NCTC 10,662 
were obtained from the University of Westminster, Lon-
don culture collection. P. aeruginosa CF isolate was kindly 
donated by the culture collection facility at Royal Brompton 
Hospital, London, UK (referred to as RBHi in this study).

P. aeruginosa strains were subcultured into Lysogeny 
broth (LB broth) from the slants and incubated aerobi-
cally overnight (16–18 h) at 37oC at 180 rpm. The absor-
bance (OD600) of the overnight growth of P. aeruginosa 
sp. was readjusted in sterile LB broth to obtain an equiva-
lence absorption according to 0.5 McFarland standards 
(~ 1.5 × 108 cells) and used for further biofilm growth. A 
flow-cell (Transmission Flow-cell, FC 281, BioSurface 
Technologies Corporation (BST), Montana, USA) provided 
a closed system where bacterial attachment occurred and 
biofilm structure and hence extracellular polymeric sub-
stances (EPS) were produced.

Quorum quenchers used in this study included (Z-)-
4-Bromo-5-bromomethylene)-2(5  H)-furanone; E, E 
– farnesol; and 2,4- hydroxyphenyl)-ethanol (Tyrosol). 
Equation  1 was used to calculate the MIC50s, concentra-
tions that inhibited 50% of the isolates, for farnesol, tyrosol, 
and furanone (Quave et al. 2008). A mean of 3 absorbance 
readings were taken at OD595 nm for each value (n = 3).

	 (1 − (ODs24 − ODs0)�(ODc24 − ODc0)) × 100 = MIC50 (%)

� (Eq. 1)

ODs24 = Optical density of culture at 595 nm of experimen-
tal sample, 24 h post-inoculation.

ODs0 = Optical Density of culture at 595 nm of experi-
mental sample at time point 0.

ODc24 = Optical density of culture at 595 nm of control 
sample, 24 h post inoculation.

interrupting bacterial communication instead of killing the 
bacteria by antibiotics would have an anti-pathogenic effect 
and may aid in the fight against biofilm forming pathogens 
and antibiotic resistance (Barlow and Nathwani 2005; Rémy 
et al. 2020).

Conventional P. aeruginosa antibiotics such as ceftazi-
dime, ciprofloxacin, and azithromycin display QQ activ-
ity (Skindersoe et al. 2008; Swatton et al. 2016). However, 
even though the mechanism is not fully understood, it has 
been speculated that their QQ activity involves inhibiting 
bacterial protein synthesis which prevents the expression of 
the inducer protein from synthesising the QS signal mol-
ecules (Reuter et al., 2016). Azithromycin is also known 
to inhibit alginate production in mucoid strains of P. aeru-
ginosa (Imperi, Leoni and Visca, 2014). In a recent study, 
the newly synthesised P. aeruginosa quorum-sensing auto-
inducer analogues (AIA-1, -2) were demonstrated to boost 
the bactericidal efficacy of azithromycin by altering the cell 
surface hydrophobicity of P. aeruginosa, reducing antibiotic 
tolerance (Abe et al. 2021). The use of the said antibiot-
ics has been known to induce resistance amongst bacteria, 
hence they cannot be used as potential QQs.

As Acyl-Homoserine Lactones (AHLs) represent the pri-
mary QS signal molecules in P. aeruginosa, utilising small 
molecules that mimic AHLs to inhibit QS is a promising 
strategy. Furanones were first identified as QQs that inhibit 
by mimicking AHL molecules by attaching to the LasR 
receptor of P. aeruginosa. This interfered with the binding 
of the AHL molecule, thereby preventing QS mediated gene 
regulation in P. aeruginosa (Manner and Fallarero., 2018). 
Since the discovery of the role of furanone in inhibition of 
the QS system, numerous synthetically produced, structur-
ally diverse furanone derivatives have been synthesised 
(Irie et al. 2017). Similarly, an AHL analogue, meta-bromo-
thiolactone, competitively inhibits QS in P. aeruginosa and 
prevents biofilm formation and pyocyanin production and 
protects lung cells against the antagonistic activity of P. 
aeruginosa (O’Loughlin et al., 2013).

While there are numerous environmental and physiologi-
cal cues for dispersal of biofilm, chemicals produced by 
microorganism themselves can be utilised in a strategy to 
induce biofilm dispersal and inhibit QS in P. aeruginosa. 
Candida albicans produces two QS molecules, namely 
farnesol and tyrosol (Kaplan 2010). Farnesol was shown 
to inhibit the morphological shift from yeast to hyphae at 
high cell densities while tyrosol was shown to accelerate 
the transition from yeast to hyphae in C. albicans (Decanis 
et al. 2011). As P. aeruginosa and C. albicans are known 
to coexist in numerous nosocomial opportunistic infections 
(Méar et al. 2013; Doing et al. 2020), the influence of farne-
sol and tyrosol as potential QQs may be investigated against 
P. aeruginosa biofilm formation and subsequent virulence 
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Chomczynski and Sacchi in 1987. cDNA preparation was 
then done by using the QuantiTect Reverse Transcription kit 
(Qiagen ltd, Manchester, UK).

Samples were prepared using diluted forward and reverse 
primer (Tables 1 and 2) mix (1/10 dilution). They were then 
run in duplicate at 95 °C initial denaturation for 2 min. Sub-
sequently, the amplification program involved 40 cycles of 
denaturation at 95 °C for 15 s, primer annealing at 55 °C for 
15 s and extension at 72 °C for 30 s. A final extension was 
performed at 72 °C for 2 min followed by cooling at 4 °C. 
A dissociation step at 55 °C was used to generate a melt-
ing curve with a 1 °C increase every 5 s till 95 °C to obtain 
verification of amplified product. Reference genes were as 
reported in Table  3. SYBR Green qPCR was performed 
using Rotor Gene Q (Qiagen ltd, Manchester, UK).

Statistical analysis

All experiments were performed in triplicates. All data for 
assays performed in this study were statistically analysed 
using GraphPad Prism to determine p values and establish 
correlation between data sets. All graphs were plotted using 
GraphPad Prism. p < 0.05 was considered significant.

Results

Quantitative PCR and expression levels of QS genes and 
QS mediated virulence factors ofP. aeruginosa.

Following the treatment with MIC50 furanone, farnesol 
and tyrosol, there was a significant reduction (p = 0.0001) 
in the relative abundance of RNA for all the LasI protein 
(Fig. 1a) from the three strains of P. aeruginosa. Compari-
son between farnesol and tyrosol showed that farnesol had 
a greater effect on LasI compared to tyrosol. The effect 
of farnesol and tyrosol on LasI was more pronounced in 
NCTC 10,662 compared to PAO1 and RBHi. This was not 
the case with LasR. With the exception of RBHi, treatment 
with farnesol up-regulated the expression of LasR in NCTC 
10,662 and PAO1. LasR was also up-regulated with tyrosol 
in PAO1 (Fig. 1b).

ODc0 = Optical density of culture at 595 nm of control 
sample at time point 0.

MIC50 were 125  µg/mL for farnesol and tyrosol, and 
5 µg/mL for furanone.

1)	 Farnesol 125  µg/mL (MIC50).(1-(1.01–0.51/ 
1.59 − 0.56)) x 100 = 51.5%

2)	 Tyrosol 125  µg/mL (MIC50).(1-(0.94 − 0.48/ 
1.59 − 0.56)) x 100 = 55.4%

3)	 Furanone 5  µg/mL (MIC50).(1-(0.89 − 0.45/ 
1.59 − 0.56)) x 100 = 57.3%

qPCR analysis of QS network and virulence factors inP. 
aeruginosa.

RNA extraction from bacterial cells was performed 
using the Trizol RNA isolation protocol described by 

Table 1  Primers used in this study for QS genes in P. aeruginosa
Gene Primer Nucleotide sequence Reference
lasI forward 5’ CGTGCTCAAGTGTTCAAGG 

3’
Jack et al. 
2018; Zhu 
et al. 2004reverse 5’ TACAGTCG-

GAAAAGCCCAG 3’
lasR forward 5’ AAGTGGAAAATTGGAGTG-

GAG 3’
reverse 5’ GTAGTTGCCGACGACGAT-

GAAG 3’
rhlI forward 5’ TTCATCCTCCTT-

TAGTCTTCCC 3’
reverse 5’ TTCCAGCGATTCAGAGAGC 

3’
rhlR forward 5’ TGCATTTTATCGAT-

CAGGGC 3’
reverse 5’ CACTTCCTTTTCCAGGACG 3’

Table 2  Primers used in this study for virulence factors of P. aerugi-
nosa
Gene Primer Nucleotide sequence Reference
toxA forward 5’ GGAGCGCAAC-

TATCCCACT 3’
Sabharwal 
et al. 2014;
Aghamol-
laei et al. 
2015

reverse 5’ TGGTAGCCGACGAACA-
CATA 3’

aprA forward 5’ GTCGACCAGGCGGCG-
GAGCAGATA 3’

reverse 5’ GCCGAGGCCGCCG-
TAGAGGATGTC 3’

rhlAB forward 5’ TCATGGAATTGTCA-
CAACCGC 3’

reverse 5’ ATACGGCAAAATCATG-
GCAAC 3’

lasB forward 5’ TTCTACCCGAAGGACT-
GATAC 3’

reverse 5’ AACACCCATGATCGCAAC 
3’

Table 3  Reference genes and primers for qPCR
Gene Primer Nucleotide sequence Reference
rpsL forward 5’ CCTCGTACATCGGTGGT-

GAAG 3’
Pourak-
bari et al., 
2015;
Jack et al. 
2018

reverse 5’ CCCTGCTTACGGTCTTT-
GACAC 3’

AmpC forward 5’GGTGCAGAAGGACCAG-
GCACAGAT 3’

reverse 5’CGATGCTCGGGTTG-
GAATAGAGGC 3’
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Discussion

In recent years, QS has been the primary focus of research 
involving treatment of biofilm mediated chronic infections. 
It has been well established that QS plays a vital role in 
development and formation of biofilms which is a recalci-
trant mode of growth and aids in the onset of bacterial resis-
tance towards conventional antibiotics (Pletzer et al. 2018). 
This has led to an inexorable rise in formation of superbugs-
related infections that are extremely hard to treat due to the 
dearth of effective therapies (Fernández et al. 2011). There-
fore, recent research has been focused on elucidating novel 
therapeutic strategies in order to combat biofilm-related 
infections by attenuating the ability of cell-to-cell com-
munication by targeting the QS signalling system present 
in bacteria (Römling and Balsalobre., 2012 and Bi et al. 
2021). This in turn would aid in arresting biofilm formation 
and biofilm related chronic infections. Novel therapies that 
target the QS system in pathogenic bacteria could provide 
the foundation for the development of next generation anti-
virulence therapies.

Three primary strategies can be adopted to combat bio-
film formation by inhibiting QS. The most frequently stud-
ied strategies are degradation and modification of QS signals 
to prevent bacterial communication along with competitive 
inhibition of the receptor protein of the QS circuit as well 
as impeding the function of synthase protein responsible for 

Reduction in mRNA expression for RhlI protein was seen 
with all the strains when treated with furanone, farnesol, and 
tyrosol (Fig. 1c). Similar to LasI, NCTC 10,662 showed the 
highest reduction in RNA content for RhlI, while all three 
strains showed a down-regulation of RhlI when treated with 
farnesol and tyrosol (Fig.  1c). In the case of RBHi, tyro-
sol up-regulated the expression of RhlR (Fig. 1d), however, 
down-regulation of RhlR was marginal when treated with 
farnesol.

Figure 1.
qPCR analysis of expression of genes related to virulence 

factors of P. aeruginosa showed that treatment with fura-
none, farnesol, and tyrosol down-regulated the expression 
of toxA, aprA, rhlAB and LasB when compared to the con-
trol as shown in Fig. 2. Farnesol seemed highly effective in 
down-regulating rhIAB when compared to tyrosol for all the 
strains of P. aeruginosa (Fig. 2c). LasB showed the highest 
down-regulation amongst all the genes analysed with fura-
none treatment (Fig. 2d).

Data pertaining to cell counts from the control and exper-
imental cultures that underwent treatment with furanone, 
farnesol and tyrosol is provided as supplementary informa-
tion to corroborate the regulation of gene expression in P 
aeruginosa sp.

Fig. 1  mRNA expression of AHL mediated QS circuit in P. aeruginosa sessile cells grown with QQ. The fold change of mRNA for LasI (a), LasR 
(b), RhlI (c) and RhlR (d) was determined for P. aeruginosa sessile cells extracted from biofilm treated with furanone, farnesol and tyrosol after 
~ 16 h growth. Results are expressed as the mean fold change (control standardised to 1.0) with error bars representing SEM (n = 9)
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linked to lasI and is considered to be the cognate receptor for 
3OC12-HS. Signal synthase, RhlI, generates C4-HSL, and 
the C4-HSL receptor is called RhlR (Muh et al. 2006). Sig-
nificant down-regulation in gene expression was observed 
with the use of farnesol and tyrosol for exo-proteins toxA, 
aprA and LasB as well as rhlAB which are responsible for 
the production of rhamnolipid.

Since the introduction of antibiotics as novel treatment 
against infections in the 1940s, multi drug resistance traits 
have become synonymous with biofilm forming opportunis-
tic pathogens that dominate the nosocomial setting (Bryers 
2008). This necessitates the identification and investigation 
of novel antimicrobial therapies and their mode of action. 
Exploiting interspecies and interkingdom interactions/ com-
petition as well as naturally occurring products and their 
use in synergy could provide a potential solution to com-
bat/ eradicate biofilm related chronic infections and drug 
resistance.

Conclusions

This study demonstrated the effect of quorum quenchers 
derived from C. albicans and the subsequent changes in 
gene expression of biofilm formation and virulence factors 
in P. aeruginosa.

producing the QS molecules (LaSarre and Federle., 2013, 
Bhatt et al. 2021). In the natural environment, blocking 
communication of ecological niche adversary is essential 
for survival. This is a promising avenue to explore in order 
to get a better understanding of the process of social inter-
action of individual bacterial species or of groups aiming 
to dictate the niche (Bhagirath et al. 2016). As vital QS is 
for bacterial coordination and survival, it is also essential 
for bacteria to interfere with QS of other microbes in order 
to gain an advantage for survival (Li and Tian., 2012). This 
naturally existing process of communication interference 
to gain an advantage over competitors can be exploited to 
develop novel therapies targeting the QS system of patho-
genic bacteria.

Gene expression studies, involving the individual effect 
of farnesol and tyrosol, were conducted along with fura-
none. All the three strains showed a significant down-regu-
lation in both the AHL mediated synthases (LasI and RhlR) 
when treated with furanone (Fig. 1). However, LasR recep-
tor was up-regulated in NCTC 10,662 using farnesol and 
in PAO1 using farnesol and tyrosol. Similar up-regulation 
of RhlR receptor was observed in RBHi when treated with 
tyrosol. This shows that farnesol and tyrosol actively reduce 
the expression of the synthase protein (LasI and RhlI) and 
prevent production of N-3-oxo-dodecanoyl homoserine lac-
tone (3OC12-HSL) and C4-HSL respectively. lasR gene is 

Fig. 2  mRNA expression of AHL mediated virulence factors of P. aeruginosa sessile cells grown with QQs. The fold change of mRNA for toxA 
(a), aprA (b), rhlAB (c) and LasB (d) was determined for P. aeruginosa sessile cells extracted from biofilm treated with furanone, farnesol and 
tyrosol after ~ 16 h growth. Results are expressed as the mean fold change (control standardised to 1.0) with error bars representing SEM (n = 9)
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Our findings have shown promise in identifying several 
suppressive regulatory effects of C. albicans QS signal mol-
ecules on AHL mediated P. aeruginosa QS network and 
related virulence factors. It is well known that conventional 
antibiotics cause resistance in bacteria. This study pro-
vides a novel option for the control of P. aeruginosa bio-
film related infections and diseases, as well as a foundation 
for future research on the mechanisms of biofilm inhibition 
in different P. aeruginosa phenotypes from the perspective 
of QQ. The QQs used in this study provide the opportu-
nity for application of these molecules as an alternative to 
traditional antibiotics. Future challenges for the research 
include studying the effects of the QQs in vivo. This brings 
the knowledge obtained from this research closer to real-life 
application.

Further research will extend the understanding of mecha-
nistic action of the QQ.

Quantification of P. aeruginosa virulence factors such as 
rhamnolipid, pyoverdine, pyocyanin, and elastolytic activ-
ity, as well as the use of the crystal violet method to measure 
biofilm formation upon treatment with quorum quenchers, 
may help to improve the findings.
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