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Obesity is associated with an increased risk of depression and anxiety disorders, but
the nature of the relationship(s) between obesity and mental illness remains highly
controversial. Some argue that depression and anxiety lead to increased consumption
of “comfort foods,” the intake of which reduces negative affect and promotes obesity.
In contrast, others have theorized that negative affect results from chronic excessive
consumption of highly palatable foods. The brain serotonin (5-HT) system has long
been implicated in both the development and treatment of mental illness. Preclinical
studies have shown that low brain 5-HT exacerbates depression- and anxiety-like
behaviors induced by stress and blocks reductions in depression-like behavior induced
by antidepressants, but the effects of brain 5-HT deficiency on responses to high-fat
diet (HFD) have not been explored. The current work used genetically modified mice
to evaluate the effects of low 5-HT on behavioral and molecular alterations induced
by chronic exposure to HFD. Our results reveal that HFD decreases depression-like
behavior and increases some anxiety-like behaviors in wild-type (WT) mice. However,
genetic brain 5-HT deficiency blocks HFD-induced reductions in forced swim immobility
and prevents HFD-induced increases in hippocampal GSK3β phosphorylation despite
having no significant effects on HFD-induced changes in body weight or anxiety-like
behavior. Together, our results suggest that brain 5-HT deficiency significantly impacts a
subset of behavioral and molecular responses to HFD, a finding that could help explain
the complex relationships between obesity and mental illness.

Keywords: serotonin, depression, anxiety, mouse model, high fat and calories diet

INTRODUCTION

Major depressive disorder is currently ranked by the Global Burden of Disease Report as the
second leading cause of worldwide disability (Ferrari et al., 2014), and anxiety disorders are
debilitating conditions that affect approximately 20% of the US population (Kessler et al.,
2012). Although there are numerous factors that likely contribute to the development of these
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mental illnesses, accumulating data indicate that obesity can
increase the risk of both depression (Luppino et al., 2010;
Li et al., 2017) and anxiety disorders (Gariepy et al., 2010).
Despite the high degree of comorbidity between obesity
and affective disorders (Faith et al., 2002; Stunkard et al.,
2003), the effects of obesity on depression- and anxiety-like
behaviors remain debated. Several recent preclinical studies have
reported that high-fat diet (HFD) can increase anxiety- and
depression-like behaviors across a range of species, including
nonhuman primates (Sullivan et al., 2010), mice (Sharma
and Fulton, 2013; Strekalova et al., 2015; Almeida-Suhett
et al., 2017; Bridgewater et al., 2017; Kurhe et al., 2017; Wu
et al., 2018; Xu et al., 2018; Ogrodnik et al., 2019), and rats
(Abildgaard et al., 2011; Aslani et al., 2015; Dutheil et al.,
2016; Rebolledo-Solleiro et al., 2017; Alonso-Caraballo et al.,
2019). However, multiple other reports have noted reductions
in depression- and/or anxiety-like behavior following chronic
consumption of HFD (Maniam and Morris, 2010a,b; Finger
et al., 2011; Dornellas et al., 2018). Although the reasons for
these discrepant findings are currently unknown, it is likely
that genetic factors could influence behavioral responses to
HFD. To evaluate the impact of genetically induced brain
5-HT deficiency on changes in body weight and depression-
and anxiety-like behaviors following chronic HFD, the current
work examined the tryptophan hydroxylase 2 (Tph2) R439H
knock-in (KI) mouse line, which harbors a partial loss-of-
function mutation in the brain 5-HT synthesis enzyme, Tph2
(Beaulieu et al., 2008). Homozygous KI animals from this line
have 60–80% less brain 5-HT than their homozygous wild-
type (WT) littermates (Beaulieu et al., 2008; Jacobsen et al.,
2012). These animals have been shown to exhibit increased
susceptibility to anxiety- and depression-like behavior induced
by stress (Sachs et al., 2015), but whether low levels of brain
5-HT alter behavioral responses to other potential environmental
risk factors for mental illness (such as HFD) has not
been established.

The mechanisms through which HFD might influence
depression- and anxiety-like behaviors are not completely
understood, but preclinical work has suggested a potential role of
HFD-induced alterations in GSK3β signaling (Papazoglou et al.,
2015; Wakabayashi and Kunugi, 2019) and brain inflammation
(Dutheil et al., 2016; Wu et al., 2018). In particular, the
upregulation of several pro-inflammatory cytokines in the
brain, including interleukin-1β (IL-1β; Almeida-Suhett et al.,
2017) and interleukin-6 (IL-6; Wakabayashi and Kunugi, 2019),
has been implicated in murine behavioral responses to HFD.
Dysregulation of GSK3β (Jope, 2011; Karege et al., 2012; Ren
et al., 2013; Ronai et al., 2014; Chen et al., 2015) and inflammation
(Syed et al., 2018; Giridharan et al., 2019; Opel et al., 2019;
Osimo et al., 2019) have both been identified in clinical
studies examining psychiatric patients as well, thus supporting
their likely importance in behavioral dysfunction. Given that
both brain inflammation (Lu et al., 2017; Khodanovich et al.,
2018) and GSK3β activity (Li et al., 2004; Beaulieu et al.,
2008) are known to be influenced by brain 5-HT levels, the
current work examined whether low 5-HT impacts the effects
of HFD on GSK3β phosphorylation or the mRNA expression

of several genes involved in inflammation. Although 5-HT
could influence HFD responses through both peripheral and
central mechanisms, the use of Tph2KI mice limits the present
study’s focus on central mechanisms. Although the inhibition of
peripheral 5-HT synthesis has been shown to lead to resistance
to HFD-induced obesity (Crane et al., 2015) and can attenuate
HFD-induced depression-like behavior (Pan et al., 2019), the
current study is the first to evaluate the impact of genetically
induced brain 5-HT deficiency on behavioral and molecular
responses to HFD.

METHOD

Animals
The male homozygous WT and homozygous KI animals from
the Tph2R439H mouse line used for this study were generated
via heterozygous breeding at Villanova University. This line
has been backcrossed to the C57BL/6 line for 10 generations,
and littermates were used as controls. Adult mice were used
for all experiments, and HFD exposure began when mice
were 2–4 months of age. There were no differences in the
average age of mice in any of the treatment groups. All
studies were performed in accordance with protocols that
were approved by the Institutional Animal Care and Use
Committee (IACUC).

Diet and Housing
All mice were fed Envigo’s Teklad Global Diet (standard
natural ingredient diet: ID #2019, 19% protein, 9% fat, and
3.3 kcal/g) from the time of weaning until the start of HFD
exposure. The HFD groups were fed Envigo’s Teklad Custom
Diet (adjusted fat diet: ID #95217, 18.8% protein, 39.7% fat, and
4.3 kcal/g) for a total of 22 weeks, whereas the standard diet
(SD) groups continued receiving Envigo’s #2019 diet throughout
the study. Food and water were available ad libitum, and
the animals were housed in a temperature- and humidity-
controlled room. Mice were group housed (three to five per
cage), maintained on a 12-h light-dark cycle, and weighed
weekly throughout the course of the experiment. Behavioral
testing began after the mice had been on HFD (or SD) for
20 weeks. The order of testing was as follows: open field
test (OFT), week 20, Friday; elevated plus maze (EPM), week
21, Monday; and forced swim test (FST), week 21, Friday.
Behavioral testing was conducted during the light phase of the
light-dark cycle, typically starting ∼5 h prior to the start of
the dark phase.

Separate cohorts of WT and KI mice were singly housed
to allow for measurements of food intake. Twenty-four-hour
consumption of SD and HFD was measured once weekly.

Open Field Test
For the OFT, exploration and locomotor activity were assessed in
40 cm× 40 cm plexiglass ANY-box activity chambers (Stoelting,
Wood Dale, IL, USA), with a center square measurement of
20 cm × 20 cm. Each mouse was placed into a corner of the
open field, and its movement and location were recorded for
20min with overhead digital cameras. The total distance traveled,
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the distance traveled in the center, the number of entries to the
center, and the time spent in the center were all calculated using
ANY-maze software.

Elevated Plus Maze
For the EPM, the location and activity of mice in the apparatus
were measured using ANY-maze animal tracking software.
The time spent and distance traveled in the open arms,
the closed arms, and entire apparatus were determined for
each mouse.

Forced Swim Test
The FST was performed essentially as we have previously
reported (Sachs et al., 2014a). Briefly, mice were placed in a
4-L beaker filled with approximately 2,500 ml of 25◦C water,
where they remained for 6 min. The behavior of each mouse
was recorded from above using a camera suspended above the
beaker. ANY-maze software was used to measure the amount
of time that each mouse spent immobile and the number of
immobile episodes.

Gene Expression Analysis
One week following the FST, mice were killed by cervical
dislocation and decapitation, after which the brains were
removed and sectioned into 1-mm-thick sections using a
brain matrix. Bilateral tissue punches (1.5 mm in diameter
and 1 mm in thickness) were taken from the hippocampus
[centered approximately±1.0 mmmedio-lateral (ML),−2.0 mm
anterior–posterior (AP), −1.7 mm dorso-ventral (DV) relative
to Bregma] and immediately frozen on dry ice and transferred
to a −70◦C freezer until further processing. RNA was isolated
from the tissue samples collected from the hippocampus of the
left hemisphere using the Ambion PureLink RNA Mini Kit,
according to the manufacturer’s instructions. RNA was frozen at
−70◦C until further processing.

Reverse transcriptions were performed using the Thermo
Scientific Maxima First Strand cDNA Synthesis Kit, according
to the manufacturer’s instructions. Real-time polymerase chain
reaction (RT-PCR) was performed as we have described
previously (Sachs et al., 2018) using the PowerUp Sybr
Green Master Mix rt-PCR kit (Applied Biosystems, Foster
City, CA, USA) according to the manufacturer’s instructions.
Primer sequences were selected from PrimerBank (Wang
et al., 2012): GAPDH forward: 5′-CATGTTCCAGTATGACTC
CACTC-3′; GAPDH reverse: 5′-GGCCTCACCCCATTTGAT
GT-3′; complement C4A forward: 5′-GATGACAAGAACGTGA
GTGTCC-3′; complement C4A reverse: 5′-CCCTTTAGCCAC
CAATTTCAGG-3′; IL-1β forward: 5′-TTCAGGCAGGCAGT
ATCACTC-3′; IL-1β reverse: 5′-GAAGGTCCACGGGAAAGA
CAC-3′; IL-6 forward: 5′-TCTATACCACTTCACAAGTCGG
A-3′; IL-6 reverse: 5′-GAATTGCCATTGCACAACTCTTT-3′;
ionized calcium binding adaptor molecule 1 (IBA1) forward: 5′-
ATCAACAAGCAATTCCTCGATGA-3′; IBA1 reverse: 5′-CA
GCATTCGCTTCAAGGACATA-3′; GSK3β forward: 5′-ACAG
GCCACAGGAGGTCAGT-3′; GSK3β reverse: 5′-GATGGCAA
CCAGTTCTCCAG-3′.

Western Blotting
Hippocampal tissue punches from the right hemisphere
were processed for Western blotting essentially as we have
described previously (Sachs et al., 2014b). Briefly, samples
were lysed in ice-cold lysis buffer (1% Triton, 1 mM of EDTA,
150 mM of NaCl, and 20 mM of Tris–HCl) with protease and
phosphatase inhibitors added. A small aliquot was used for
protein determinations using bicinchoninic acid (BCA) assay
kits (Boston Bio Products, Ashland, MA, USA). Equal amounts
of protein were loaded onto TGX gels for electrophoresis.
Proteins were then transferred to polyvinylidene difluoride
(PVDF) membranes, and Western blotting was performed
using the following antibodies: rabbit anti-phosphorylated
GSK3β (Cell Signaling, #9323, 1:300 dilution), mouse
anti-total GSK3β (Cell Signaling, #9832, 1:300 dilution),
and rabbit-anti-GAPDH as a loading control (Cell Signaling,
#5174, 1:300 dilution).

Statistical Analysis
For weight gain, SPSS software was used to conduct a three-
factor ANOVA with two between-subjects factors (i.e., genotype
and diet) and one within-subjects repeated-measures factor
(i.e., time). All other data were analyzed by two-way ANOVA
with genotype and diet as factors using JMP software.

FIGURE 1 | Body weights of wild-type (WT) and knock-in (KI) mice on
standard diet (SD) and high-fat diet (HFD). (A) Quantification of average body
weights for each group over time. (B) Calculation of average percent body
weight gain over the 21-weeks period for each group. (C) Average daily food
intake in mice on SD or HFD. Results are expressed as the mean, and error
bars indicate standard error. “∗” Indicates main effect of diet by two-way
ANOVA, p < 0.05. N = 6–11 per group.
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FIGURE 2 | Behavioral consequences of chronic HFD on WT and KI mice. (A) The average distance traveled in the center of the open field for each group. (B) The
average number of entries into the center of the open field for each group. (C) The average distance traveled in the entire open field for each group. (D) The time
spent in the center of the open field in each group. (E) Total distance traveled in the elevated plus maze (EPM). (F) Distance traveled in the closed arms. (G) Distance
traveled in the open arms. (H) Time spent in the open arms of the plus maze. (I) The number of immobile episodes in the forced swim test (FST). (J) The time spent
immobile in the FST. Results are expressed as the mean, and error bars indicate standard error of the mean. “∆” Indicates a main effect of genotype, “∗” indicates a
main effect of diet, and “X” indicates a significant genotype by diet interaction by two-way ANOVA, p < 0.05. “∧” Indicates significant increase compared with
WT-HFD, and “$” indicates significant decrease compared to WT-SD by post hoc t-tests. N = 10–11 per group.

RESULTS

High-Fat-Diet-Induced Weight Gain
A between-subjects two-by-two ANOVA with diet and genotype
as factors revealed a significant effect of diet on weight
(F(1,30) = 19.6, p < 0.0001, Figure 1A) but no effect of
genotype (F(1,30) = 0.001, p = 0.97, Figure 1A). A within-
subjects repeated-measures analysis revealed a significant effect
of time on body weight (F(21,10) = 69.2, p < 0.0001, Figure 1A)
and a significant time by diet interaction (F(21,10) = 15.0,
p < 0.0001, Figure 1A). Chronic exposure to HFD led to a
significantly greater increase in body weight in both WT and KI
animals than did continued exposure to SD, but no significant
genotype differences in body weight were observed at any time
point (Figure 1A). As expected, animals treated with HFD
increased their weights by a significantly higher percentage than
SD-fed mice over the course of the experiment (F(1,30) = 34.98,
p < 0.0001, Figure 1B). Comparisons of 24-h food intake
in WT and KI mice consuming either SD or HFD revealed
no significant genotype differences in consumption, but mice
ate significantly more HFD per body weight compared with
SD (main effect of diet by two-way ANOVA, F(1,24) = 5.88,
p = 0.023, Figure 1C).

Open Field Test
For the OFT, there was amain effect of diet, with HFD decreasing
the distance traveled in the center of the field (main effect
of diet; F(1,35) = 5.58, p = 0.024, Figure 2A) and decreasing
the number of entries made to the center of the field (main

effect of diet; F(1,35) = 6.29, p = 0.019, Figure 2B). However,
there was no significant overall effect of diet on locomotor
activity (F(1,35) = 1.20, p = 0.28, Figure 2C), suggesting that
the observed effects on distance in the center and the number
of entries to the center are not solely the result of decreased
locomotor activity. Despite the reductions in entries to the center
and distance in the center, there was no significant effect of
diet on the amount of time spent in the center of the open
field (F(1,35) = 2.86, p = 0.099, Figure 2D). No significant
effects of genotype and no genotype by diet interactions
were observed.

Elevated Plus Maze
In the EPM test, KI mice traveled a shorter distance overall
than did WT animals (main effect of genotype; F(1,35) = 13.09,
p = 0.0009, Figure 2E). KI mice also traveled a shorter
distance in the closed arms of the maze (main effect of
genotype; F(1,35) = 4.33, p = 0.045, Figure 2F) and a
shorter distance in the open arms of the maze (main
effect of genotype; F(1,35) = 9.83, p = 0.004, Figure 2G)
than did WT. However, there was no significant genotype
difference in the amount of time spent in the open arms
(F(1,35) = 3.13, p = 0.086 for effect of genotype, Figure 2H). No
significant effects of diet and no genotype by diet interactions
were observed.

Forced Swim Test
For the FST, no significant main effects of diet or genotype
were observed. However, there were significant genotype
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FIGURE 3 | Effects of chronic HFD on WT and KI mice on the expression of
inflammation-related genes in the hippocampus. (A) Hippocampal expression
of interleukin-1β (IL-1β). (B) Hippocampal expression of interleukin-6 (IL-6).
(C) Hippocampal expression of IBA1. (D) Hippocampal expression of C4a. All
data are normalized to GAPDH. Results are expressed as the mean, and error
bars indicate standard error of the mean. “∆” indicates a main effect of
genotype, “*” Indicates a main effect of diet by two-way ANOVA.
N = 9–11 per group.

by diet interactions for the number of immobile episodes
(F(1,35) = 6.91, p = 0.013, Figure 2I) and for the time spent
immobile (F(1,35) = 6.31, p = 0.017, Figure 2J). Post hoc
t-tests revealed that HFD led to a significant reduction in
immobile episodes in WT mice but had no significant effect
in KI animals (Figure 2I). There were no significant genotype
differences in FST behavior in mice on SD, but KI mice
fed HFD exhibited significantly more immobile episodes and
significantly more time spent immobile than did WT mice
fed HFD (Figures 2I,J).

Hippocampal Gene Expression
HFD significantly increased the hippocampal expression of IL-1β
gene (main effect of diet, F(1,32) = 5.3, p = 0.028, Figure 3A)
but had no significant effects of genotype, and no interactions
were observed. In contrast, no significant main effects of diet or
genotype and no significant interactions were observed for IL-6
(Figure 3B) or IBA1 (Figure 3C) expression. Gene expression
analysis revealed that HFD led to a significant increase in the
hippocampal expression of the complement 4A (C4A) gene
(main effect of diet, F(1,32) = 6.99, p = 0.013, Figure 3D). In
addition, KI mice were observed to exhibit significantly lower
levels of C4A than were WT mice (main effect of genotype,

FIGURE 4 | Effects of chronic HFD on WT and KI mice on GSK3β signaling
in the hippocampus. (A) Quantification of Western blots for phosphorylated
GSK3β. Graph shows the ratio of phosphorylated GSK3β to total GSK3β.
Representative images are shown below. (B) Quantification of mRNA levels of
GSK3β normalized to GAPDH. The results are expressed as the mean, and
error bars indicate standard error of the mean. “X” Indicates a significant
genotype by diet interaction by two-way ANOVA, p < 0.05. “∧” Indicates
significantly greater than WT-SD by post hoc t-test. N = 8–10 per group.

F(1,32) = 4.33, p = 0.046, Figure 3D), but no interactions
were observed.

Hippocampal GSK3β Signaling
No significant main effects of genotype or diet were observed
on the phosphorylation of GSK3β in the hippocampus.
However, a significant genotype by diet interaction was
observed on the hippocampal level of phosphorylated
GSK3β relative to total GSK3β (F(1,30) = 4.74, p = 0.0375,
Figure 4A). Post hoc analyses revealed that HFD led to
a significant increase in GSK3β phosphorylation in WT
mice, but not Tph2KI animals. No significant alterations
in the mRNA levels of GSK3β in the hippocampus were
observed (Figure 4B).

DISCUSSION

The current study shows that HFD led to a significant reduction
in immobile episodes in WT mice in the FST, a finding
that is consistent with prior studies showing that HFD can
lead to therapeutic-like effects (Maniam and Morris, 2010a,b;
Finger et al., 2011; Dornellas et al., 2018). The fact that
KI animals did not exhibit this response suggests that brain
5-HT may be required for some antidepressant-like effects of
HFD. This result is generally consistent with the idea that
brain 5-HT plays an important role in antidepressant-like
responses, which has also been supported by our previous
studies demonstrating impaired fluoxetine responses in Tph2KI
mice (Sachs et al., 2013, 2015). Although HFD tended to
decrease immobility in WT mice and increase immobility in
KI animals, the only HFD-induced alteration in FST behavior
that was significant by post hoc testing was the reduction in
immobile episodes in WT mice. Because HFD-fed KI mice
did not display significantly increased immobility than did
either genotype of SD-fed animals, it appears that HFD-fed
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KI mice do not exhibit a ‘‘depression-like’’ state. Rather,
they simply fail to experience an antidepressant-like response.
Importantly, the validity of the FST as a depression-like behavior
remains an area of open debate. Indeed, some have argued
that immobility time is a more accurate reflection of an
acute stress coping strategy than it is a measure of behavioral
despair (Commons et al., 2017). Regardless, 5-HT deficiency-
induced alterations in either stress coping or behavioral despair
following exposure to HFD could have important implications
for mental health.

Although several articles have reported increased immobility
in the tail suspension test in KI mice compared with WT
(Beaulieu et al., 2008; Dzirasa et al., 2013), we have previously
shown that KI animals do not exhibit increased immobility in the
FST (Sachs et al., 2014a). The reasons underlying these different
effects in these closely related tests remain unclear. However,
research using Tph2 knock-out mice, which display even more
dramatic reductions in brain 5-HT than Tph2KImice, has shown
that knock-out animals do not exhibit increased immobility in
either of these tests (Angoa-Pérez et al., 2014).

The current finding that HFD significantly reduced
locomotor activity in the center of the open field and the
number of center entries in the OFT, but had no significant
effects in the EPM, is similar to prior work by Dutheil et al.
(2016) who also reported significantly increased anxiety in the
OFT, but not the EPM, in rats exposed to 16 weeks of HFD.
Our EPM results did reveal a nearly 40% reduction in open arm
time in WT mice following HFD, suggesting that HFD may not
have been completely without effect in this test, but this result
did not reach statistical significance by two-way ANOVA. Brain
5-HT deficiency led to significant reductions in the distance
traveled in all compartments of the EPM, likely reflecting an
overall reduction in exploratory drive in this test. However,
this may also reflect an increase in anxiety-like behavior in
5-HT-deficient animals, as distance traveled was affected more
in the open arms (∼55% reduction) than in the center area
(∼29% reduction) and the closed arms (∼17% reduction). In the
OFT, brain 5-HT deficiency did not influence the anxiogenic
effect of HFD, and no main effects of genotype were observed.
Overall, our behavioral results reveal that HFD tends to promote
anxiety-like behavior and reduce depression-like behavior
in WT mice and that low 5-HT blocks antidepressant-like
responses to HFD.

In addition to our behavioral findings, our study also
identified genotype differences in GSK3β signaling following
HFD. Specifically, HFD increased phosphorylation of GSK3β
only in WT mice, not KI animals, and unlike many kinases,
phosphorylation of GSK3β is known to inhibit the enzyme.
Interestingly, GSK3β inhibition has been shown to lead to
antidepressant-like effects in rodents (Gould et al., 2004),
including Tph2KI mice (Beaulieu et al., 2008). In addition,
GSK3β inhibition has been shown to be required for some
responses to antidepressants (Eom and Jope, 2009) and for
antidepressant-like responses to ketamine (Beurel et al., 2011).
It is important to note that the current data do not directly
demonstrate that HFD-induced hippocampal GSK3β inhibition
in WT mice is responsible for the antidepressant-like effect

observed here. Indeed, whether the GSK3β alterations are
related to the behavioral differences would require additional
experimentation. Importantly, the effects of 5-HT on GSK3β
have been shown to be brain region and context specific.
For example, brain 5-HT deficiency has been reported to
lead to a baseline reduction in GSK3β phosphorylation in
the frontal cortex, but not hippocampus (Beaulieu et al.,
2008). Despite the lack of baseline GSK3β phosphorylation
changes in the hippocampus, brain 5-HT deficiency has
been shown to block the effects of ethanol on GSK3β
phosphorylation in this brain region (Sachs et al., 2014b),
an effect that is similar to the blockade of HFD-induced
increases in GSK3β phosphorylation observed here. Given
the importance of brain GSK3β signaling in the context of
mental health (Jope and Johnson, 2004; Gould et al., 2006;
Shapira et al., 2007; Jope, 2011), future studies should evaluate
the combined effects of HFD and 5-HT deficiency in other
brain regions and should evaluate the functional role of
GSK3β in mediating behavioral consequences of low 5-HT
and HFD.

No significant genotype by diet interactions were observed
in the expression of inflammation-related genes in the
hippocampus. However, HFD was observed to increase IL-1β
levels, which is in keeping with previous work (Almeida-
Suhett et al., 2017). HFD also increased the expression of
complement C4A, which brain 5-HT deficiency was shown
to reduce. The complement system is perhaps best known
for its role in innate immunity (Ricklin et al., 2016), but
it has also been shown to play a major role in synapse
elimination (Stevens et al., 2007) and has been implicated
in mental illness, most notably schizophrenia (Sekar et al., 2016;
Nimgaonkar et al., 2017; Sellgren et al., 2019). Although no
genotype by diet interaction was observed for C4A expression,
it is possible that the combination of main effects of 5-
HT-deficiency and diet on C4A expression could influence
complement-mediated pruning and play an important role in
the behavioral responses of Tph2KI mice to HFD, but future
research would be required to evaluate this. Importantly,
mRNA analyses do not represent a completely comprehensive
analysis of brain inflammation, and thus, it is still possible
that brain 5-HT deficiency impacts inflammatory responses
in the brain, but future research would be required to test
this possibility.

A limitation of the current study is that it was conducted
exclusively in male animals. Given that we have previously
reported sex differences in susceptibility to the effects of
stress and brain 5-HT deficiency (Sachs et al., 2014a), future
research should evaluate the behavioral consequences of
chronic HFD in females. Another limitation is that we do
not currently know whether fat content itself is driving the
HFD-induced molecular and behavioral changes. Whether
other types of highly palatable diets, such as those high
in sugar, would lead to similar behavioral changes is
not known. Similarly, given that mice consumed more
HFD than they did SD, it is also possible that increased
consumption of SD would lead to similar effects. Future
research examining other diets and pair-fed controls
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will be required to provide insight into these remaining
issues.
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