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Abstract

Background: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory

syndrome coronavirus 2 infection, has been spreading globally. We aimed to develop a

clinical model to predict the outcome of patients with severe COVID-19 infection early.

Methods: Demographic, clinical and first laboratory findings after admission of

183 patients with severe COVID-19 infection (115 survivors and 68 non-survivors from

the Sino-French New City Branch of Tongji Hospital, Wuhan) were used to develop the

predictive models. Machine learning approaches were used to select the features and

predict the patients’ outcomes. The area under the receiver operating characteristic curve

(AUROC) was applied to compare the models’ performance. A total of 64 with severe
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COVID-19 infection from the Optical Valley Branch of Tongji Hospital, Wuhan, were used

to externally validate the final predictive model.

Results: The baseline characteristics and laboratory tests were significantly different

between the survivors and non-survivors. Four variables (age, high-sensitivity C-reactive

protein level, lymphocyte count and d-dimer level) were selected by all five models.

Given the similar performance among the models, the logistic regression model was

selected as the final predictive model because of its simplicity and interpretability.

The AUROCs of the external validation sets were 0.881. The sensitivity and specificity

were 0.839 and 0.794 for the validation set, when using a probability of death of 50% as

the cutoff. Risk score based on the selected variables can be used to assess the mortality

risk. The predictive model is available at [https://phenomics.fudan.edu.cn/risk_scores/].

Conclusions: Age, high-sensitivity C-reactive protein level, lymphocyte count and d-dimer

level of COVID-19 patients at admission are informative for the patients’ outcomes.
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Introduction

The severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) emerged in December 2019, has since

spread to nearly 200 countries and territories and had

infected nearly 7 million people by the end of May 2020.1

Approximately 400 000 people had died from coronavirus

disease 2019 (COVID-19) worldwide.1 According to a

World Health Organization (WHO) report, the crude fa-

tality rate of COVID-19 varies from country to country.

As of 31 March 2020, the highest fatality rate was ob-

served in Italy (nearly 11%), followed by Spain (nearly

8%) and Iran (nearly 6%). The fatality rate is also hetero-

geneous within a country.2 In China, the highest rate was

found in Wuhan (nearly 5%).3–5 In most other provinces,

the fatality rate was < 1%.

Demographic, clinical and laboratory features are sig-

nificantly different between survivors and non-survivors.4,5

For instance, the non-survivors are older than survivors.

Dyspnoea, chest tightness and disorder of consciousness

are more common in patients who die than in those who

recover. Concentrations of alanine aminotransferase,

aspartate aminotransferase, creatinine, creatine kinase,

lactate dehydrogenase, cardiac troponin I, N-terminal

pro-brain natriuretic peptide and d-dimer are markedly

higher in non-survivors than in survivors.4,6,7 Ascertaining

the key factors that contribute to the patients’ outcomes is

instrumental for identifying patients at high risk and is crit-

ical for patient management, possibly reducing the mortal-

ity risk and fatality rate. However, these multilevel data

may confuse clinicians with regard to which features in-

deed impact on COVID-19 patients’ outcomes. In this

study, we aimed to develop a clinical model to predict the

mortality risk of patients with severe COVID-19 infection,

based on demographic, clinical and the first laboratory test

data after admission.

Methods

Study participants and covariate collection

Patients who had pneumonia confirmed by chest imaging,

and had an �94% of oxygen saturation while they were

breathing ambient air or a ratio of the partial pressure of

oxygen to the fraction of inspired oxygen at or below

300 mm Hg, were defined as patients with severe infec-

tion.8,9 In total, 256 patients with severe laboratory-

confirmed COVID-19 infection (126 survivors and 130

non-survivors) admitted to the Sino-French New City

Branch of Tongji Hospital, Wuhan, between 28 January

2020 and 11 March 2020, were included. Tongji Hospital

Key Messages

• Age, high-sensitivity C-reactive protein level, lymphocyte count and d-dimer level were informative for the patients’

outcomes.

• Our models are helpful for the clinicians to identify the patients who wae at high risk of death, and interventions can

be adopted at an earlier stage to reduce the mortality risk of these patients.
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was urgently rebuilt and has been assigned by the Chinese

government as a designated hospital for severely or criti-

cally ill patients with COVID-19.4 We collected the demo-

graphic (e.g. age and sex), clinical [e.g. fever or not and

computed tomography (CT) imaging features] and the first

laboratory data after admission (e.g. the high-sensitivity

C-reactive protein [hsCRP] level) from the patient’s medi-

cal records (Supplementary Figure S1 and Supplementary

Table S1, available as Supplementary data at IJE online).

The values of biochemistry indexes tested more than 3

days after admission were excluded even if they were part

of the first test. For values that were left- or right-truncated

(e.g. d-dimer >21mg/mL), we used the values at the

truncated point as the surrogates (e.g. using 21mg/mL for

those with d-dimer level >21mg/mL). As shown in

Supplementary Figure S2, available as Supplementary data

at IJE online, patients who had >10% missing values,

stayed in the hospital <7 days, were afflicted by a severe

disease before admission (e.g. cancer, aplastic anaemia or

uraemia), were unconscious at admission or were directly

admitted to the intensive care unit (ICU) were excluded.

Herein, we supposed that patients who were stayed in hos-

pital <7 days, were unconscious at admission, or were di-

rectly admitted to the ICU, were critically ill and were at

very high risk of death. Finally, 183 patients were included

to construct the predictive models; among them, 115 re-

covered and were discharged and 68 were died from

COVID-19. This study was approved by the National

Health Commission of China and Ethics Commission of

Tongji Hospital (TJ-IRB20200402). Written informed

consent was waived by the Ethics Commission of the desig-

nated hospital for emerging infectious diseases.10

Model development

The development of the predictive model consisted of three

main stages: (i) data preprocessing; (ii) variable selection

and model evaluation; and (iii) external validation

(Figure 1).

Data preprocessing

Covariates with >30% missing data were excluded. For

pairs of highly correlated variables (correlation coefficient

>0.9), we removed the variable with the higher missing

rate. Variables with zero or near-zero variance were also

excluded. A rule of thumb for detecting predictors with

zero or near-zero variance is as follows: (i) the number of

unique values divided by the sample size is small (set to

10% in our study); and (ii) the ratio of the frequency of the

most prevalent value to the frequency of the second most

prevalent value is large (set to 20 here). Non-normally

distributed continuous variables were transformed using a

Box Cox transformation. Missing values were imputed us-

ing bagging trees. Briefly, bagging, short for bootstrap ag-

gregation, is a general approach that uses bootstrapping in

conjunction with any regression or classification model to

construct an ensemble. Each model in the ensemble is then

used to generate a prediction for a new sample and these

predictions are averaged to give the bagged model’s predic-

tion. For each variable requiring imputation, a bagged

tree is created where the outcome is the variable of interest

and the predictors are any other variables.11 In total,

51 covariates were finally included.

Variable selection and model evaluation

Considering the potential linear and curvilinear relation-

ships between the predictors and the outcome (i.e. survive

or die), we initially attempted 10 different machine learn-

ing methods to fit the data and selected, in terms of the

model performance and property, five of them [logistic re-

gression, partial least squares (PLS) regression, elastic net

(EN) model, random forest and bagged flexible discrimi-

nant analysis (FDA)] to report (Supplementary Table S2,

available as Supplementary data at IJE online). The algo-

rithm of logistic regression has been detailed elsewhere.12

PLS is an approach to maximally summarize predictor

space variability with the consideration of response. This

means that PLS finds components that maximally summa-

rize the variation of the predictors while simultaneously re-

quiring these components to have maximum correlation

with the response.13 In other words, PLS can be viewed as

a supervised procedure of dimension reduction.

The EN is a regularized method that linearly combines

the penalties of the LASSO (least absolute shrinkage and

selection operator) and Ridge regressions and is widely

used to select features.14 This model combines the two

types of penalties:

SSEEnet ¼
Xn

i¼1

ðyi � ŷiÞ2 þ k1

XP

j¼1

b2
j þ k2

XP

j¼1

jbjj

where SSE denotes the sum-of-squared error of the EN

model, and k1and k2 denote the penalty of Ridge regression

and LASSO regression, respectively. The advantage of this

model is that enables effective regularization via the ridge-

type penalty with the feature selection quality of the

LASSO penalty.15

Random forest is a supervised learning algorithm. The

‘forest’ suggests an ensemble of decision trees, usually

trained with the ‘bagging’ method. The basic algorithm of

random forest can be summarized as the follows.

a. Draw a bootstrap sample Z of size N from the training

data.
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Figure 1 The study flow chart. bagFDA, bagged flexible discriminant analysis; PLS, partial least squares; AUROC, area under the receiver operating

characteristic curve
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b. Grow a random-forest tree Tb to the bootstrapped

data, by recursively repeating the following steps, until

the minimum node size nmin is reached:

i. select m variables at random from the p predictors;

ii. pick the best variable among the m;

iii. split the node into two daughter nodes.

c. Output the ensemble of trees.16 As with bagging, each

tree in the forest casts a vote for the classification of a

new sample, and the proportion of votes in each class

across the ensemble is the predicted probability vector.15

Flexible discriminant analysis is a classification model

based on a mixture of linear regression models, which uses

optimal scoring to transform the response variable so that

the data are in a better form for linear separation, and multi-

ple adaptive regression splines to generate the discriminant

surface.17Ten-fold cross validation and the areas under the

receiver operating characteristic curves (AUROCs) were

used to measure the models’ performance. The performance

of the models based on the full data with the optimal tuning

parameters are shown in Supplementary Table S2.

For logistic regression, we used stepwise backward to

select the variables with the Akaike Information Criterion

(AIC) values as the criterion. The variable importance was

assessed using the absolute value of the t statistic. For PLS

regression, the variable importance measure here was

based on the weighted sums of the absolute regression

coefficients. The weights were a function of the reduction

in the sums of squares across the number of PLS compo-

nents and were computed separately for each outcome.

Therefore, the contribution of a coefficient was weighted

proportionally to the reduction in the sums of squares. For

the elastic net model, the selected variables were those of

coefficients that did not shrink to 0. For the random forest

model, the prediction accuracy for the out-of-bag portion

of the data was recorded for each tree. Then, the same

procedure was performed after permuting each predictor

variable. The difference between the two accuracies was

then averaged across all the trees and normalized by the

standard error.18 For the bagged FDA model, a series of

cutoffs were applied to the predictor data to predict the

class. The AUROC, sensitivity and specificity were com-

puted for each cutoff. The trapezoidal rule was used to

compute the AUROC, which was used as the measure of

variable importance.15

The top 20 most important variables selected by the five

models are shown in Figure 2A-E. We chose the intersection

set of these variables. Four variables were finally selected

(age, hsCRP, lymphocyte count and d-dimer). The five mod-

els were refitted using these four variables. The AUROC,

sensitivity and specificity, obtained from 10-fold cross vali-

dation (CV), were used to evaluate all the alternative

models’ performance. Briefly, in the process of 10-fold CV,

the samples were randomly partitioned into 10 sets of

roughly equal size. The model was fitted using all samples

except the first fold, which was defined as the hold-out sam-

ple and was used to estimate the model’s performance. This

procedure was then repeated nine times and a total of 10

estimates of model’s performance (i.e. AUROC) were

obtained. Finally, the 10 re-sampled estimates of perfor-

mance were summarized (usually with the mean and stan-

dard error) and used to understand the relationship between

the tuning parameters and model utility.15

External validation

In total, 64 patients with severe laboratory-confirmed

COVID-19 infection (33 survivors and 31 non-survivors)

admitted to the Optical Valley Branch of Tongji Hospital,

Wuhan, were included as the external validation set. We

used the selected predictive model to predict the probabil-

ity of death in these patients. The AUROC, sensitivity and

specificity were used to evaluate the model performance.

Cost curves of the predictive model

Cost curve is a graphical technique for visualizing the per-

formance (expected cost) of 2-class classifiers over a range

of possible class distributions and cutoffs. Herein, we de-

fined the cost of false-negative was three times more than

that of false-positives. The cutoffs predicting the death

were ranged from 0.1 to 0.9. The false-negative rates and

false-positive rates were calculated by the confusion matrix

of the predictive model using different cutoffs. We then vi-

sualized the curves between the normalized true positive

rates and the normalized expected costs.19 The normalized

true positive rates can be calculated as:

Pþcost ¼ PþCost01

PþCost01 þ ð1� PþÞCost10

and the normalized expected costs can be calculated as:

Cost norm

¼ FNR� PþCost01 þ FPR� ð1� PþÞCost10

PþCost01 þ ð1� PþÞCost10
;

where the Pþdenotes the true-positive rate, Cost01denotes

the cost of false-negatives, Cost10denotes the cost of false-

positive, FNR denotes the false-negative rate and FPR

denotes the false-positive rate.19

Statistical analysis

Continuous and categorical variables are presented as

means (standard deviations) [or medians (interquartile

International Journal of Epidemiology, 2020, Vol. 00, No. 00 5
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range)] and frequencies (percentages), respectively. We

used Student’s t tests, Mann-Whitney U tests, v2 tests and

Fisher’s exact tests, where appropriate, to compare the dif-

ferences between survivors and non-survivors. All analyses

were implemented in R 3.6.1 (R Foundation for Statistical

Computing, Vienna, Austria). The model development and

validation were implemented using the caret package (ver-

sion 6.0–85).20

Results

Demographics and baseline characteristics of

survivors and non-survivors

The covariates included in the predictive models are shown

in Table 1. In general, most characteristics were signifi-

cantly different between the survivors and non-survivors.

The non-survivors were more likely to be male and older

than the survivors. The proportions of basic conditions

(e.g. diabetes and hypertension) were comparable between

these two samples. For symptoms at disease onset, the non-

survivors reported loss of appetite, dyspnoea and produc-

tive cough more often than the survivors. The laboratory

test indexes were also significantly different between the

deceased patients and those who recovered. For example,

the white cell count was higher in the non-survivors than

the survivors. Conversely, the lymphocyte count was

nearly twice as high in the survivors than in the non-

survivors. The non-survivors had more liver and kidney

function abnormalities. Specifically, the concentrations of

liver enzymes, urea and creatinine were markedly higher in

the non-survivors, whereas the albumin level and estimated

glomerular filtration rate were lower in this sample. The

levels of all the inflammatory factors were higher in the

non-survivors than in the survivors. The circulating levels

of hsCRP and d-dimer were more than 6-fold and nearly 3-

fold higher in non-survivors than in survivors, respectively.

Model development and external validation

The process of model development is detailed in the

Methods section and in Figure 1. The AUROC obtained

A B C

D E F

Figure 2 The top 20 important variables selected by five machine learning models (A-E) and the model performance based on the selected variables

(F). NT-proBNP, N-terminal pro-brain natriuretic peptide; hsCRP, high-sensitivity C-reactive protein; CRE, creatinine; ALT, alanine aminotransferase;

IL8, interleukin 8; LYM, lymphocyte count; IL6, interleukin 6; WC, white cell count; eGFR, estimated glomerular filtration rate; ALP, alkaline phospha-

tase; RC, red cell count; TCH, total cholesterol; FIB, fibrinogen; PLT, platelet count; TB, total bilirubin; ALB, albumin; PT, prothrombin time; IL10, inter-

leukin 10; IL2R, interleukin-2 receptor; FER, ferritin; LDH, lactate dehydrogenase; hscTnI, high-sensitivity cardiac troponin I; Mono, monocyte count;

UA, uric acid; ESR, erythrocyte sedimentation rate; No.Com., number of basic conditions
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Table 1 The baseline characteristics and laboratory findings at admission included in the predictive models

Survivors (n¼115) Non-survivors (n¼68) P-value

Baseline characteristics

Sex

Male 57 (49.57) 50 (73.53) 0.002

Female 58 (50.43) 18 (26.47)

Age 60.54 6 13.19 68.44 6 9.94 <0.001

Diabetes

Yes 21 (18.26) 14 (20.59) 0.848

No 94 (81.74) 54 (79.41)

Hypertension

Yes 43 (37.39) 30 (44.12) 0.458

No 72 (62.61) 38 (55.88)

Lung disease

Yes 5 (4.35) 10 (14.71) 0.030

No 109 (94.78) 58 (85.29)

No. of underlying conditions

<1 75 (65.22) 41 (60.29) 0.861

�1 40 (34.78) 27 (39.71)

Signs and symptoms at disease onset

Diarrhoea

Yes 38 (33.04) 29 (42.65) 0.253

No 77 (66.96) 39 (57.35)

Stomach ache

Yes 16 (13.91) 12 (17.65) 0.642

No 99 (86.09) 56 (82.35)

Vomiting

Yes 20 (17.39) 12 (17.65) 1.000

No 95 (82.61) 56 (82.35)

Anorexia

Yes 22 (19.13) 32 (47.06) 0.019

No 82 (71.30) 36 (52.94)

Fever

Yes 101 (87.83) 60 (88.24) 1.000

No 14 (12.17) 8 (11.76)

Dyspnoea

Yes 36 (31.30) 49 (72.06) <0.001

No 79 (68.70) 19 (27.94)

Bilateral infection (chest CT image)

Yes 78 (67.83) 53 (77.94) 0.142

No 0 (0.00) 1 (1.47)

First SARS-Cov2 nuclei acid test

Positive 72 (62.61) 42 (61.76) 0.659

Negative 20 (17.39) 15 (22.06)

Cough

No cough 23 (20.00) 11 (16.18) <0.001

Dry cough 68 (59.13) 22 (32.35)

Productive cough 24 (20.87) 35 (51.47)

Vital signs on admission

Count of white cells, �109/L 5.43 (4.30, 7.00) 8.01 (5.61, 11.36) <0.001

Count of lymphocytes, �109/L 1.13 (0.77, 1.45) 0.56 (0.42, 0.75) <0.001

Count of monocytes, �109/L 0.42 (0.33, 0.57) 0.35 (0.22, 0.57) 0.025

Count of red cells, �1012/L 4.10 (3.69, 4.48) 4.26 (3.84, 4.64) 0.084

Count of platelets, �109/L 206 (160, 267) 165.5 (122.5, 226.0) 0.001

Glucose, mmol/L 5.73 (5.17, 7.00) 7.44 (6.56, 9.43) <0.001

(Continued)
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from 10-fold cross-validation was used to compare the per-

formance of five selected predictive models (Figure 2F).

Considering the minor differences between the AUROC of

the logistic regression model (0.895) and that of the ran-

dom forest (0.922) and bagged FDA (0.899), we selected

the logistic regression model as the final model because of

its simplicity and high interpretability. The AUROCs of all

the alternative models based on the full set, reduced set

and selected variables are shown in Supplementary Table

S3, available as Supplementary data at IJE online. The

model performance significantly increased when using the

four variables in combination (Figure 3A). The AUROC of

the external validation set was 0.881, with a sensitivity of

0.839 and specificity of 0.794 for predicting death when

using a probability of death of 50% as the cutoff

(Figure 3B).

Cost curves of the predictive model

As shown in Figure 4A, the death probability was curvili-

nearly associated with the normalized Pþ. Figure 4B shows

the cost curves with the cutoff ranging from 0.1 to 0.9.

When the death probability is <10% (i.e. normalized Pþ

<0.25), the lowest expected cost was observed using cutoff

of 0.8. When the death probability increases to 25% (i.e.

normalized Pþ ¼ 0.5), the lowest expected cost was ob-

served with cutoff of 0.6. When the death probability

reaches at nearly 50% (i.e. normalized Pþ around at 0.75),

the lowest expected cost was observed with cutoff of 0.2.

Development of risk scores and a web application

The contributions of the selected variables were assessed

using the logistic regression model. The regression

Table 1 Continued

Survivors (n¼115) Non-survivors (n¼68) P-value

Erythrocyte sedimentation rate, mm/h 28 (12, 53) 47.0 (25.5, 66.5) 0.003

Alanine aminotransferase, U/L 23 (14, 43) 30.0 (19.5, 41.0) 0.074

Albumin, g/L 35.20 (31.95, 39.35) 31.4 (28.15, 34.10) <0.001

Total bilirubin, mmol/L 9.30 (7.25, 12.40) 13.05 (9.70, 19.00) <0.001

Alkaline phosphatase, U/L 66 (53, 84) 81.5 (57.5, 107.5) 0.001

c-Glutamyl transpeptidase, U/L 27.00 (18.00, 72.50) 45.5 (26.0, 82.0) 0.005

Total cholesterol, mmol/L 3.77 (3.22, 4.51) 3.41 (2.97, 4.00) 0.029

Lactate dehydrogenase, U/L 264.5 (211.0, 340.0) 480.5 (418.0, 600.0) <0.001

Urea, mmol/L 4.3 (3.5, 5.6) 7.95 (5.75, 10.00) <0.001

Creatinine, mmol/L 67 (58, 84) 85.5 (69.0, 100.0) <0.001

Uric acid, mmol/L 251 (196, 333) 239.5 (181.0, 336.5) 0.645

Estimated glomerular filtration rate, ml/min/1.73 93.35 (80.30, 102.80) 77.85 (59.70, 90.85) <0.001

High sensitivity C-reactive protein, mg/L 14.1 (2.8, 59.5) 87.3 (62.0, 155.6) <0.001

Potassium, mmol/L 4.17 (3.91, 4.55) 4.42 (4.00, 5.06) 0.011

Sodium, mmol/L 140.30 (137.25, 141.90) 138.55 (136.05, 142.45) 0.255

Chlorine, mmol/L 101.80 (99.15, 103.55) 100.05 (97.70, 102.90) 0.055

Corrected calcium, mmol/L 2.37 (2.28, 2.42) 2.39 (2.36, 2.48) 0.002

Bicarbonate, mmol/L 23.90 (22.35, 25.45) 21.5 (19.2, 24.5) <0.001

Ferritin, mg/L 578.15 (319.70, 1125.20) 1508.3 (1054.0, 2456.7) <0.001

Interleukin 2 receptor, U/ml 574.5 (379.5, 928.0) 1137.5 (890.0, 1833.0) <0.001

Interleukin 6, pg/ml 7.49 (2.14, 27.57) 68.00 (18.66, 137.35) <0.001

Interleukin 8, pg/ml 11.85 (6.95, 23.55) 26.6 (16.0, 70.7) <0.001

Interleukin 10, pg/ml 5.00 (5.00, 7.85) 10.5 (6.4, 16.8) <0.001

Tumour necrosis factor a, pg/ml 8.7 (6.8, 11.4) 11.1 (8.0, 15.9) 0.004

Fibrinogen, g/L 4.50 6 1.44 5.38 6 2.04 0.005

Prothrombin time 13.8 (13.2, 14.5) 15.6 (14.0, 17.2) <0.001

d-dimer, mg/ml FEU 0.94 (0.40, 1.44) 2.70 (1.21, 21.00) <0.001

High-sensitivity cardiac troponin I, pg/ml 4.5 (2.0, 8.8) 24.40 (9.35, 103.70) <0.001

N-terminal pro-brain natriuretic peptide 98 (5, 1877) 798 (176, 70000) <0.001

Interval,a (day) 11 (9, 21) 10.5 (7.0, 15.0) 0.038

Categorical variables are shown in frequency (%). Continuous variables following normal or approximately normal distribution are shown in mean 6 standard

deviation. Continuous variables not following normal distribution are shown in median (interquartile range).

FEU, fibrinogen equivalent units.
aThe interval between date of first symptom and date of admission.
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coefficients were calculated as the weight of each predic-

tor. The risk score was therefore calculated as:

Risk score ¼ aþ
X4

i¼1

bixi

where a, xi, and bi denote the regression intercept, observed

value and coefficients, respectively, of the ith predictor

(Figure 5A). The probability of death can be calculated via:

eRisk Score

1þ eRisk Score
:

Figure 5B shows that the risk scores in both the survi-

vors and non-survivors are approximately normally dis-

tributed. An S-shaped correlation pattern between the risk

scores and probability of death is shown in Figure 5C. The

mortality risk exceeds 50% when the risk score is >0. We

also calibrated the results of the logistic regression model

based on deciles of predicted risk between observations

and predictions (Supplementary Figure S3, available as

Supplementary data at IJE online). Calibration was accept-

able for both derivation and validation sets (Hosmer-

Lemeshow statistic v2 ¼ 0.55 and 1.26, respectively;

P-values ¼ 0.455 and 0.189, respectively).

A B

Figure 3 The area under the receiver operating characteristic curve (AUROC) of the logistic regression model based on selected variables in the deri-

vation set (A) and the external validation set (B)

A B

Figure 4 The relationship between probability of death and the normalized probability (A) and the cost curves of the predictive models using different cutoffs (B)
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To facilitate the application of our predictive model, we

also developed an accompanying web tool [https://phenom

ics.fudan.edu.cn/risk_scores/]. Readers can freely access

this website and input the values of hsCRP, age, lympho-

cyte count and d-dimer to predict the mortality risk and its

95% confidence interval for a COVID-19 patient.

Discussion

COVID-19 is currently a worldwide pandemic.21–23 The

number of laboratory-confirmed patients as well as

the number of related deaths are continuously increasing.

The fatality rate might further increase along with the in-

creasing number of infected people, because even the most

advanced health care systems are likely to be over-

whelmed.24,25 The Chinese Centers for Disease Control

and Prevention recently reported that out of more than

70 000 confirmed cases, most of them were classified as

mild or moderate, and approximately 20% were classified

as severe or critical.26 Even if we assume that the fatality

rate is 10% in severe and critically ill cases,4 the number of

COVID-19 induced deaths is considerable because of the

enormous number of infected patients. Identifying the

patients at high risk of death is critical for patient manage-

ment and reducing the fatality rate. In this clinical predic-

tion modelling study, we took full advantage of the

multifaceted data of COVID-19 patients at admission, to

predict their outcomes. Four variables (i.e. age, hsCRP,

d-dimer and lymphocyte count) were selected and used to

fit a logistic regression model. The predictive performance

of our model was acceptable in both the derivation set and

the external validation set. We also developed a web tool

to implement our predictive model. Clinicians can use this

web tool to predict the mortality risk of COVID-19

patients early. For those patients with a relatively higher

probability of death (e.g. >40%), more interventions could

be adopted at an earlier stage by clinicians.

In a recent study, older age, d-dimer levels greater than

1 lg/mL and a higher sequential organ failure assessment

(SOFA) score at admission were reported to be associated

with higher odds of in-hospital death.3 The fatality rate

was highly heterogeneous among patients of different ages.

For instance, the overall COVID-19 case fatality rate in

China was estimated as 0.32% in those aged <60 years

and substantially increased to 6.4% in those aged

�60 years.27 Among those aged 80 years and older, this

rate was as high as 13.4%.27 Likewise in Italy, the fatality

rate increased from 0.3% among patients aged 30–39 years

to 20.2% among those aged �80 years.28 In 2019, approx-

imately 23% of the Italian population was aged 65 years

or older. This percentage may explain, in part, Italy’s

higher case-fatality rate compared with that of other coun-

tries.28 In our study, age was selected as a key factor in all

the predictive models. The age-dependent deterioration in

immunological competence (e.g. B cell and T cell deficien-

cies), often referred to as ‘immunosenescence’, and the

A

B C

Figure 5 The formula to calculate the risk scores (A) and their distributions among survivors and non-survivors (B) and the corresponding probability

of death (C)
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excess production of type 2 cytokines could lead to a

deficiency in the control of viral replication and more pro-

longed pro-inflammatory responses, potentially leading to

a poor outcome.29,30 In this study, the deceased patients

had persistent and more severe lymphopenia compared

with recovered patients, and the lymphocyte count was se-

lected and incorporated into the predictive model. Defects

in function of lymphocytes are age-dependent and are

associated with inflammation levels.31,32

Additionally hsCRP, the most commonly used inflam-

matory biomarker in the clinic, was selected for our predic-

tive models. Patients with higher levels of hsCRP at

admission were deemed to have higher levels of inflamma-

tion. In our study, we found that the hsCRP level was

more than six times higher in the non-survivors than in the

survivors. Although the levels of other inflammatory bio-

markers, such as ferritin and the erythrocyte sedimentation

rate, were also elevated in the non-survivors, they were not

selected and incorporated in the predictive model. This

omission might be explained by the higher missing rates of

these covariates and their high correlation with hsCRP.

Coagulation disorder, characterized by an elevated pro-

thrombin time and d-dimer level, was also frequently ob-

served among COVID-19 patients.33,34 In our study, the

prothrombin time and d-dimer level were significantly

higher in the non-survivors than in the survivors. These

higher values suggest an increased risk of disseminated in-

travascular coagulation, which was one of the frequently

diagnosed complications among the later stages of

COVID-19 illness.4,33,35

Our study has a number of strengths. First, to ensure

the robustness of our predictive model, we enforced strict

inclusion and exclusion criteria on the included partici-

pants and study data. Second, our results are comparable

to others and our predictive model is competitive when

compared with previously reported models.36,37 For exam-

ple, Liang et al. developed a predicting model based on

LASSO and reported that the mean AUROC was 0.88.37

Third, we used advanced modelling strategies to select fea-

tures and to construct the predictive models. The final

model is simple (it included only four variables) and highly

interpretable (the model is a linear model, and the effects

of the predictors are reflected by the regression coeffi-

cients). Moreover, we externally validated the final predic-

tive model. Fourth, we developed an accompanying web

tool to facilitate the application of our predictive model by

clinicians.

Our study also has limitations. First, the predictive

models were constructed based on a relatively small sample

size; the interpretation of our findings might be limited.

Second, due to the retrospective study design, not all the

laboratory tests were performed in all the patients. Some

of them might be deleted in the data preprocessing proce-

dure and their roles might be underestimated in predicting

patients’ outcomes. Third, patients were sometimes trans-

ferred from other hospitals to the two branches of Tongji

hospitals, although we excluded patients who did not meet

the inclusion criteria. The values of the laboratory tests

might be biased by previous antiviral treatment in these

patients. Finally, the patients in the derivation set and the

validation set were from Tongji Hospital, which is one of

the hospitals with a high level of medical care in China.

Some critically ill patients who recovered here might die in

other hospitals with suboptimal or typical levels of medical

care. The cutoff for predicting death should be <50% (e.g.

defining patients who have a>30% probability of death as

high-risk patients) in these settings. Additionally, there was

no rigorous definition for patients with severe COVID-19

infection in our study because of the disease emergency

and limited medical resources at the early outbreak of

COVID-19 in Wuhan.

In summary, using available clinical data, we developed

a robust machine learning model to predict the outcome of

COVID-19 patients early. Our model and the accompany-

ing web application are of importance for clinicians to

identify patients at high risk of death, and are therefore

critical for the prevention and control of COVID-19.

Supplementary Data

Supplementary data are available at IJE online.
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