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ABSTRACT: Metadynamics is an enhanced sampling method designed to
flatten free energy surfaces uniformly. However, the highest-energy regions are
often irrelevant to study and dangerous to explore because systems often change
irreversibly in unforeseen ways in response to driving forces in these regions,
spoiling the sampling. Introducing an on-the-fly domain restriction allows
metadynamics to flatten only up to a specified energy level and no further,
improving efficiency and safety while decreasing the pressure on practitioners to
design collective variables that are robust to otherwise irrelevant high energy
driving. This paper describes a new method that achieves this using sequential
on-the-fly estimation of energy wells and redefinition of the metadynamics hill
shape, termed metabasin metadynamics. The energy level may be defined a priori or relative to unknown barrier energies
estimated on-the-fly. Altering only the hill ensures that the method is compatible with many other advances in metadynamics
methodology. The hill shape has a natural interpretation in terms of multiscale dynamics, and the computational overhead in
simulation is minimal when studying systems of any reasonable size, for instance proteins or other macromolecules. Three
example applications show that the formula is accurate and robust to complex dynamics, making metadynamics significantly more
forgiving with respect to CV quality and thus more feasible to apply to the most challenging biomolecular systems.

1. INTRODUCTION

Although in principle observing nature carefully over infinite
time scales could be sufficient to reveal all physics, it is more
practical to design experiments that investigate specific
questions by intentionally varying physical parameters in a
controlled manner. Similarly in computational modeling, when
direct simulation of natural processes by molecular dynam-
ics1−3 is infeasible, specially designed simulations can nonethe-
less reveal key physics in far less simulation time.4−6 The
adaptive enhanced sampling method metadynamics7−9 is one
such approach specifically designed for the determination of
potentials of mean force (PMFs) by promoting transitions
between long-lived metastable states. Metadynamics has been
widely applied across chemistry from materials science to
biochemistry, but it is still quite young theoretically, with a
rigorous proof of convergence appearing only one year ago.10

Metadynamics works by using a choice of reduced
coordinates called collective variables (CVs) to iteratively
build a bias that increases the rates of transitions between
metastable energy wells; increased transition rates imply
decreased sampling autocorrelation and thus improved PMF
estimates. Other adaptive methods of the same generation and
similar philosophy include the Adaptive Biasing Force11,12 and
Wang−Landau13 algorithms, and it is descended from the Local
Elevation Method.14 The degree to which a bias can actually
promote those transitions, however, depends on how well the
CVs capture the true reaction coordinates. When the CVs are

imperfect, the results may not approach the true PMF rapidly,
and this is common enough that it is often considered to be the
single most relevant limitation preventing application of
metadynamics to the study of complex systems.9,15−18

Furthermore, the cost of building the bias also depends on
the complexity of the CVs, scaling with the volume of CV
space−i.e., exponentially with CV number. All enhanced
sampling methods that rely on CVs share these drawbacks to
greater or lesser extents.6,19,20 This paper describes a new
variant of metadynamics, metabasin metadynamics (MBMe-
taD), that is designed to suffer less from the use of poor quality
CVs and to make more practical the use of larger numbers of
CVs by judiciously restricting the bias’s domain in CV space.
However, in order to discuss the features of metadynamics that
we wish to improve with our new method, we must first
compare to a more venerable alternative, window-based
umbrella sampling.21,22

Window-based umbrella sampling is stratified sampling
applied to simulation.21 It is accomplished by running many
simulations with different energetic biases that keep each
simulation restrained within a different small region, or
window, of CV space. These windows are constructed so that
the sampled distributions in the windows overlap with one
another to cover all of the phase space of interest in a given
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investigation; this typically involves choosing 1) a scale for each
stratified dimension of CV space to set the separation of
window centers from one another and 2) a single energy scale
to set the strengths of the restraint. Once these are chosen, one
then runs simulations in each window, perhaps with some form
of replica exchange among the biased walkers.6,22 After this, the
sampling in all of the windows forms a patchwork covering of
the CV space that can then be sewn together into a single
overall PMF estimate using a method such as Gaussian process
regression,23 the weighted histogram analysis method,24 or the
multistate Bennet acceptance ratio.25

Metadynamics, on the other hand, is an auxiliary distribution
sampling approach. It functions by iteratively building a bias
away from previously visited points to accelerate escape from
metastable basins and thereby decrease autocorrelation of
sampling on the CV space. In tempered metadynamics,26,27 the
type of metadynamics that converges asymptotically,10 the bias
is constructed by adding Gaussian hills of bias of progressively
shrinking height at regular intervals. Overall, a typical case
requires choosing 1) the length scale of the hill in each
dimension, 2) a single hill energy scale, and 3) a single energy
scale for the convergence rate of the bias. After these are
chosen, one then runs one or more simulations under an
iteratively growing bias, again with the possibility of replica
exchange.28−30 Once this is done, one can calculate PMFs via
their direct connection to the bias in the asymptotic regime or
via one of several nonequilibrium reweighting estimators.31−33

When stratifying based on a set of CVs is not enough to
ensure good sampling over the CV range, one says that there
are hidden slow variables (HSVs). When these are present,
replica exchange can be inefficient, and sampling in the
windows often does not accurately represent true Boltzmann
sampling on accessible simulation time scales.22,34 The free
energy differences between windows spaced far apart are pieced
together using information from windows between them,
making the errors induced by poor sampling in a single window
nonlocal. This nonlocality follows the topology of the PMF in a
way such that sampling errors in transition regions have large
effects on relative free energy estimates between the basins they
connect, while errors in basin regions and high energy regions have
a more local ef fect.35 However, unless the HSVs prevent replica
exchange or lead to obvious unphysical features in a PMF, the
erroneous sampling can easily be mistaken for correct.
The presence of HSVs in metadynamics, on the other hand,

typically causes sampling hysteresis that is clearly visible in the
bias.9,17,28 When the CVs are open for modification, this is an
advantage because it gives a clear signal that the CVs need
improvement. As in window-based umbrella sampling, the
effect on PMF estimates is nonlocal, but, unlike in that method,
the nonlocal ef fects f rom HSV sampling in high-energy regions can
af fect the estimates of the PMF across all other regions.
Specifically, the nonequilibrium bias can drive undesired
changes in HSVs that never relax on the time scale of
simulation, for instance driving undesired boiling of solvent or
an irreversible fluctuation of a protein conformation. That
spoils the sampling, making it useless for prediction. Therefore,
although hysteresis in the presence of HSVs is a desired
behavior in regions of CV space relevant to the process of
interest, it is an inconvenience in high-energy regions. It is
especially troublesome in complex systems with sensitive
dynamical environments and many potential HSVs, e.g., almost
all proteins.

Regardless of the presence of HSVs, the simplest form of
windowed umbrella sampling scales poorly with the dimension-
ality of CV space because one typically covers the space with
the fixed-volume windows, and the cost of covering space with
fixed-volume sets scales exponentially with dimension. This can
be ameliorated somewhat by taking a metadynamics-like
approach in which one runs simulations only in windows in
low-energy regions encompassing the main basins of interest,
i.e., a metabasin, gradually learning the shape of the metabasin
along the way.36 The metabasin manifold has a lower volume
and often a lower effective dimensionalitythan its bounding
box, so covering it with windows is less prohibitive than
covering the full span of the CV space. No advance knowledge
of the metabasin’s shape is required, only an energy scale of
interest.
In this paper we propose to emulate this approach for

metadynamics. However, our goal and approach differ. Our
primary goal with MBMetaD is to prevent driving in high-
energy regions to prevent the excitation of HSVs that
irreversibly alter sampling. Greater efficiency with many CVs
is another benefit and an important one, but it is currently a less
pressing issue in the application of metadynamics than the
problem of irreversible driving. The strategy differs from
adaptive umbrella sampling because metadynamics already acts
to fill metabasins from the lowest point outan initialization
logicand our change is therefore rather to cause metady-
namics to drive escape no further and converge once it has
filled the metabasina termination logic.
The most common approach to this termination in the

literature has been to self-limit by slowing down the addition of
bias, for instance in self-healing umbrella sampling,37 flat
histogram metadynamics,38 and well-tempered metadynam-
ics.26 However, though these can be effective, in such methods
the time scales of updating the bias and the energy scale of the
self-limiting are tightly coupled, which can make it impossible
to simultaneously choose acceptable values for both in complex
systems. Most often, one must simply choose to add energy
very slowly or, similarly, decrease the rate of energy addition
very rapidly to prevent spoiling the dynamics. In either case,
this can make the simulations prohibitively expensive. There is
therefore a need for a scheme that takes a different approach,
sampling a specific energy scale regardless of how quickly bias is
added, to empower researchers to make more practically
efficient investigations of sensitive systems with metadynamics.
In this paper, we solve the longstanding problem of designing

metadynamics to flatten only a region of arbitrary shape,
without restricting sampling to that region, in order to design a
metadynamics that flattens only up to a chosen energy level and
no further regardless of how quickly new bias is added. The
approach we take is compatible with all tempering
strategies,10,26,27,39 bias exchange,29 multiple walkers,40 and
more,18,30,41,42 functioning as a modular enhancement that can
and should be used together with other advances in
metadynamics methodology. The task of filling a finite domain
has been a pernicious challenge throughout the history of
metadynamics.43−45 When used without proper understanding
it can suffer from boundary artifacts. Solutions are available for
1D intervals,43,44 but the first simple, implemented solutions for
rectangular boxes with hard wall boundary conditions in any
number of dimensions were first published by McGovern and
de Pablo only two years ago.45 We independently derived the
same corrections in the course of studying the convergence of
metadynamics, and here we extend the McGovern−de Pablo
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approach to time-dependent domains of arbitrary shape with
open boundaries. Our method consists of this generalized
boundary-corrected metadynamics together with adaptive rules
for defining time-dependent domains that represent the
metabasins of genuine physical interest in practical metady-
namics applications. These rules do not require any a priori
estimate of barrier heights in the system. Section 2 details this
new method, Section 3 presents results and discussion of three
example applications to biomolecular simulation, and Section 4
concludes the paper.

2. METHODS
Tempered metadynamics is proven to converge like a specific
quasiequilibrium differential equation that depends only on the
method and not on underlying system dynamics.10 Therefore,
to describe the design of the new approach that converges on a
finite, open-boundary domain, we first define a new shape of
hill that gives rise to a differential equation that flattens the
energy on any domain. Second, because the domain of interest
will only rarely be known ahead of time, we next discuss how to
adaptively define these domains over the course of simulation
using either a known target basin energy level or an adaptively
learned energy level corresponding to the minimal metabasin
containing several known points of interest.
In the original metadynamics,7 the adaptive bias is

constructed as a sum of Gaussian hills centered at previously
visited points in CV space, i.e., in 1D
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where h is an energy-valued hill height, σ is a CV-valued hill
width, and the sti are the sequence of points in CV space visited
at each ti. To ensure convergence one must sequentially
decrease the hill height, for instance using the well-tempered
metadynamics (WTMetaD)26 rule
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where ΔT is a parameter that controls the rate of height
decrease. A general theoretical form for metadynamics that can
be proven to converge10 is
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where G(s, s′) is called the hill kernel and encapsulates the hill
shape, and w[V(s, tn)] is called the global tempering rule and
serves as a complement or substitute to the WTMetaD rule for
decreasing the hill sizes as time goes on; see for example
transition-tempered metadynamics (TTMetaD)27 or the global
tempering used in experiment directed metadynamics.39 The
new method of this paper is modular with respect to the various
tempering rules and only involves redefinition of G(s, s′).
Specifically, consider the case that one knows of some hill

kernel G0(s, s′) that could flatten an entire CV space but would
like to flatten a domain D of that CV space instead. Then the
MBMetaD rule is to use a hill with two parts

′ = ′ + ′G s s G s s G s s( , ) ( , ) ( , )MB Int Ext (4)

where GInt(s, s′) are hills that would flatten the interior of the
domain if it had hard walls, and GExt(s, s′) raises the bias level of

the exterior in such a way to exactly match the exterior bias
level to the bias level of the domain boundary while also exactly
counteracting the parts of GInt(s, s′) that slope into the exterior
of the domain. Both are based only on G0(s, s′) and the domain
D. These hills are illustrated in Figure 1.

For the first part, we use a close relative to the multiplicative
McGovern−de Pablo45 rule

′ = ′G s s G s s I s D G( , ) ( , )/ ( ; , )McGdP 0 0 (5)

where I(s; D, G0) is a boundary-normalized integral of G0(s, s′)
over D for its s′ argument, i.e.
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with δD the boundary of domain D. This integral does not have
a closed form solution for domains of general shape, but for
Gaussian hills on a rectangular domain it is given by the sum of
error functions provided in the paper of McGovern and de
Pablo.45 The rule eq 5 has the undesirable property that as s′
approaches the boundary of D from the interior, the values of
G(s, s′) in the exterior diverge to infinity, making it unsuitable
for metadynamics on an open boundary domain. This occurs
because I(s; D, G0) goes to zero quickly as s goes beyond the
boundary, so an expedient solution is to modify I(s; D, G0) such
that it falls to a fixed value greater than zero. In MBMetaD,
therefore, our form for the first term in eq 4 is

′ = ′G s s G s s f I s D G( , ) ( , )/ ( ( ; , ))Int 0 0 (7)

with I(s; D, G0) as above and in the implementation described
in this paper f(x) is the simple piecewise polynomial f(x) = x
for x ≥ 1 and f(x) = x + 0.5(1−x) 2 for x < 1. This choice of f is
continuous and differentiable even at x = 1, ensuring that all
bias forces will be continuous. I(s; D, G0) is constant in the
interior of the domain and decays to zero outside of the
domain, so dividing by f(I(s; D, G0)) has the effect of leaving
hills in the interior unchanged and causing them to bulge out of
the domain subtly more than they otherwise would when close
to its boundary.

Figure 1. An illustration of a metabasin metadynamics hill function
(top, eq 4) on the unit circle near the domain boundary (black lines
denote r = 1) and its decomposition into a rescaled hill (left, eq 7) and
a low plateau outside of the domain (right, eq 9). The hill is based on a
Gaussian of width 1/√10 placed at r = 0.9. The effects of adding
rescaled hill and exterior plateau contributions evenly over all points
on the unit circle are exact complements, leading to bias updates that
are flat everywhere when sampling is flat on the unit circle.
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Using only that first part of the hill, the differential equation
from the convergence paper10

∫= ′ ′ ′dV s t
dt

r t ds G s s p s
( , )

( ) ( , ) ( )wt (8)

would predict that the interior of the region would be flattened,
but the bias inside would grow indefinitely, forming a steep-
walled, flat-topped mesa in the PMF. This would drive all
sampling out of the metabasin of interest and is clearly
undesirable. The second term in eq 4 ensures that this does not
occur. Specifically, we use
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which plateaus in the exterior of the region with a plateau
height equal to the boundary average value of the first part of
the new bias. An example is illustrated in the bottom right of
Figure 1. Because its height is set to match the bias added to the
boundary, it ensures that the exterior bias level always matches
the average bias level of the domain boundary. In other words,
this part of the bias update pulls sampling into the domain
everywhere along the boundary exactly enough to cancel out
how the first part of the hill would push sampling out of the
domain close to the new hill. Moreover, the plateau is perfectly
shaped so that flat quasiequilibrium sampling on the interior of
the domain leads to an exactly flat increase of the bias
everywhere in CV space. Finally, this term, eq 9, is only
nonzero when a hill is added close to the boundary (s′ is close
to the boundary), so MBMetaD functions just like normal
metadynamics away from those boundaries.
While this scheme might appear technical at first glance, it

has a simple multiscale physical interpretation. On a coarse
scale, we look at the system through a two-state lens: either the
sample is inside or outside the domain. On a fine-grained scale,
we look at the points in CV space to a resolution comparable to
the length scale σ of the original hill. The metabasin rule, then,
corresponds to looking at the CV space using a topology in
which all the points inside the domain are resolved to a fine-
grained level, while all of the points outside are collapsed into
one generic state. The first part of the hill is added to a fine-
grained neighborhood of the interior, while the second is added
to the entire coarse-grained exterior statealso a single
neighborhood, but using the multiscale topology described
above instead of the usual metric topology of the CV space.
It is often argued that bias hills should match the Green’s

functions for the dynamics, in at least a loose sense,14,32,46,47

and this is no exception. The simplest way to understand this
new hill shape in those terms is to recognize that these hills are
also like Green’s functions, but where boundary conditions
have been adjusted so that the walls are only partially reflective
and any particles that exit the boundary from the interior must
be balanced by particles crossing the boundary from the
exterior. In the exterior, the constant profile in the far field
corresponds to a well-mixed, fixed concentration boundary
condition at infinity. The second part is thus related to the
quasistationary distribution of a well-mixed domain exterior and
therefore retains a natural connection to dynamics.
Up to now we have spoken in terms of a single connected

domain, but the development above applies to any
disconnected domain just as easily. Simply divide the domain
D into its n components Di and whenever a sample would be

added inside a domain Di, use the above definitions with Di in
the place of D. In the discussion of its physical meaning,
consider a 2n-state coarse-graining rather than a two-state
coarse-graining; the new set of states is the Cartesian product of
all the sets of two states (interior and exterior) per domain.
When one’s goal is to flatten a PMF in a domain without

causing discontinuities, the only domains that can be flattened
completely are those with an isoenergetic boundary. Therefore,
it is natural to define valid domains by defining a boundary free
energy and letting the domain be the set of all CV points with a
lower free energy than that boundary energy. Since the zero of
free energy is arbitrary, these definitions must be made in terms
of an energy difference rather than an energy alone. For
instance, in this paper, we will show the use of domains like “all
points less than 45 kJ above the minimum free energy”, a
known basin free energy level, and “all points less than 15 kJ
above the transition barrier between points A and B”, an
implicitly defined metabasin energy level. Of course, the choice
of domains Di is rarely possible to make before a simulation. It
is often one of the things one would like to discover using
metadynamics. For that reason, we also add an on-the-fly
mechanism to discover Di defined in terms of simpler criteria
like the examples above.
We solve this problem much as in TTMetaD,27 where we

used the bias as an on-the-fly free energy estimator. However,
in this case we seek metabasins rather than barriers, and now
the bias will not properly approximate the free energy anywhere
outside of a previously defined domain. Therefore, we use the
nonequilibrium umbrella sampling estimator of Branduardi,
Bussi, and Parrinello32 to approximate the domain locations on-
the-fly rather than the bias alone. This allows for the discovery
of extensions of a domain outside a previously chosen domain,
possibly including new disconnected components, regardless of
initial conditions. The free energy estimates provide minima,
transition barriers, and on-the-fly region selections as described
in the next paragraph.
The recipes above have straightforward numerical imple-

mentations. I(s; D, G0) can be calculated by numerical
integration on any domain D simply by summing many hills
G0(s, s′) evenly over D, and once it is available f(I(s; D, G0))
and I(s; D, G0)/f(I(s; D, G0)) are simple to calculate. The
nonequilibrium umbrella sampling estimator is evaluated using
a running histogram accumulated during simulation alongside
the bias, free energy minima are trivial to calculate, and the
transition barriers are found via breadth-first path search as in
TTMetaD.27 These minima and barriers, plus an offset, define
the target region energy. The region of interest is then the total
set of grid points under that free energy in the current on-the-
fly estimate. That set of grid points is then split into connected
domains with a standard flood-fill connected components
labeling algorithm.48 Once these domains are defined, we
compute I(s; D, G0) for each domain and then continue the
simulation. Our implementation updates the domain at fixed
time intervals with an option not to update the domain each
time but to instead also wait until the free energy estimate in
the exterior of the region has changed by some set amount.
With tempering, the latter corresponds to a logarithmic update
schedule that cuts down on unnecessary computational
overhead at late times when the domain definition is stable.
Each change in domain definition only affects future hill
addition, so the previously deposited bias continues to be used
unchanged.
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Our implementation is a public fork of the PLUMED2
package.49 It provides MBMetaD with a minimum based
domain or a transition barrier based domain (with transition
barriers defined as described in the paper introducing
TTMetaD27), using only one additional required input number,
the energy offset from the transition or minimum. Two further
parameters to control the update schedule and one controlling
accuracy of the numerical integration are also available for fine-
tuning, but these have general defaults and can be considered
optional.

3. RESULTS AND DISCUSSION

Our purpose with MBMetaD is to fundamentally change the
trade-offs of metadynamics with respect to other methods by
giving it a self-limiting mechanism, and thus the remainder of
this paper focuses on investigating the self-limiting behavior in
three examples. First, we show that it functions as intended all
the way through PMF convergence for a simple model
biomolecule with imperfect CVs, alanine dipeptide, without
negatively affecting convergence efficiency or accuracy. Second,
we show that it correctly self-limits in a more complex example,
monomeric actin, where the self-limiting is used to achieve
more stable and reproducible exploration of conformational
space. Finally, we apply it to a membrane transport protein,
ClC-ec1, using mediocre CVs to examine its failure modes and
in particular show that it retains metadynamics’ attractive
property of displaying hysteresis in the domain of interest
(rather than harder to recognize errors) even as it prevents the
nonequilibrium driving from spoiling the dynamics in other
domains.
Our focus in these examples is the self-limiting behavior and

reproducibility rather than convergence efficiency or accuracy;
self-limiting behavior aimed at improving reproducibility is the

sole novel feature introduced in MBMetaD, and the method
otherwise behaves much like whatever other metadynamics
method it augments. Though the accuracy of metadynamics in
practice does deserve further study, it is not a focus of this
particular paper.

3.1. Alanine Dipeptide. A standard first test case for new
metadynamics methods is blocked alanine dipeptide in vacuo
with ϕ and ψ dihedral CVs because the long literature on
metadynamics provides excellent guidance on transferring
knowledge gained with this model to understanding of the
method in more complex systems.7,26,32 Alanine dipeptide
provides a simple case of a system with imperfect separation of
time scales between CV dynamics and other relaxations and is
thus a minimal test for any adaptive enhanced sampling method
that is meant to be robust to memory in the CV dynamics.
These tests modeled alanine dipeptide using the Amber03

force field50 and at a constant temperature of 300 K using a
Langevin thermostat with a drag of 5 amu/ps. The dynamics
were integrated in Gromacs 4.6.151−54 patched with a
customized version of PLUMED249 and using a stochastic
dynamics leapfrog algorithm with a time step of 2 fs, particle-
mesh Ewald summation,55 and SHAKE constraints on all
bonds.56 We performed 32 simulations for each method and
parameter set presented. Each simulation began from the same
C7eq conformation, but each set of 32 runs began from 32
distinct initial velocities pseudorandomly generated from
distinct random seeds and used 32 distinct Langevin thermostat
seeds.
We compared WTMetaD, TTMetaD, and transition-

tempered MBMetaD using hill height, width, and rate
parameters and tempering parameters as in our previous
work introducing TTMetaD.27 The height was 1.2 kJ/mol, the
width 0.35 radians, hills were deposited every 120 fs, the

Figure 2. Bias-based free energy estimates averaged over 32 runs of 8 ns for four different metadynamics choices designed to give different levels of
resolution of the high-energy regions. Clockwise from top left: WTMetaD, TTMetaD, 15 kJ/mol transition-referenced MBMetaD, 42.5 kJ/mol
minimum-referenced MBMetaD. All methods use parameters as defined in the text. Contours are placed every 5 kJ/mol. The estimates are all but
identical in low-energy regions despite stark differences in the high-energy regions. WTMetaD is least controllable and gives the most resolution of
high energy regions, TTMetaD is more controllable but would give more and more resolution of high energy regions given additional convergence
time, and both forms of MBMetaD are fully controllable, converging without resolving the high energy regions.
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TTMetaD parameter ΔT was 2kBT, and the transition wells for
TTMetaD were (−1.25, 1.25) and (1.0, −1.25) in (ϕ, ψ) CV
space; for WTMetaD ΔT was 4 kBT. When using metabasin
metadynamics we compared the minimum-based domain
definition with relative energy levels of 35.0 and 42.5 kJ/mol
and transition-based domain definition with relative energy
levels of 7.5 and 15.0 kJ/mol. We chose these values in order to
roughly match the two methods based on the approximation
that the apparent transition barrier relative to the minimum in
these CVs is 27.5 kJ/mol; this makes for clear and direct
comparison between the two different styles of domain
specification. The higher energy values were chosen as a
representative test of the method. The lower energy values
were chosen to illustrate how the two domain definitions differ
in behavior as the energy excess above the transition barrier
becomes low and the PMF is barely flattened over the barrier
between the transition wells.
The results for higher energy limits confirm that MBMetaD

with either domain definition retains the accuracy and efficiency
of TTMetaD in the low-energy regions it is designed to study

while giving up all resolution of the high-energy regions it is
designed not to explore. Figure 2 shows the replicate-averaged
estimated PMFs of regular TTMetaD and the two MBMetaD
variants after 8 ns of simulation for comparison; it is evident
that the low-lying contours are essentially indistinguishable
among the three methods, while the high-energy contours
present in the first are simply missing in the latter two. Also as
expected, the contours outside of the domain but close enough
to be biased are somewhat random and are not optimized over
the course of convergence. Figure 3 compares the convergence
rates for these methods on the domain of interest in terms of
trueness and precision.
However, with lower energy limits, the transition-referenced

domain definitions become clearly superior to minimum-
referenced domains. This is shown in Figure 4. This is because
in the normal case that CVs are imperfect, hidden barriers in
HSVs can cause the bias to grow too high in one basin before
exploring the next basin.9 When this occurs in minimum-
referenced MBMetaD, the energy differences from the
minimum can therefore appear higher than they should and

Figure 3. Convergence of MBMetaD bias compared to TTMetaD and WTMetaD. Figures on the left show convergence results for the estimated
free energy difference between points (−1.25, 1.0) and (1.25, −1.0), the two primary basins, while figures on the right show convergence results for
the estimated free energy difference between points (−1.25, 1.0) and (2.1, −1.5), the deeper basin and the lowest free energy barrier point between
the two basins. Figures on top show the averaged free energy difference estimates as a function of time, while the lower figures show the standard
deviation of the estimates as a function of time. All methods are as described in the text, with the statistics calculated over 32 runs per method. The
MBMetaD methods in these figures used energy offsets of 42.5 kJ/mol (minimum referenced) and 15 kJ/mol (transition referenced). For these free
energy difference estimates inside the metabasin domain, MBMetaD incurs no convergence accuracy penalty.

Figure 4. Comparison of the convergence of MBMetaD biases using different domain specifications. The MBMetaD methods in these figures used
energy offsets of 42.5 kJ/mol (high energy minimum referenced), 35 kJ/mol (low energy minimum referenced), 15 kJ/mol (high energy transition
referenced), and 7.5 kJ/mol (low energy transition referenced). The trueness of the MBMetaD methods are all fairly consistent, but the precision of
transition-referenced MBMetaD is more robust with respect to choice of domain specification due to the early time cancellation of errors discussed
in the text.
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the estimated domains then become too small. If the intended
domain was not much larger than the true metabasin of
interest, the bias may not fully flatten all the way between the
states of interest until the overestimation corrects itself. On the
other hand, when similar overestimation occurs in transition-
referenced MBMetaD, the transition barrier estimate also
overshoots the true value, so that the domain is made larger by
the same amount that the previous error would make it smaller.
This systematic cancellation of errors ensures greater stability
and better flattening before convergence and, thus better, less
autocorrelated sampling and faster convergence. We always
recommend using the transition-based rule for adaptive domain
restriction when seeking to connect basins.
In these tests, the desired regions of interest are single large

connected domains including both wells. In the high energy
tests, the on-the-fly regions begin with large connected domains
including both wells and small disconnected satellite domains
due to sampling noise in the free energy estimate. As the
simulation proceeds and the free energy estimate is refined,
new satellites spring up, some disappear, and some connect
with and absorb into the main domain. The behavior is the
same in the low energy transition-referenced simulation as well.
However, in the low energy minimum-referenced simulations,
the regions often begin with one primary domain around the
basin the simulation is initialized in. In these runs, when a
transition to a new well occurs there is a delay before the
umbrella sampling estimator registers the discovery of a new
low-energy region, but then a domain begins to grow around
the new basin. Depending on vagaries of sampling, these
domains can either remain separate or join together before the
simulation terminates. This reconnection is not efficient, so
once again, we always recommend using the transition-based
rule for adaptive domain restriction when seeking to connect
basins.
3.2. Actin Flattening. Actin is a key component of the

cytoskeleton,57 but the structural bases and mechanisms of its
regulation are only partially understood, even at the monomer
level. The monomer is also called globular actin or G-actin, and
aspects of it have been studied using metadynamics58,59 and
umbrella sampling.60 However, G-actin is a dynamically
sensitive protein with a high degree of allostery that can be
difficult to design good CVs to investigate and can resist
enhanced sampling analysis.61

A previous paper60 used umbrella sampling to investigate
nucleotide-dependent G-actin conformational distributions
measured in terms of an interdomain distance and torsion
(Figure 5) but was unable to reach convergence, presumably
due to the presence of HSVs. Attempting to use metadynamics
with the same torsion and distance CVs showed hysteresis,
confirming the presence of HSVs, but this hysteresis typically
involved unexpected and apparently irreversible behavior.
Hypothesizing that the CVs were adequate in low-energy
regions but inadequate in higher energy configurations, we
applied MBMetaD to the problem in order to sample the
lowest-lying metastable basins well and learn enough to refine
the CVs before investigating further.
To do this, we performed 8 simulations of WTMetaD with

and without adaptive domain restriction for 50 ns each. The
simulations were set up as in previous work,60 with proteins
simulated in NAMD62 patched with a customized version of
PLUMED249 using the CHARMM22/27 force field with
CMAP.63 Our CVs were similar to those in the previous work,
consisting of the 2-1-3-4 torsion between the cores of the four

actin subdomainsthe flatness of the monomerand the
distance between subdomains 2 and 4the width of the
nucleotide binding cleft. However, for the sake of computa-
tional efficiency the positions of these subdomains were
calculated as the centers of mass of only the backbone and
Cβ carbons in the subdomain cores rather than the centers of
mass of all of the subdomain core atoms. All simulations were
initialized from a flattened conformation like that of
filamentous actin (PDB ID 2ZWH).64 Metadynamics added
hills of initial height 0.004184 kJ/mol and widths 0.3 radians
and 0.02 nm every 200 fs, with heights sequentially adjusted
according to the WTMetaD rule with a bias factor of 10; the
MBMetaD domain was defined as every point less than 25.104
kJ/mol above the current estimate of the free energy minimum
and was updated every 200 ps if the exterior bias had increased
by 2.092 kJ/mol since the last update. A minimum reference is
appropriate because the simulations do not study a particular
transition but rather the fluctuations about a single basin.
Representative biases and sampling histograms at the end of

50 ns are shown in Figure 6. It is evident that the MBMetaD
rule successfully limits the bias to a smaller metastable basin of
CV space than the unrestricted WTMetaD does without
artificially restricting the sampling to the same basin. The
regions selected by MBMetaD correspond to the biased
regions. They consist of single primary domains around the
starting states together with smaller disconnected domains that
spring up wherever the simulation occupies another state long
enough. However, the primary purpose of this test is to
demonstrate greater simulation repeatability for MBMetaD
compared to the WTMetaD reference, investigated in Figure 7.
This figure demonstrates that overlaps of the biases of

different randomly initialized runs are greater in MBMetaD
than WTMetaD, i.e., that the sampling is more similar across
runs of MBMetaD than WTMetaD, just as desired. The
disagreement between predictions of which regions of CV
space are below a threshold energy shown in this figure
correspond to one minus the ratio of the area of the
intersection of the regions to the area of their union; expressed
as an integral, this is 1 − ∫ min(I(Fi(s) < Fth), I(Fj(s) < Fth))ds/
∫max(I(Fi(s) < Fth), I(Fj(s) < Fth))ds, with Fi and Fj being the
PMF estimates from runs i and j, Fth being the threshold
energy, and I( f(s) < g) being the indicator of the function f
being less than scalar g at point s. This indicates greater stability
and more physically meaningfulor at least more easily

Figure 5. Schematic illustration of the CVs used to investigate
nucleotide-dependent actin dynamics, consisting of the distance
between subdomains 2 and 4 and the torsion angle between
subdomains 2, 1, 3, and 4.
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interpretedexploration. The nonreapeatable free energy basin
predictions seen with unrestricted WTMetaD do not
correspond to states that appear biologically relevant or well-
populated at equilibrium but rather appear to correspond to
metastable traps found only because of overzealous non-
equilibrium kicks. The MBMetaD data proved more useful for
refining the choice of CVs and designing new simulations, but
because refining CVs is a system specific process rather than a
matter of MBMetaD methodology, describing that process will
be left for future publication focused on the structure of G-
actin. For our purposes here, it is sufficient to demonstrate that
the method enhances sampling out of well-understood basins
repeatably and without applying risky nonequilibrium driving
forces in less well understood regions of CV space.
3.3. ClC Antiporter Chloride Transport. Our final

example concerns the ClC-ec1 Cl−/H+ exchanger,65 a
paradigmatic protein of the ubiquitous ClC family.66−69 In
this example we will focus on investigating one particular part
of the molecular mechanism of chloride transfer: motion of
chloride anions in the channel when a key central acidic
residue, E148, is protonated. The previous examples showed
that MBMetaD is an accurate and effective self-limiting

mechanism when the CVs are appropriate in a metastable
basin. However, it is often the case that CVs will not be ideal
even in the domain of interest, and with this final example we
intend to show that MBMetaD continues to have both
desirable self-limiting behavior and dynamics with desirable
hysteresis in that case. Therefore, in this case our CVs are
simply the displacements along the membrane normal
direction, z, from each of two chlorides, one closer to the
cytosolic side of the membrane, zcyt, and the other closer to the
extracellular side, zext, to the center of mass of a central group of
protein atoms that is chosen only as a stable reference for the
protein frame of reference and has no other intended physical
significance. This leaves motion of E148, water fluctuations,
helix motion, and other protein environment fluctuations as
potential HSVs.
We aim here to compare the function of MBMetaD with

unrestricted WTMetaD in estimating PMFs of simultaneous
translation of these chlorides throughout the protein, with the
mechanism presumed to involve five key chloride states
identified in previous structural studies.67,70,71 First, when z is
greater than 1 nm, the chloride is said to be extracellular.
Second, when z is near 0.6 nm, the chloride is expected to be in

Figure 6. Representative sampling from unrestricted WTMetaD (top row) and well tempered MBMetaD (lower two rows) with the same initial
conditions (columns) as a function of cleft width (w) and twist angle (θ). In the unrestricted case only bias PMF estimates are shown because
sampling and bias are directly related; for MBMetaD both bias PMF estimates (middle row) and sampling histograms (bottom row) are shown.
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its external binding site. Third, when z is approximately −0.5
nm, it is expected to be in its central binding site. Finally, when
z is less than −1, this coordinate does not distinguish well
between whether the chloride is in its internal binding site or
unbound on the cytosolic side of the membrane.
The ClC model system was set up as a dimer of the wild-type

ClC-ec1 structure (PDB: 1OTS) embedded into a lipid bilayer
(163 POPE) and solvated with 11,000 TIP3P waters72 in a 92
× 92 × 79 Å3 box under periodic boundary conditions. Protein
and lipids were modeled with the CHARMM27 force field;73,74

long-ranged electrostatic interactions were treated with the
Particle Mesh Ewald (PME) method,75 and the cutoff distance
for the short-ranged interactions from both the Lennard-Jones
and the real-space Coulomb interaction was set to be 12 Å. The
classical MD simulation was performed using the Gromacs MD
package54 patched with a customized version of PLUMED249

and a 2 fs time step. The initial configuration of the system was
taken from our previous work,76 where the system was first
equilibrated for 7 ns in the NPT ensemble with a temperature
of 310 K and a pressure of 1 atm and then further equilibrated
for 10 ns in the NVT ensemble with a temperature of 300 K.
Residues E113 in monomers A and B and D417 in monomer A
were protonated as suggested by previous calculations,77 and
E148 in monomer A was also protonated to allow chloride
translations from the external to the central site. All other
residues were set to their default protonation states.
Metadynamics was applied using the CVs described above

for the chloride ions in monomer A only, as previous
experiments78 showed that each monomer carries out Cl−/H+

exchange independently. Monomer B was still included in the
system and simulated as normal, not subject to any direct bias.
Hills of initial height 0.2092 kJ/mol and widths 0.035 nm in
both dimensions were added each 1 ps. For WTMetaD runs,
the well-tempered bias factor was 13, whereas for transition-
tempered MBMetaD runs the transition-tempered bias factor
was 5 using transition wells (0.45, 1.17) and (1.75, 0.12).
MBMetaD domains were targeted to the transition barrier

energy between those points plus 12 kJ/mol and were updated
every 100 ps if the exterior bias level had changed by 1 kJ/mol.
To restrict sampling to cases where the chlorides were in the
protein in the appropriate locations in the protein interior, the
coordinates of the extracellular and cytosolic-side chlorides
were both restrained. The cytosolic-side chloride was restrained
to the region −3.24 < x < − 0.93; −2.58 < y < −0.38; 0.09 < z
< 2.00, while the extracellular-side chloride was restrained to
the region −2.90 < x < 0.70; −2.94 < y < 0.21; −1.49 < z < 0.0.
The restraints were implemented as half-harmonic walls with
force constants of 200 kJ/(mol Å2).
The free energy estimates given by three simulations using

each method after various times, shown in Figure 8, do not
correspond to converged potentials of mean force. They reflect
the essential randomness of attempting enhanced sampling
while neglecting key HSVs and show that MBMetaD prevents
the nonequilibrium driving from spoiling the dynamics as it
does so frequently in the unrestricted simulations. In the
unrestricted case, the metastable band structure seen in the
MBMetaD outside of the starting basin is overshadowed by
other features in two of the three WTMetaD replicates.
The top left energy profile shows an unexpected and

implausible prediction of a sharp well where both chlorides are
outside of the protein that is much deeper than any of the
expected binding sites, while the bottom left shows a sharp line
near zcyt = 1 that is not seen in any other simulations and also
does not correspond to any plausible physics: furthermore, the
estimate beyond this line appears to simply be a blob without
the expected basin structure for zext. In the simulation
corresponding to the top unrestricted WTMetaD figure, the
trajectory shows that the cystosolic chloride becomes stuck
inside the protein between helices that are normally firmly
bound together. In the simulation corresponding to the bottom
unrestricted WTMetaD figure, one of the main helices unfolds
and extends into the solvent: the chloride associates with the
helix, and then the nonequilibrium bias ratchets the helix apart
by pushing on the chloride, unfolding it turn by turn, before the
chloride dissociates and goes into the solvent, with effectively
permanent damage done.
Judging by the noticeably different energy scale, it is evident

that MBMetaD has expected self-limiting behavior even in this
highly challenging and poorly tuned test case, and judging by
the fact that the MBMetaD runs do not exhibit the odd
behavior seen in the others, it also appears that self-limiting
behavior improves robustness to CV quality as predicted.
However, it is also clear that the MBMetaD runs in the right
column of Figure 8 do not fully agree among one another,
showing that it does not cover up core deficiencies in the CVs
that can be seen by comparing multiple independent replicates.
The disagreement occurs at the level of which regions of

interest are selected on-the-fly, as well. The two topmost right
panels substantially agree. However, in the bottom right panel,
the final region of interest does not include the upper right
quadrant of the allowed CV space. At the time of termination,
the simulation was sampling the upper right region but not
adding bias. Given time, the histogram correction would ensure
that this region would properly register as part of the CV space
to bias. Still, as seen in the alanine dipeptide example, it is
better to use good CVs and a robust region definition than to
rely on long-time convergence of the domains. This reflects the
inefficiency of any CV-based enhanced sampling in the
presence of HSVs.

Figure 7. Figure showing the disagreement between the free energy
estimates of different runs of like type. Disagreement (y axis) is
measured as one minus the ratio of the area of the intersection of the
two regions predicted by two different runs to be below a given free
energy threshold (x axis) to the area of their union. All PMF estimates
are standardized so that their minima are zero. Dashed lines represent
the disagreement as a function of free energy threshold for individual
pairs, while solid lines indicate their averages. The unrestricted
WTMetaD estimates disagree with one another more than the
MBMetaD estimates at all free energy levels, showing much improved
repeatability for the latter.
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Next, mimicking the usual process of checking whether one
run might have luckily converged to the correct result despite
the gauntlet of possible issues that evidently affected the other
runs, we initialized another MBMetaD replicate of length 100
ns beginning with the bias and stored histogram of the top run
just before 200 ns to check if the PMF estimate of this replicate
would agree with the original copy of the top run after 300 ns.
As Figure 9 makes evident, that is not the case. The original run
and its branched replicate differ; the former samples
configurations in which both chlorides are far from the center
of the protein, whereas the other samples configurations in
which the cytosolic-side chloride resides in the central pocket.
The new replicate primarily explores the initial basin, whereas
the original primarily explored the other basins. Motion
between the basins is not fully facilitated by the bias because
key HSVs are involved in the true barriers between them, and
the bias reports that faithfully. MBMetaD correctly reports the
presence of these HSVs even as it prevents the less physically
interesting and implausible dynamics seen in the unrestricted

WTMetaD simulations. The domain restriction rule provides
increased safety without covering up essential problems.

4. CONCLUSIONS

The new method MBMetaD fundamentally eliminates one of
the primary limitations of metadynamics, that adding energy
indefinitely causes undesired and irreversible change in many
sensitive dynamical systems, by providing an effective and
convenient self-limiting mechanism that causes it to fill up to a
flexibly defined free energy level and no fartherrequiring no a
priori estimate of barrier heights but rather estimating them on-
the-fly as necessary. This allows for more focused study that
should be especially practical when using many CVs at once
and incidentally demonstrates a solution to the problem of
boundary artifacts in metadynamics on domains of any shape in
any number of dimensions. Most importantly, it means that
using MBMetaD makes designing good CVs for metadynamics
simpler. If energy is no longer added in regions of CV space
that are irrelevant to transition mechanisms, the CVs no longer
must be carefully tuned there.

Figure 8. Bias-based free energy estimates from unrestricted WTMetaD (left column) and transition-tempered MBMetaD (right column) over three
runs (rows), each run until features stabilized qualitatively or appeared to be irreparably incorrect. Clockwise from top left, these PMF estimates
correspond to 250, 300, 300, 300, 350, and 400 ns of simulation. None appear fully converged, yet the latter are more physically plausible and the
former show distinct signs of dynamics gone irrevocably astray in the top and bottom runs (see text for descriptions of the atomistic details behind
these unphysical features).
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Furthermore, having a controlled energy level makes setting
the hill height and the tempering rates for WTMetaD and
TTMetaD simpler. Current practice requires users to choose
their desired energy level by balancing the level of tempering
with the initial rate of biasing;9,26 but the tempering must also
be matched to only partially known CV hysteresis time scales,
and the biasing rate must also be matched to the only partially
known rate of dissipation in the system. Thus, the parameters
are overdetermined in a manner depending on unknowns with
opaque trade-offs; using MBMetaD to disentangle the choice of
final energy level from the choice of tempering rate and hill
height can make the choices more straightforward. Additional
technical complexity of the method for the implementer is
therefore counterbalanced by decreased intuitive complexity for
actual application.
By restricting our changes to the hill function alone, we

ensure compatibility with many other advances in metady-
namics methodology that cannot be discussed in depth here.
For instance, the new procedure is compatible in principle with
untempered,7 well-tempered,26 and transition-tempered27

metadynamics, multiple walkers40 and bias exchange,29 driven
metadynamics,42 experimentally directed (ensemble-biased)
metadynamics,39,79 concurrent metadynamics,30 multiple time
steps,80 and any choice of CV. It is not compatible with
adaptive Gaussian hills32 but is compatible with field-coordinate
metadynamics.18 As noted earlier, it is implemented in a public
fork of the PLUMED2 package49 and is available with a short
guide upon request.
Moreover, there is little reason to think that this strategy

applies only to metadynamics. All other adaptive enhanced
sampling methods such as the adaptive biasing force11,12 and
orthogonal space random walk81 approaches can similarly suffer
hysteresis effects related to adding reckless driving forces when

their parameters are set too aggressively. It may be that adding
region-limiting mechanisms like the one presented here may
allow for more of those aggressive parameter choices to be used
safely, with substantial potential efficiency gains. In each case,
one could use the bias and an auxiliary histogram together to
determine regions of interest on the fly based on the simple
definitions we propose here, such as ‘everything less than 2 kT
above the barrier between these two states’.
Finally, we find the physical underpinnings of MBMetaD

unexpectedly natural, and we hope they will inspire further
thought in the field. The new hills can be understood as
approximate Green’s functions of diffusion inside the domain of
interest plus an approximate quasistationary distribution in the
exterior of the domain. Mathematical work on the foundations
of accelerated dynamics82,83 is finding deep theoretical power in
using quasistationary distributions in lifting the Green’s
function of a coarse-grained Markov process onto a fine-
grained configuration space. Therefore, the MBMetaD hills
appear to emerge as approximate mixed-resolution Green’s
functions, connecting the worlds of Markov state modeling,
accelerated dynamics, multiscale modeling, and CV-based
adaptive enhanced sampling in a surprising way.
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