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Abstract

Motivation: Unique molecular identifiers (UMIs) are added to DNA fragments before PCR amplifi-

cation to discriminate between alleles arising from the same genomic locus and sequencing reads

produced by PCR amplification. While computational methods have been developed to take into

account UMI information in genome-wide and single-cell sequencing studies, they are not

designed for modern amplicon-based sequencing experiments, especially in cases of high allelic

diversity. Importantly, no guidelines are provided for the design of optimal UMI length for

amplicon-based sequencing experiments.

Results: Based on the total number of DNA fragments and the distribution of allele frequencies, we

present a model for the determination of the minimum UMI length required to prevent UMI colli-

sions and reduce allelic distortion. We also introduce a user-friendly software tool called AmpUMI

to assist in the design and the analysis of UMI-based amplicon sequencing studies. AmpUMI

provides quality control metrics on frequency and quality of UMIs, and trims and deduplicates

amplicon sequences with user specified parameters for use in downstream analysis.

Availability and implementation: AmpUMI is open-source and freely available at http://github.

com/pinellolab/AmpUMI.

Contact: lpinello@mgh.harvard.edu

1 Introduction

Next-generation sequencing technologies have enabled the rapid

and cost-effective translation of biological DNA or RNA sequences

to short sequencing reads that can be used to analyze and under-

stand the genome. In most library preparation protocols, genomic

material must be amplified using PCR to ensure successful sequenc-

ing. Exponential amplification is sequence dependent and differen-

ces in amplification rate may arise from variation in sequence

composition (Aird et al., 2011). Duplicate sequencing reads result-

ing from PCR amplification may lead to biases in results or incorrect

conclusions about the actual frequency of that read.

Many approaches have been developed for the deduplication of

next-generation reads from across the genome. Some tools such as

FastUniq (Xu et al., 2012) or Fulcrum (Burriesci et al., 2012) filter raw

sequencing output in FASTQ format and remove any reads with the

same sequence. Commonly used tools such as Picard MarkDuplicates

(Li et al., 2009), samtools rmdup (Li, 2011) and SEAL (Pireddu et al.,

2011) align the reads to the genome and identify reads aligning to the

same genomic position as duplicates. However, if two DNA fragments

from different cells produce reads aligning to the same location, they

will be incorrectly called as PCR duplicates, even though they origi-

nated from two different molecules. As sequencing depth increases, so

does the chance of finding apparently duplicate reads that align to the

same genomic location but are from different DNA fragments. In add-

ition, non-uniform genomic fragment formation (e.g. short exons, re-

striction enzyme digestion, etc.) can also increase the apparent rate of
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PCR duplicates if sequence identity and alignment co-ordinates are the

only criteria for identifying PCR duplicates.

Although PCR deduplication may not affect experimental out-

come in cases of calling reference variants from genome wide

sequencing (Ebbert et al., 2016), library preparation strategies that

rely on many PCR amplification cycles (such as single-cell experi-

ments) are susceptible to errors introduced by amplification bias and

should be corrected (Islam et al., 2014). In libraries with potentially

low sequence complexity, PCR amplification bias may go undetect-

ed and lead to inaccurate interpretation of sequencing results. For

example, accurate allele quantification may be distorted when iden-

tifying rare cancer mutations (Kinde et al., 2011; Kukita et al.,

2015; Mansukhani et al., 2017) or when measuring the genomic

outcomes of CRISPR genome editing experiments (Pinello et al.,

2016) through amplicon sequencing of a specific target region.

In order to address the problem of duplicate reads from a bio-

logical perspective, library generation protocols have been devel-

oped that tag DNA fragments with a sequence of randomly selected

nucleotides or partially degenerate nucleotides, called a unique mo-

lecular identifier (UMI). After sequencing, reads arising from PCR

duplicates will all have the same UMI and all but one of these reads

are marked as duplicates as shown in Figure 1a. In downstream ana-

lysis these reads are normally ignored, but they can also be used in

error correction or in estimating sequencing error rates.

Although there are many benefits to using UMIs, there is a

dearth of documented design rationale for selecting sufficient UMI

length, and no existing tools to aid experimental designers who may

not feel comfortable addressing the probabilities of UMI collision.

In one case, a UMI length is chosen so that the number of unique

UMIs ’far exceeds’ the number of primer molecules used in the ex-

periment (Kou et al., 2016). However, this may lead to overesti-

mation of the required UMI length.

Several tools to analyze UMI datasets are available, but most are

designed for genome-wide sequencing analysis and require aligned

sequence files in bam format as input. UMI-Reducer (Mangul et al.,

2017), Je (Girardot et al., 2016), Debarcer (Stahlberg et al., 2016)

and UMI-tools (Smith et al., 2017) are tools that take UMI informa-

tion into account in the deduplication process, but are designed for

genome-wide sequencing analyses. These methods first trim the

UMI and associated sequencing adapters from the sequenced read,

and append the UMI to the read name. Next, the trimmed sequenc-

ing reads are mapped to the genome. Finally, each read is scanned

to identify other duplicate reads that align to the same genomic loca-

tion and have the same UMI. However, these existing algorithms

and methods are not well-suited to amplicon sequencing, where

every read aligns to same genomic position. pRESTO (Vander

Heiden et al., 2014) and MAGERI (Shugay et al., 2017) have the

capability to work on raw FASTQ files and can collapse reads by

unique UMIs. However, the UMI parsing capabilities for both tools

are rigid and, for example, do not allow for degenerate bases in the

UMI definition.

Additionally, existing packages attempt to minimize nucleotide

variation due to sequencing error by merging reads with one or two

differences between the reads (Xu et al., 2017). However, in some

amplicon experiments, particularly those attempting to identify rare

genomic variants at a locus, merging reads with small differences

could obscure these rare variants. To address the problem of identi-

fying sequencing errors, an alternate sequencing approach amplifies

DNA fragments in many rounds of PCR and then only considers

sequencing reads appearing multiple times for downstream analysis

(Stahlberg et al., 2017).

Our approach overcomes these challenges by providing users an

end-to-end software solution for amplicon sequencing experiments

called AmpUMI. AmpUMI aids in both UMI design and subsequent

processing of sequencing reads to perform error correction and

deduplication. (Fig. 1b).

2 Approach

2.1 Estimating minimum UMI length requirements
Careful UMI design should be performed in the planning stages of

an experiment, especially since it is not easy to measure the deleteri-

ous effects of inadequate UMI design after sequencing by examining

the reads.

One of the most common problems is UMI collision, defined as

the event of observing two reads with the same sequence and same

UMI barcode but originating from two different genomic molecules.

UMI collision is a function of the number of UMIs used, the number

of unique alleles and the frequency of each allele in the population. In

genome-wide sequencing experiments, the chance of UMI collision is

very low because the number of reads sharing the same sequence is

very small. In this study, we focus on amplicon sequencing, in which

a specific location in the genome is sequenced in many different cells,

usually for the purpose of identifying or quantifying rare alleles. In

this case, the sequencing depth is much greater than genome-wide

sequencing and many alleles from different genomic molecules will

share the same sequence. Because of this, the possibility of UMI colli-

sions is much higher and needs to be taken into consideration in UMI

design and analysis of sequenced reads.

In amplicon sequencing studies, it may be tempting to design

conservatively long UMIs. If a long UMI is chosen, UMI diversity is

high and the number of UMIs is much greater than the number of

molecules of the major allele, resulting in a small UMI collision rate.

In addition, if UMI diversity is high, sequencing errors that affect

the UMI can be corrected. For example, if all UMIs present in a

sequenced population are at least two nucleotide changes from each

other, sequenced UMIs that differ by only one nucleotide change

can be merged (Smith et al., 2017).

However, we note that excessively long UMI lengths chosen

without consideration for these concerns pose several complications:
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Fig. 1. (a) Schematic showing utility of UMIs in identifying PCR duplicates. In

libraries using UMIs, a short sequence of random nucleotides is added to

each DNA fragment before PCR amplification. All PCR products of that read

will contain the same UMI. After library sequencing, DNA fragments with the

same sequence (shown as square nucleotides on the right part of the read)

can be identified as either PCR duplicates or not, based on the UMI sequence

(shown as rounded nucleotides on the left part of the read). (b) Outline of a

standard experiment utilizing UMI technology. The steps shown in gray are

computational processing steps, and are the procedures performed by our

software, AmpUMI
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First, a greater number of sequencer cycles spent on reading UMIs

necessitates a shorter read of the actual target sequence. Second,

there is some speculation that long UMIs could interfere with primer

sequence binding—by preferentially hybridizing to DNA with com-

plementary sequence, or sterically hindering proper adapter function

at the target site. Third, given that each basepair has an equal prob-

ability of sequencing error, longer UMI sequences are more likely to

accumulate sequencing errors, which could result in ambiguity

about whether sequences with similar UMIs result from sequencing

errors or are unique molecular events.

To quantify the effects of UMI length on UMI collisions, we

have derived an equation, Equation (4), that allows us to compute

the probability of observing no UMI collisions as a function of

UMI length, number of reads and the number and proportions of

alleles. The calculation of this probability for the worst case is

implemented in our software and can be calculated using the

AmpUMI Collision command. In some cases, a small number of

UMI collisions may be tolerable as long as the final allelic propor-

tions are within a certain error. In this case, Equation (13) can be

used to determine the total allelic fraction distortion (TAFD) for a

given UMI length and the true underlying allelic composition. The

calculation of allelic distortion can be computed using the AmpUMI

Distortion command. AmpUMI can also be used to determine

the minimum UMI length required to have a probability of observ-

ing a UMI collision below a given threshold, or to produce an allelic

distortion below a given percentage. These commands can be

accessed using the AmpUMI Collision or AmpUMI Distortion

command as before, except that the desired cutoff is given as a par-

ameter instead of the UMI length.

We note that there is a difference between the number of reads

and the number of DNA fragments being sampled. While it is rela-

tively easy to predict the number of reads that will be produced by a

sequencing run based on the machine type and the abundance of the

sample among those being sequenced, it is impossible to predict the

allele frequency of the most frequent allele. With this in mind, we

suggest that for experiments for which the major allele frequency is

not known, a suitable UMI length be chosen based on the case that

the amplicon sequencing yields a single allele. In this scenario, if we

assume that we have n reads, we can use the AmpUMI Collision

command or Equation (6) to determine the minimum UMI length k

for observing no collisions with a given probability P.

2.2 AmpUMI: removing PCR duplicates from amplicon

sequencing
Once the proper UMI length has been designed and the experiment

has been sequenced, the raw FASTQ output from the sequencer needs

to be prepared for downstream analysis. In addition to aiding in UMI

design, AmpUMI is a flexible and efficient software that can be used

to perform preparation of raw FASTQ files. FASTQ files contain the

sequence of the UMI and DNA fragment, as well as the sequencing

quality for each read. Unprocessed FASTQ files cannot be used in

downstream processing steps because the data still contains PCR

duplicates, and the UMI sequence must be separated from the se-

quence of the DNA fragment. AmpUMI performs four major pre-

processing functions: assessing the quality of UMIs, flexible trimming

of the UMI and adapter sequences, performing sequencing error cor-

rection and finally removing reads resulting from PCR duplicates.

First, AmpUMI assesses the quality of UMIs. In this step, the di-

versity of UMIs is measured. If one or a few UMIs are significantly

overrepresented in the library, this could signal an error in UMI syn-

thesis or bias in library amplification. In addition, we propose a

measure for estimating whether the UMI complexity was sufficient

for the diversity of amplicon sequences. We report the frequency of

reads with the same UMI that have different amplicon sequences. A

high frequency of these types of reads would result from an experi-

ment with too little UMI complexity, or from a highly error-prone

sequencing run.

Next, the UMIs and adapter sequences are trimmed from the

FASTQ sequences. AmpUMI allows users to specify a regular ex-

pression to flexibly specify the UMI and adapter sequences. In the

specification of this regular expression, the locations of bases that

should be counted as UMIs are set by the user as the letter I, while

the sequencing adapter is specified using the regular A, T, C and G

letters. Using this regular expression, the UMI and adapter are iden-

tified and trimmed from each read. The UMI for each sequence is

added to the sequence name. Reads for which the regular expression

cannot be found (e.g. due to sequencing errors in the sequencing

adapter or length modifications of the UMI) are discarded.

After the reads are trimmed, sequencing error correction and

PCR deduplication are performed. Two functions for error correc-

tion are used in the deduplication process. The first type of error

correction is designed for experiments in which the number of UMIs

is much greater than the number of input molecules and multiple

rounds of PCR have been performed. This experimental design will

yield multiple copies of each UMI-molecule pair, and sequencing

errors will be apparent as rare mutations in the amplicon sequence.

During deduplication, reads will be grouped by UMI, and the most

frequent amplicon sequence will be accepted as the consensus se-

quence and the other sequences will be assumed to come from

sequencing error and will be discarded. The second type of error cor-

rection is optional and can be used to correct errors in the UMI se-

quence by filtering rare UMI-amplicon sequence pairs that could

arise from sequencing errors. First, FASTQ sequences with the same

UMI and amplicon sequence are grouped. Only pairs of UMI-

amplicon sequence that have been seen multiple times (a parameter

specified by the user) are used for downstream analysis, while the re-

mainder of rare UMI-amplicon sequence pairs are discarded. As this

parameter is increased, the confidence in the UMI and amplicon se-

quence is increased, but the quantification accuracy of allele distri-

bution is decreased, especially for rare alleles.

3 Materials and methods

3.1 Problem formulation and assumptions
We are interested in determining the probability of no collisions of

any two different alleles associated with the same UMI. In what fol-

lows, we make a few motivated assumptions to derive a closed-form

expression for our probability of interest.

Let X be finite set of M ¼ jXjð Þ DNA fragments partitioned into

I types (i.e. alleles) and let Y be a finite set of U ¼ jYjð Þ UMI primers

partitioned into J UMIs (i.e. barcodes), such that fragments or

UMI primers within each class are indistinguishable from each

other. Here, the number of UMIs J equals the number of the four

nucleotides (A, G, C, T) raised to the power of the UMI’s sequence

length K. That is, J ¼ 4K, where the value of K usually ranges

from 8 to 12 bp. Accordingly, the two sets of interest can be parti-

tioned into X ¼ fX1; . . . ;Xi; . . . ;XIg and Y ¼ fY1; �;Yj; �;YJg where

jXij ¼Mi for i ¼ 1; . . . ; I and jYjj ¼ Uj for j ¼ 1; . . . ; J.

ASSUMPTION 1 (Sampling with Replacement). Given that the total

number of UMI primers U is much greater than the number of

unique UMIs J and the total number of DNA fragments M is also

much greater than the number of alleles I, we can assume that both

i204 K. Clement et al.



the UMI primers and DNA fragments are sampled with replace-

ment. Note that the number of reads (samples) n, which we intro-

duce later, is also assumed to be much less than U. For the UMIs,

the assumption is motivated by the observation that in the PCR

amplification step, there are typically 3� 1011 UMI-labeled primers

in 0.5 pmol of solution and so for UMIs of length K¼10, we would,

on average, have approximately 286 100 copies for each UMI.

Assumption (1) implies that the probability of sampling either

allele i or UMI j is given by the categorical distribution (a generaliza-

tion of the Bernoulli distribution to multiple categories). That is

xjm ¼ x1; . . . ; xIð Þ � Categorical I;mð Þ

yju ¼ y1; . . . ; yIð Þ � Categorical J;uð Þ

where x 2 f1;2; . . . ; Ig; m ¼ m1; . . . ;mIð Þ; y 2 f1; 2; . . . ; Jg, and

u ¼ u1; . . . ; uJ

� �
. The proportion mi ¼ Mi

M represents the probability

of observing allele i such that
PI

i¼1 mi ¼ 1. Similarly, the proportion

uj ¼ Ui

U represents the probability of observing UMI j such thatPJ
j¼1 uj ¼ 1.

Now, the total number of reads (samples) n equals the number

of UMI-allele pairs—of which there are Q ¼ jXj ¼ I � J unique

combinations. To determine the distribution over unique UMI-allele

pairs, we first define a joint sample space X ¼ f 1; 1ð Þ; 1; 2ð Þ; . . . ;

i; jð Þ; . . . I; Jð Þg to enumerate all Q possible pairing outcomes and we

let the random variable z be defined over X.

ASSUMPTION 2 (Independence). Since there is no indication that a given

UMI has a preference for any allele, we can assume that the pairing pro-

cess is unbiased such that sampling x is independent of sampling y.

Assumption (2) implies that the probability mass function

for z is given by a multi-nomial distribution with support

z ¼ f z1; . . . ; zQ

� �
2 N

Qjz1 þ � � � þ zQ ¼ ng where n is the number of

samples and p ¼ m� u ¼ m1u1; . . . ;m1uj; . . . miuj; . . . mIuJ

� �
is the

probability vector for the Q possible pairings, where � is the

Kronecker product. That is,

z �Multinomial n; pð Þ since

Pr x ¼ i and y ¼ jð Þ ¼ Pr x ¼ ið ÞPr y ¼ jð Þ

¼ miuj ¼ pq

where q ¼ 1; . . . ;Q and
XQ
q¼1

pq ¼ 1

Example: For the case of two alleles I¼2, three UMIs J¼3 and

three observations (i.e. reads) n¼3, the probability of observing

two reads from Allele 1 paired with UMI 1 and one read from Allele

2 paired with UMI 3 is

p z ¼ 2; 0;0; 0; 0;1ð Þð Þ ¼
n

z

 !
pz

¼ 3!

2!0!0!0!0!1!
m1u1ð Þ2 m2u3ð Þ1

� �
¼ 3m2

1u2
1 1�m1ð Þ 1� u1 þ u2ð Þð Þ

To derive the probability of obtaining no collisions, we note that

the multi-nomial distribution for a sample size n can be viewed geo-

metrically as the normalized n’th component of a Q�dimensional

Pascal’s simplex, ^Q, whose n’th component, ^Q
n , consists of

the coefficients of the multi-nomial expansion of the polynomial

kpk1 ¼
PQ

q¼1 pq raised to the power n. In particular, according to

the multi-nomial theorem, we have

kpkn
1 ¼

X
kzk1¼n

n

z

 !
pz

where p 2 0; 1½ �Q; z 2 N
Q
0 ; n 2 N0; Q 2 N; and kpk1 ¼ 1.

Therefore, the number of multi-nomial coefficients is equal to

the number of coefficients in the Q� 1ð Þ simplex ^Q
n and is given by

the nþ 1ð Þth simplicial Q� 1ð Þ-polytopic number

S ¼ PQ�1 nþ 1ð Þ ¼
nþ 1

Q� 1

 ! !
¼

nþQ� 1

Q� 1

 !

Each of the S components of the multi-nomial expansion

represents the probability of a particular counts outcome event

(i.e. z ¼ z), which is given by the multi-nomial distribution

p z ¼ z; n; pð Þ ¼
n

z1; . . . ; zQ

 !
pz1

1 � � � � � p
zQ

Q

We are interested in a subset of the S events that correspond to hav-

ing no collisions. We denote the set of no collisions by

T :¼ fz 2 N
Q
0 j8z1; . . . ; zq 2 f0; 1g and kzk1 ¼ ng

Note that the cardinality of T is equal to the number of ways a total

of n 1 s are selected from a group of n 1s and Q� nð Þ 0s. More

specifically,

T ¼ jT j ¼
Q

n

 !

Now since for all T events, the product of the terms in

denominator of multi-nomial coefficient is equal to 1, we can

simplify the expression for the probability of observing z� 2 T
as such

p z ¼ z�; n; pð Þ ¼ n! pz�
� �

(1)

Note that when n>Q, the probability of observing any of

the T no-collision events is zero, otherwise when n 	 Q

the probability of observing no collision can be expressed

concisely as

Pr z 2 Tð Þ ¼ n!
X
z2T

pz (2)

ASSUMPTION 3 (Equal Proportions of UMIs). Since the relative abun-

dance of UMIs can be controlled during UMI synthesis, we can as-

sume that the proportion of UMIs to be uniform such that uj ¼ 1
J for

all j; j ¼ 1; . . . J.

Assumption (3) allows us to further simplify Equation (1) as such

p z; n;pð Þ ¼ n!
1

J

� 	nYQ
q¼1

m
zq

i q½ �

and so the probability of observing any of the T no-collision events,

Equation (2), becomes

Pr z 2 Tð Þ ¼ n!
1

J

� 	nX
z2T

m� 1J

� �z
(3)

Computing the probability given by Equation (3) is intractable for

large values of T. Nonetheless, the expression can further be simpli-

fied if we assume the following.
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ASSUMPTION 4 (Upper Limit on the Number of Reads). When the

UMI sequence length K is 10, J already exceeds 1 million. For

some experiments then, we can assume that the number of reads is

less than or equal to the number of UMIs n 	 J.

Using Assumption (4), we can partition the set T into E equiva-

lent classes, essentially reducing the set into an I-dimensional

discrete simplex

E ¼ DI
n :¼ fr 2 N

I
0j8r1; . . . ; rI 2 f0; 1; . . . ;ng; krk1 ¼ n 	 Jg

with cardinality

E ¼
I

n

 ! !
¼

I þ n� 1

n

 !

such that

T ¼
I � J

n

 !
¼

X
r¼ n1 ;...;nIð Þð Þ2E

YI

i¼1

J

ni

 ! !

so now the probability of observing any of the T no-collision events

is given by this general formula.

Pr z 2 Tð Þ ¼ n!
1

J

� 	n X
r¼ n1 ;:::;n1ð Þð Þ2E

YI

i¼1

J

ni

 !
mi

ni

 !
(4)

3.2 Special cases
Case 1 [One Allele (I¼1, Worst Case)]. When I¼1, the discrete

simplex E has just a single component. Subsequently, Equation (4)

reduces to

Pr z 2 Tð Þ ¼ n!
1

J

� 	n J

n

0
@

1
A

¼ J!

Jn J � nð Þ!

¼ Jð Þn
Jn

¼
Yn�1

i¼1

1� i

J

� 	

¼
Yn�1

i¼1

1� i

4K

� 	

(5)

To find the minimum UMI length k� for a given sample size

n� such the probability of no collisions is above a certain

threshold p�, we first need to compute the quantity given by

Equation (5) for a given n� for each UMI length up to an upper

bound kmax (say 20). Let us denote the vector of computed probabil-

ities by

p ¼ p1 p2 p3 . . . pkmax
½ �

Note the elements of p corresponding to values of K for which

n < 4K are zero and do not require computing. The minimum UMI

length k� can then be formally written as

k� ¼ arg where p;p�ð Þ ¼ minfi 2 1; kmax½ �jpi 
 p�g (6)

where arg where p; p�ð Þ gives back the index of the first vector’s

element whose value exceeds p�. Note that since the value of pi

increases as i! kmax, we only need to return the index of the first

element exceeding the threshold.

Case 2 (Equal Proportion of Alleles). Equations (3) and (4) have

the simplest form when m is a vector of equal probabilities. That is,

when mi ¼ 1
I for all i; i ¼ 1; . . . I. The probability of observing any

of the T no-collision events simplifies as such.

Pr z 2 Tð Þ ¼ n!
X
z2T

1I
I
� 1J

J

� 	z

¼ n!
1

I � J

� 	n Q

n

� 	

¼ Qð Þn
Qn

¼
Yn�1

i¼1

1� i

Q

� 	
(7)

where Qð Þn denotes the falling factorial. Note that the probability

of no collision approaches 0 very rapidly as n goes from 1 to

Q. Also, note that when n>Q, the probability of collision is 1 for

any Q.

Note that whereas the number of multi-nomial coefficients is

given by S for the set of all events and T for the set of no-collision

events, the sum of the coefficients is given by A ¼ Qn for the set of

all events and by

B ¼ n!
Q

n

 !
¼ Q!

Q� nð Þ!

for the set of no collisions. Alternatively, the probability can be

derived as a ratio of B over A

B

A
¼ Q!

Qn Q� nð Þ! ¼
Qð Þn
Qn

Case 3 [Two Alleles (I¼2)]. When I¼2, the discrete simplex E has

has n components. Subsequently, Equation (4) reduces to

Pr z 2 Tð Þ ¼ n!

Jn

� 	 X
n1 ;n2ð Þ2E

J

n1

 !
J

n2

 !
mn1

n 1�m1ð Þn2 (8)

where the values of r ¼ n1; n2ð Þ vary over the anti-diagonal indices

of an n�n matrix and the discrete simplex is given by

E ¼ D2
n :¼ fr 2 N

2
0j 0; nð Þ; 1; n� 1ð Þ; . . . ; n� 1; 1ð Þ; n; 0ð Þ; n 	 Jg

3.3 Effects of collisions on allelic diversity
Let y ¼ y11; . . . ; y1J; . . . ; yI1; . . . ; yIJ

� �
denote the q-dimensional

vector of deduplicated reads for all UMI-allele pairing

such that yij 2 f0;1g refers to the read corresponding to the

ith allele and jth UMI. The deduplication process can be formulated as

a thresholded latent variable model, where an indicator function I
thresholds each element of the unobservable random vector z into an

observable binary variable yij. That is,

z �Multinomial n; pð Þ

yij ¼ I zij > 0
� �

for i ¼ 1; . . . ; I; j ¼ 1; . . . ; J

where z 2 N
Q
0 ; kzk1 ¼ n; p 2 0; 1½ �Q; kpk1 ¼ 1; n 2 N0 and Q ¼

I � Jð Þ 2 N
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Expected number of deduplicated reads: We are interested in

the expected number of deduplicated reads (i.e. one-valued elements) in

each of the I allele partitions of y. We begin by letting M denote the I

� I � Jð Þ transformation matrix that gives the I-dimensional vector of

deduplicated read counts for each allele. That is,

M ¼

1> 0> . . . 0>

0> 1> . . . 0>

..

. ..
.

. . . ..
.

0> 0> . . . 1>

2
6664

3
7775

Accordingly, the vector of expected deduplicated read counts c can

be obtained as such

c ¼ E Myð Þ

¼

E
P

j y1j

� �
E
P

j y1j

� �
..
.

E
P

j yIj

� �

2
6666664

3
7777775
¼

P
j E y1j

� �
P

j E y1j

� �
..
.P

j E yIj

� �

2
66664

3
77775 ¼

J �
P

j P z1j ¼ 0
� �

J �
P

j P z2j ¼ 0
� �

..

.

J �
P

j P zIj ¼ 0
� �

2
66664

3
77775

¼ J

1� 1�m1

J

� 	n

1� 1�m2

J

� 	n

..

.

1� 1�mI

J

� 	n

2
66666666664

3
77777777775

(9)

The penultimate step was obtained by observing that the expect-

ation of an event defined by an indicator function is equal to the

probability of that event. That is

E yij

� �
¼ E I zij > 0

� �� �
¼ P zij > 0

� �
¼ 1� P zij ¼ 0

� �
The final step was obtained by noting that since the marginal

distribution of each element of the multinomial z is binomial, namely,

zij � Binomial n;pij ¼
mi

J

� 	

then the probabilities of interest are just given as such.

X
j

P zij ¼ 0
� �

¼
X

j

1�mi

J

	n

¼ J 1�mi

J

� 	n�

Expected number of collisions: The expected number of

collisions nc can be computed by noting that the number of collisions

for each UMI-allele pairing is given by the vector x ¼ z� y and so the

vector of expected number of collisions for all the alleles is given by

nc ¼ E Mxð Þ

¼ E Mzð Þ � E Myð Þ

¼ nm� c

¼

m1n

m2n

..

.

mIn

2
6664

3
7775� J

1� 1�m1

J

� 	n

1� 1�m2

J

� 	n

..

.

1� 1�mI

J

� 	n

2
66666666664

3
77777777775

(10)

Furthermore, the expected total number of collisions collapsed over

the alleles is given by

nc ¼ 1>nc

¼ nkmk1 � kck1

¼ n� J I �
X

I

1�mi

J

� 	n
 ! (11)

Allelic fraction distortion: The expected allelic fraction distortion is

simply the difference of the two normalized components of nc. More

specifically, since the elements c are all non-negative, we can formal-

ly define and simplify the quantity as such.

AFD ¼ m� c

kck1

¼

m1

m2

..

.

mI

2
6664

3
7775�

1

I �
P

Ið1�
mi

J
Þn

1� 1�m1

J

� 	n

1� 1�m2

J

� 	n

..

.

1� 1�mI

J

� 	n

2
66666666664

3
77777777775

(12)

which can be reduced to a scalar quantity, the expected TAFD,

which we abbreviate as TAFD and can be obtained as such.

TAFD ¼ kAFDk1

¼ km� c

kck1

k1

¼
X

I

j mi �
1� 1�mi

J

� 	n

I �
P

Ið1�
mi

J
Þn

0
BB@

1
CCAj

(13)

4 Results

4.1 Allelic fraction distortion resulting from inadequate

UMI length
One of the purposes of performing amplicon sequencing is to accur-

ately estimate the frequency of each allele variant in the population.

However, we show here that the observed allelic fraction of

each variant can be distorted if the UMI length is too short and the

UMI complexity is too low. In the case in which allele variants

are present at roughly the same proportion in the population

(m1 � m2 � m3 � mI) this distortion will be small, as UMI-

molecule collisions will affect each molecule type equally. However,

as the proportion of allele variants becomes more imbalanced (e.g.

m1 � m2 � m3 . . .), after deduplication using UMIs the observed

frequency of rare alleles will increase and the observed frequency of

frequent alleles will be lower than the actual frequency in the popu-

lation. Intuitively, this is because collisions are more frequent in the

more frequent alleles, where a larger UMI diversity is required to

avoid UMI-molecule collisions. Rare allele with few reads are less

likely to exhaust the available unique UMIs.

As an example, we simulated biological library preparations

with n ¼100 000 reads from a population with an underlying allelic

diversity defined as m ¼ 0:1;0:1;0:3;0:5ð Þ. In each simulation,

alleles were paired with a UMI. Samples were simulated using UMIs

of length between 1 bp and 18 bp long. After the simulated sample

was assembled, reads with the same UMI and allele were dedupli-

cated, leaving only one unique UMI-allele combination in the sam-

ple. The proportion of each allele was reported. As seen in Figure 2,

if the UMI is too short and UMI complexity is too low then the pro-

portion of each allele, including rare alleles will be approximately
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equal. This has the effect of overestimating the frequency of rare

alleles in the population, while underestimating the frequency of

abundant alleles as shown on the left side of Figure 2. With suffi-

cient UMI diversity (right side of Fig. 2), the true, underlying allele

frequencies are recapitulated in the simulated, deduplicated

populations. As expected, the allelic frequencies produced by our

model are in perfect agreement with those obtained with computa-

tionally expensive simulations.

We then considered the number of collisions in our simulated

samples (Fig. 3). The number of collisions is defined as the number

of simulated reads (UMI-molecule combination) that had been pre-

viously observed in the simulation. For example, We simulated

100 000 reads with a UMI of length 1 (4 possible UMIs), and meas-

ured the collision rate as 99 996
100 000. We note that the accuracy of reca-

pitulating the actual allele fraction as shown in Figure 2 is mirrored

in the collision rate shown in Figure 3.

4.2 Probability of observing no UMI collisions
Next, we address the problem of finding the probability of observing

no UMI collisions. Equation (5) describes the probability of observing

no collisions in the worst case scenario in which we are most likely to

observe a UMI collision—when only one allele is present in our DNA

fragment pool. Figure 4 shows the probability of having no UMI colli-

sions for a variety of UMI lengths. When we construct 100 000 reads

consisting of a random UMI and a DNA fragment, an 18bp UMI

yields a sample with no collisions with probability P¼0.93, while

shorter UMIs are less likely to yield a sample with no collisions.

4.3 Rates of no UMI collisions in simulated samples
We wanted to validate our model with simulated data, so we simulated

samples of size n ¼100 000 with a UMI of length between 6 bp and

17 bp long. For each simulation sample, we simulated a set of DNA

fragments consisting of five different alleles. The fractional presence of

each allele was randomly selected for each simulation sample to ex-

plore collision rates in cases without prior knowledge on allelic com-

position of a sample. DNA fragments were paired with UMIs and the

number of UMI collisions was recorded. A total of 1000 simulations

were performed for each UMI length. Figure 5 shows the average per-

cent of simulated samples in which no UMI collisions were recorded.

The red line in this figure shows the predicted probability for the worst

case in which there is only one type of molecule. As expected, the
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Colored bars show simulated allelic fractions of four alleles after deduplica-

tion of reads with the same UMI and allele. Simulated samples consisted of

n ¼100 000 reads and were drawn from a population with an allelic diversity

given by m ¼ ð0:1; 0:1; 0:3; 0:5Þ. Reads were generated using using UMI of

length between 1 bp and 18 bp long. For each UMI length, the average simu-

lation proportion of each allele is shown after removing UMI-allele collisions.

Samples of 100 were simulated for each UMI length. The right column

marked ’Truth’ shows the underlying allelic diversity from which the simu-

lated samples were drawn. Dots connected by lines show the predicted allele

frequency given our model [Equation (12)] and are in complete concordance

with the simulation results. The gray histogram at the bottom of the plot

shows the TAFD [Equation (13)] for each UMI length
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model-predicted worst case (red line) is always below the average of all

simulated samples (blue lines) for every UMI length.

We were surprised to observe that the length of UMI required to

achieve no UMI collisions was so long—with a minimum of 18 bp

long for a sample of 100 000 DNA fragments. This indicates that

for experiments performed with this number of fragments and a

shorter UMI (length 8 bp or length 12 bp), a small number of un-

detectable PCR duplicates are likely present in these libraries.

We note that the probability of having no collisions may be

somewhat conservative for some experimentalists who may have a

certain tolerance for an allowable number of collisions in an ampli-

con sequencing experiment. In this case, Equation (13) or the

AmpUMI Distortion command can be used to determine the

required UMI length after selecting a tolerable allelic distortion for

their sequencing application.

4.4 AmpUMI validation on experimental data
To validate our deduplication software, we analyzed a publicly-

available dataset of deep amplicon sequencing (Kou et al., 2016). This

dataset was created to measure PCR amplification and sequencing

errors, and utilized a 22 bp UMI. The amplicon sequence was verified

by Sanger sequencing to match the reference sequence. We tested to

see whether AmpUMI could correctly remove erroneous, non-

reference reads. Table 1 shows data for the unprocessed data and after

the first and second steps of data processing using AmpUMI. In Step

1, reads with the same UMI are deduplicated, and only the most-

frequent allele is kept for each UMI. In Step 2, UMI-sequence pairs

that appear less than 10 times are filtered out. Table 1 shows the num-

ber of total reads, the number of unique alleles and the percentage of

reads that represent the true, unmodified, reference allele. Although

only 95.77% of reads in the unprocessed sample match the unmodi-

fied allele sequence (the remainder of reads contain PCR and sequenc-

ing artifacts), after both steps of processing by AmpUMI, 99.19% of

reads match the unmodified allele, showing a substantial reduction in

contaminating reads resulting from PCR or sequencing artifacts.

5 Discussion

In this study, we address the problem of UMI design and outline a

statistical framework for calculating the probability of collisions of

different molecules having the same UMI. We also introduce

AmpUMI, a flexible software for analyzing next-generation

sequencing from experiments using UMIs and for preparing data for

downstream analysis.

Our statistical framework allows researchers to calculate the

probability of having no collisions for a given experiment, and can

be used to determine an acceptable number of UMIs in order to re-

duce the probability of observing a collision to an acceptable thresh-

old as determined by the user. In cases where a small number of

UMI collisions are acceptable, our framework can also be used to es-

timate the allelic distortion resulting from these collisions, and an

appropriate UMI length can be chosen to keep the allelic distortion

below a specified threshold.

We show that AmpUMI is a valuable tool for analyzing ampli-

con sequencing using UMIs. AmpUMI first allows users to assess the

quality of UMIs and to determine whether the UMI pool had ad-

equate diversity to prevent UMI collisions. Next, flexible trimming

of the UMI and adapter sequences allows researchers to adapt the

software to their specific UMI and sequencing design. AmpUMI can

also performing sequencing error correction to reduce noise and

mitigate sequencing errors. Finally PCR duplicate reads are removed

from the sample FASTQ for easy integration into downstream

analysis.

Although many analysis tools exist for deduplicating next-

generation sequencing data, none are designed to use UMI informa-

tion for deep amplicon sequencing in cases where preservation of

allelic frequency is important. AmpUMI will fill a gap in the avail-

able analysis tools that are currently available to the community.

We anticipate that this tool will be useful in a variety of applica-

tions. For example, in the genome editing community, much effort is

being placed on the quantification and characterization of CRISPR

activity in the genome and the identification of off-targets (Kim

et al., 2015; Tsai et al., 2015; Tsai et al., 2017). The gold standard

for analyzing mutations at targets is by deep amplicon sequencing of

the target which allows for quantification of editing frequency and

analyzing genetic editing events (Pinello et al., 2016). After perform-

ing genomic editing, the rate of modified reads is compared to the

rate of unmodified reads to determine editing efficiency at that loca-

tion. Because a large percent of the resulting amplicon sequences are

the unmodified sequence, simply removing duplicate sequences

would greatly distort the measure of editing frequency and it is im-

possible to tell which sequence are arising from PCR duplication or

unique molecules. Sequencing strategies that use UMIs could greatly

improve the accuracy and confidence in this measure.
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Fig. 5. Probability of having no UMI collisions in simulated samples. We simu-

lated samples of size n ¼100 000, with DNA fragments randomly selected

from a set containing five unique fragments each with a random fraction of

presence in the sample. Simulated DNA fragments were paired with a given

set of UMIs, and the rate of UMI collisions were measured. The average per-

cent of all 1000 simulated samples having no collisions is shown with the

blue line. Three were carried out with 1000 samples each. The red reference

line is computed by our model, and shows the values in Figure 4

Table 1. Number of reads, alleles and the percent of reads match-

ing the reference allele that are present before and after AmpUMI

analysis of a dataset of deep amplicon sequencing (Kou et al.,

2016)

No. Reads No. Alleles Pct. Ref Allele

Unprocessed 6 440 216 20 760 95.77

Deduplicated–Step 1 426 447 2524 97.05

Deduplicated–Step 2 269 564 176 99.19
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When performing amplicon sequencing on a sample with un-

known allele frequency, we recommend using the collision rate cal-

culated for a sample with only one allele and acknowledge that this

will yield a very conservative estimate of minimum UMI length. In a

laboratory setting, this conservative UMI length could be used in a

pilot study sequenced at low sequencing depth to better understand

the underlying allele distribution, after which a more practical UMI

length can be established for full-scale sequencing analysis.

In conclusion, we provide AmpUMI as an open source tool that

we hope will benefit the scientific community, particularly in the

design of appropriate UMIs and in the processing of sequencing reads

produced by amplicon sequencing using UMIs. AmpUMI is open-

source and freely available at http://github.com/pinellolab/AmpUMI.
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