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Abstract: trans-Cinnamaldehyde (tCIN), an active compound found in cinnamon, is well known
for its antioxidant, anticancer, and anti-inflammatory activities. The β-cyclodextrin (β-CD)
oligomer has been used for a variety of applications in nanotechnology, including pharmaceutical
and cosmetic applications. Here, we aimed to evaluate the anti-inflammatory and antioxidant
effects of tCIN self-included in β-CD complexes (CIs) in lipopolysaccharide (LPS)-treated murine
RAW 264.7 macrophages. RAW 264.7 macrophages were treated with increasing concentrations of
β-CD, tCIN, or CIs for different times. β-CD alone did not affect the production of nitric oxide (NO)
or reactive oxygen species (ROS). However, both tCIN and CI significantly reduced NO and ROS
production. Thus, CIs may have strong anti-inflammatory and antioxidant effects, similar to those of
tCIN when used alone.
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1. Introduction

Cinnamon is commonly used in cosmetics and foods [1], and cinnamon oil is frequently used
in the food and beverage industry because of its unique aroma [2]. Several studies have reported
that cinnamon and its extracts and active compounds have beneficial biological effects, including
antidiabetic effects [1,3], and antibacterial, antifungal, and anticancer activities [2,4]. Moreover,
these products inhibit neuroinflammation [5] and reduce oxidative stress [6,7].

The compound trans-cinnamaldehyde (tCIN) is a key flavor component of cinnamon essential
oil [8] that has relatively low toxicity, aside from inducing skin irritation at high doses [9].
Several reports have suggested that tCIN has anti-inflammatory effects in macrophages [10,11].
Moreover, tCIN has anticancer activity, induces apoptosis [8], inhibits cell proliferation [12], and is
beneficial for the management of obesity and diabetes [13]. However, the application of tCIN is
limited by its insolubility in water; therefore, overcoming this issue could have a major impact on
the functionality of tCIN. In addition, microencapsulated tCIN has no carcinogenic or toxic effects in
rodent models [14]. However, the oral absorption of high amounts of cinnamon into the human body
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is likely to cause side effects such as hyperkeratosis and gastritis [15]. Therefore, the cytotoxicity of
tCIN should be carefully examined.

Cyclodextrins (CDs) are toroidal-shaped, biocompatible, relatively non-toxic, cyclic oligomers [16].
In aqueous solutions, CDs can incorporate geometrically and polarity-compatible target compounds
to improve their stability [17], increase their solubility [18], and enhance their bioavailability [19].
This increases the applicability of CDs in many fields, including pharmaceutics [16,20], cosmetics [17],
and food technology [21,22]. Therefore, many researchers have deemed CDs as potential specific
drug carriers or nano-inclusion agents with the ability to reduce the toxicity of target compounds,
after numerous modifications [23]. CDs are thought to be suitable for use in several pharmacological
and biological approaches, helping to address the challenges faced during product formulation.
CD encapsulation usually affects the physicochemical properties of bioactive compounds and specific
drugs [17,24]. However, few studies have examined tCIN and CD inclusion complexes, and most
studies have focused only on their applications in nanotechnology. In particular, researchers are
interested in elucidating the functionality of these molecules using cell-based experiments; additionally,
more in-depth studies are needed to uncover the potential applications of these compounds.
Because tCIN is a major component of cinnamon and generally considered as a food, tCIN could be
applied as a functional food with numerous beneficial effects after modification by nanotechnology.
Here, we evaluated the physicochemical properties of the β-CD and tCIN inclusion complexes (CIs),
and determined their anti-inflammatory and antioxidant effects on lipopolysaccharide (LPS)-treated
RAW 264.7 murine macrophages.

2. Results and Discussion

2.1. Thermal Properties

Differential scanning colorimetric (DSC) was performed to investigate the formation of complexes
between the β-CD polymer and tCIN. Figure 1 shows the DSC results for β-CD, tCIN, the β-CD-tCIN
physical mixture, and the CIs. Pure β-CD and pure tCIN showed endothermic peaks at 205.5 ◦C and
292.7 ◦C, respectively, which correspond to their melting points. The β-CD-tCIN physical mixture had
two endothermic peaks. The first (at 183.7 ◦C) was nearly identical to that of pure β-CD, while the
second (at 292.4 ◦C) corresponded to that of tCIN. The melting temperature of β-CD alone was higher
than that of the CIs. Interaction of the guest with β-CD provides somewhat broader, so that a difference
in phase transition temperature is observed [25]. The thermal transition of the CIs occurred at 175.8 ◦C,
along with the endothermic peak. The CIs did not show the tCIN melting peak, which was clear
evidence of the formation of a complex between the β-CD and tCIN. Similar to our results, Seo et al. [25]
previously reported that the disappearance of the endothermic peak of eugenol was obvious evidence
of the formation of an inclusion complex between eugenol and β-CD.
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Figure 1. Thermal analysis of trans-cinnamaldehyde (tCIN) and β-cyclodextrin (β-CD) inclusion
complexes (CIs). The CIs were obtained by the molecular inclusion of tCIN and β-CD at a molar ratio
of 1:1. The physical mixture was obtained by pulverizing the two components in a glass mortar and
mixing them accurately in a molar ratio of 1:1.
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2.2. Encapsulation Efficiency and Release Characteristics of the CIs

Cinnamon essential oil and tCIN have antibacterial and antifungal effects [2], and have been
shown to be promising agents in the treatment of cancer [4]. Despite the beneficial effects of
cinnamon, its efficacy and bioavailability are quite low because it is used in low doses for oral
absorption in the human body [26]. Thus, the encapsulation efficiency of CIs with different molar
ratios of β-CD and tCIN was measured before evaluating the tCIN release rate. The encapsulation
efficiency of CI decreased from 90% to 62%, with increasing tCIN concentrations in the CIs.
The encapsulation efficiency when the molar ratio of the two components was 1:1, was 85% (Figure 2A).
Similar observations were reported in previous studies, with encapsulation efficiencies ranging from
70% to 95% after the preparation of CIs with various concentrations of wall and core materials [27].
Hill, Gomes, and Taylor [27] found that the encapsulation efficiency for tCIN in β-CD inclusion
complexes was 85% when the inclusion complexes were prepared at a molar ratio of 1:1, similar to our
current results. Many studies have shown that the type of material used for preparing the wall, the ratio
of the materials used for the core and the wall, the encapsulation technique, and the physicochemical
properties of capsules affect the encapsulation efficiency value [28–31]. In particular, the CI technique
is effective for encapsulating highly lipophilic oils with high encapsulation efficiency when prepared
such that the molar ratio of the materials used for the core and wall is 1:1. In contrast, in our study,
at a 1:1 molar ratio of CI and tCIN, the CI had the lowest encapsulation efficiency.

The release profiles of tCIN from CIs were observed to determine the stability of the CIs at 4,
25, and 37 ◦C over a period of 7 days (Figure 2B–D). The tCIN release rate tended to increase over
time as the tCIN concentration increased. The CIs at a 0.5:1 molar ratio of tCIN and β-CD were more
stable than those at a 1:1 and a 2:1 molar ratio. Especially, the release rate of tCIN from CI dynamically
increased at a 2:1 molar ratio of tCIN and β-CD, to up to about 40%, regardless of the temperature.
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In general, the storage temperature had a pronounced effect on the release rate of tCIN from CIs.
At 4 ◦C and 25 ◦C, tCIN release from CIs did not differ significantly with storage temperature
(p > 0.05) in our study. However, tCIN release from CIs was more affected by storage temperature at
37 ◦C than at the other storage temperatures, even though the concentration was low. tCIN release
from CIs at the molar ratios of 0.5:1 and 1:1, and a 2:1 molar ratio of tCIN and β-CD, was 20%,
28%, and 37%, respectively. According to a study by Wang et al. [30], the release rate of garlic oil
from the inclusion complex, examined at temperatures ranging from 25 to 50 ◦C, reached 75.8% at
37 ◦C after incubation for 60 h. Thus, the release profiles of the core materials can be controlled
to suit a given application using various types and concentrations of coating materials, different
encapsulation techniques, and various extra-environmental conditions, such as temperature, pH,
and humidity [32,33]. In this study, functionality evaluation was performed to observe the effects of
tCIN release on anti-inflammatory and antioxidant activity.

2.3. Anti-Oxidant Activities of the CIs

Figure 3 shows the antioxidant activity of the CIs over a period of 7 days, as measured by
the 1,1-diphenyl-2-picrylhydrazyl (DPPH) (Figure 3A) and 2,20-azino-bis(3-ethylbenzothiazoline-
6-sulphonic) acod (ABTS) (Figure 3B) radical-scavenging activity assays. These antioxidant activities
were investigated to evaluate the storage stability of CI-containing antioxidants, such as tCIN. In our
study, The CIs were obtained by molecular inclusion at 1:1 molar ratio of tCIN and β-CD. Free β-CD did
not show any antioxidant activity on its own when tested at the same concentration range as carvacrol
and its inclusion complexes (data not shown). Free tCIN did not show any antioxidant activity because
of its instability in distilled water. However, tCIN is well-known for its high antioxidant activity in
previous studies [6,7]. In the DPPH and ABTS radical-scavenging assay, the antioxidant activity of the
CIs significantly increased after 3 days compared with that of the CIs at day 0 (initial CIs). The results
of the ABTS assay also showed that the antioxidant activity of the CIs increased with increasing storage
temperature and time. In general, the inclusion of tCIN with β-CD makes it difficult to react with free
radicals. However, tCIN is released from CIs, and this free tCIN reacts with free radicals, eventually
increasing the antioxidant activity [34]. This could be also explained with the results of release rate (%)
presented in Figure 2B–D; after 7 days, tCIN release from CIs at 4 ◦C, 25 ◦C, and 37 ◦C was up to
19%, 17% and 30%, respectively. The ABTS radical-scavenging activity of CIs at 4 ◦C, 25 ◦C, and 37 ◦C
was 0.88%, 1.18%, and 2.43%, respectively. Therefore, we suggest that the increase in the antioxidant
activity was most likely related to the free tCIN concentration, because an increased release of tCIN
was observed with increasing storage temperatures.
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Figure 3. Antioxidant activity of trans-cinnamaldehyde (tCIN) and β-cyclodextrin (β-CD) inclusion
complex (CI). (A) DPPH and (B) ABTS radical-scavenging activities were measured at different storage
temperatures (4 ◦C, 25 ◦C and 37 ◦C) for 7 days. The CIs were obtained by molecular inclusion at
1:1 molar ratio of tCIN and β-CD. Data are the mean ± standard deviation (SD). * p < 0.05 versus
the radical-scavenging ability of the CIs at day 0 (initial CIs). DPPH, 1,1-diphenyl-2-picrylhydrazyl;
ABTS, 2,20-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid.
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2.4. Cell Viability

In order to determine whether the storage time of the CIs affected their influence on cell viability,
CIs were prepared in a culture medium and stored at 4 ◦C, and cell viability was determined before
and after 3 weeks of storage. According to the MTT assay data, β-CD exhibited no significant
cytotoxicity at a concentration of 500 µM, whereas tCIN and CI exhibited no significant cytotoxicity up
to a concentration of 100 µM in RAW 264.7 macrophages (Figure 4). Interestingly, a 3-week storage
(Figure 4B) slightly increased the cytotoxicity of tCIN, when compared to that observed before storage
(Figure 4A); this could be caused by the oxidation of tCIN during storage. However, 3 weeks of storage
of the CIs in a culture medium at 4 ◦C had no notable effect on cell viability. This result supported the
findings of a previous report by Yang et al. [35], who demonstrated that the cytotoxicity of a target
compound decreased after β-CD inclusion. Therefore, the tCIN and β-CD inclusion complex may
have an important role in maintaining the stability of functional foods.
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Figure 4. Cell viability. RAW 264.7 macrophages were seeded in 96-well plates for 24 h, followed
by 18 h of starvation. Cells were treated with increasing concentrations of β-CD, tCIN, and CIs
for 24 h. Cell viability was measured using the MTT assay, and quantified as a percentage (%)
of the control. MTT assays were performed at (A) week 0 and (B) after 3 weeks of storage
at 4 ◦C to evaluate the stability of CI and the effects of storage on CI. The CI was obtained
by molecular inclusion at a 1:1 molar ratio of tCIN and β-CD. Data are the mean ± standard
deviation (SD). * p < 0.05 versus the control. The different letters indicate p < 0.05 at the same
treatment concentration. β-CD, β-cyclodextrin; tCIN, trans-cinnamaldehyde; CI, tCIN and β-CD
inclusion complexes; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

2.5. Inhibition of NO Production

LPS, which is a cell wall component of Gram-negative bacteria, activates macrophages and triggers
inflammatory responses by producing pro-inflammatory cytokines and mediators. These mediators,
including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor
(TNF)-α, and interleukin (IL)-1β, can be released by various cells, including murine RAW 264.7
macrophages. Alternatively, iNOS expression and NO production are known to be beneficial in both
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acute and chronic inflammation [36]. According to Lee and Choi [29], cinnamon extracts significantly
inhibit NO production. Ho et al. [5] reported that among the major components of cinnamon,
tCIN shows the highest inhibition of NO production and iNOS expression at both the protein and
mRNA levels, at concentrations of 25–100 µM. We evaluated the effects of CIs on NO production
in LPS-induced RAW264.7 macrophages. The NO production assays were performed to determine
whether storage affected the stability of the CIs. The CIs were prepared in a culture medium and stored
at 4 ◦C, and the production of NO was determined before and after 3 weeks of storage. We evaluated
whether the storage time affected NO reduction. For this, CIs were prepared in a culture medium and
stored at 4 ◦C, and the production of NO was determined before and after 3 weeks of storage. We found
that treatment with β-CD alone had no effect on NO production induced by LPS in RAW macrophages.
In contrast, treatment with only tCIN significantly reduced NO production. Interestingly, CI treatment
had effects similar to that of treatment with tCIN alone; it resulted in reduced NO production, even after
storage of samples for 3 weeks at 4 ◦C (Figure 5).
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Figure 5. Inhibition of nitric oxide (NO) production by the trans-cinnamaldehyde (tCIN) and
β-cyclodextrin (β-CD) inclusion complex (CI). RAW 264.7 macrophages were seeded in 96-well plates
for 24 h, followed by 18 h of starvation. Cells were treated with increasing concentrations of β-CD,
tCIN, and CIs for 30 min, and were then treated with LPS for 24 h. NO production was determined
using an NO detection kit, according to the manufacturer’s protocol. NO production was determined
at (A) week 0 and (B) after 3 weeks of storage at 4 ◦C to evaluate the stability and effects of storage
on CIs. The CI was obtained by molecular inclusion at a 1:1 molar ratio of tCIN and β-CD. Data are
the mean ± standard deviation (SD). * p < 0.05 versus the control, # p < 0.05 versus LPS. The different
letters indicate p < 0.05 within the same treatment group. LPS, lipopolysaccharide.

2.6. ROS Suppression

To evaluate the antioxidant effects of the CIs, the levels of ROS were determined in LPS-treated
RAW 264.7 macrophages using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA, D-399).
The LPS-treated cells showed significantly higher levels of fluorescence than the untreated control,
and tCIN significantly reduced this effect (Figure 6). This result is similar to that reported by
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Lee et al. [11], wherein tCIN was shown to inhibit LPS-induced ROS generation in J774A.1 macrophages.
Interestingly, as shown in Figure 6B, tCIN self-inclusion in β-CD improved the ROS-reduction effect
in LPS-treated RAW 264.7 cells. At tCIN and CI concentrations above 100 µM, the LPS-induced
ROS level was reduced by approximately 5-fold (Figure 6A), indicating that CIs could be used as
potential antioxidant agents. However, additional in vitro and in vivo studies of the effects of CIs on
inflammation and oxidative stress are required. In addition, its underlying mechanisms need to be
studied further for a better understanding and elucidation of its beneficial effects.
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Figure 6. Inhibition of reactive oxygen species (ROS) production by the trans-cinnamaldehyde (tCIN)
and β-cyclodextrin (β-CD) inclusion complexes (CIs). RAW 264.7 macrophages were seeded in
96-well plates with black walls and transparent bottoms for 24 h, and then subjected to starvation
for 18 h. Cells were treated with increasing concentrations of β-CD, tCIN, and CIs for 30 min,
and then treated with LPS for 24 h. ROS levels were determined using H2DCFDA, according to the
manufacturer’s protocol. (A) The fluorescence intensity was measured using a fluorescent microplate
reader, and quantified as fold change compared to that of the control group; (B) Intensity was visualized
using a fluorescence microscope at 100×magnification. The CIs were obtained by molecular inclusion
at a 1:1 molar ratio of tCIN and β-CD. Data are the mean ± standard deviation (SD). * p < 0.05 versus
the control, # p < 0.05 versus LPS. The different letters indicate p < 0.05 within the same treatment
group. LPS, lipopolysaccharide; H2DCFDA, 2′,7′-dichlorodihydrofluorescein diacetate.

3. Materials and Methods

3.1. Materials

Murine RAW264.7 macrophages were purchased from the American Type Culture Collection
(ATCC TIB-71; ATCC, Manassas, VA, USA). Dulbecco’s modified Eagle’s medium (DMEM; low glucose,



Molecules 2017, 22, 1868 8 of 12

1000 mg/L; phenol red, LM 001-11) and fetal bovine serum (FBS; S 001-07) were purchased from
Welgene Inc. (Daegu, Korea). LPS (cat. no. L6529), tCIN (cat. no. C80687), vitamin C (cat. no. A0278),
1,1-diphenyl-2-picrylhydrazyl (DPPH; cat. no. D9132), and 2,2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) diammonium salt (ABTS; cat. no. A1888) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). β-CD (cat. no. 030-08342) was purchased from Wako Pure Chemical Industries,
Ltd. (Osaka, Japan). The nitric oxide (NO) detection kit (cat. no. ADI-917-010) was purchased from
Enzo Life Sciences (Farmingdale, NY, USA).

3.2. Sample Preparation

For in vitro experiments, tCIN, β-CD, and CI samples were prepared in distilled water (for test of
encapsulation efficiency, release study, and anti-oxidant activity) or cell culture medium (for test of
cell viability, NO production, and ROS determination). 1 mM each of β-CD (pure powder) and tCIN
(predissolved in dimethyl sulfoxide [DMSO]) were dissolved in distilled water or culture medium
using a shaking incubator at 200 rpm. For CI preparation, 1 mM β-CD (pure powder) was dissolved in
distilled water or culture medium in a shaking incubator at 200 rpm for 30 min, and tCIN was then
added to the solution at the molar ratios of 0.5:1, 1:1, 1:2. The mixture was then placed in a shaking
incubator at 200 rpm and 55 ◦C for 6 h for encapsulation by self-assembling aggregation. The CI
samples were stored at 4 ◦C. The physical mixture was obtained by pulverizing the two components
in a glass mortar, and mixing accurately weighed (1:1 molar ratio) amounts of tCIN and β-CD.

3.3. DSC Measurement

Differential scanning colorimetric (DSC) studies were performed using a DSC 200F3 apparatus
(Netzsch-Geraetebau GmbH, Selb, Germany) to confirm the formation of the CIs. β-CD, tCIN,
the β-CD-tCIN physical mixture, and CIs were analyzed. The β-CD-tCIN physical mixture was
prepared. The temperature was calibrated using indium. The samples were weighed with an accuracy
of 3 ± 0.01 mg and hermetically sealed in an aluminum pan. Each sample was scanned from 20 to
300 ◦C, with the heating set at 10 ◦C/min under nitrogen gas injection.

3.4. Encapsulation Efficiency and Release Study

The encapsulation efficiency (EE%) of tCIN was determined using a UV/VIS spectrophotometer
(OPTIZEN, Mecasys Co., Daejeon, Korea). To extract free tCIN, n-hexane (9 mL) and the CIs (1 mL)
were mixed together and centrifuged at 4000 rpm for 10 min. The extracted free tCIN in the supernatant
of n-hexane was determined using an ultraviolet (UV)/visible (VIS) spectrophotometer at 285 nm.
The EE% was indirectly calculated using a calibration curve constructed from the values of a series of
tCIN solutions in n-hexane with standard concentrations. The EE% was then obtained as a percentage
from the following equation:

Encapsulation efficiency (%) =
Total amount of tCIN [g]− Free amount of tCIN [g]

Total amount of tCIN [g]
(1)

The CIs were stored at different temperatures to determine the amount of tCIN released. The tCIN
released from the CIs was determined at intervals using a UV/VIS spectrophotometer, according to the
protocol followed by Chun et al. [37], with modifications. The CIs were stored at 4 ◦C in a refrigerator
and at 25 and 37 ◦C in an incubator. A 1-mL aliquot of the tCIN emulsion was withdrawn at week 4,
and the amount of tCIN extracted was measured as described above. The amount of tCIN released
was expressed as a percentage of the initial total amount of tCIN.

3.5. Anti-Oxidative Activity

The antioxidant capacity of the CIs was measured using the DPPH free radical-scavenging and
ABTS radical-scavenging capacity methods according to Brand-Williams et al. [38], and Re, et al. [39],
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respectively. Vitamin C (ascorbic acid, 1 mg/mL) was used as a positive control, and the free
radical-scavenging capacity was expressed as a percentage. All determinations were performed
at least in triplicate.

3.6. Cell Culture

Murine RAW264.7 macrophages were subcultured to 70–80% confluence every 2–3 days in
100-mm dishes (Falcon, Bedford, MA, USA) in DMEM supplemented with 10% FBS, and were
incubated in a humidified atmosphere containing 5% CO2 and 95% air at 37 ◦C. For the experiments,
the cells were seeded in 96-well plates for cell cytotoxicity, reactive oxygen species (ROS), and nitric
oxide (NO) determination in DMEM containing 10% FBS for 24 h. The day before treatments, all cells
were starved in DMEM containing 1% FBS overnight, and then treated with β-CD, tCIN, or CIs with
or without 1 µg/mL LPS for further experiments.

3.7. Cell Viability

The protective effects of tCIN and β-CD CIs were evaluated in LPS-treated RAW cells using
a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The β-CD, tCIN,
and CI samples were prepared and stored at 4 ◦C for 3 weeks to evaluate the effect of their stability on
cell viability. Cell viability experiments were performed using fresh samples and samples stored for
3 weeks. RAW cells (4 × 104 cells/well) were seeded in 96-well plates for 24 h and then starved in
DMEM supplemented with 1% FBS overnight before treatment. The cells were treated with different
concentrations of β-CD, tCIN, and CIs for 24 h, and cell viability was assessed using the MTT assay.
The absorbance was measured using an enzyme-linked immunosorbent assay (ELISA) plate reader
(Thermo Scientific Multiskan GO microplate spectrophotometer; Thermo Scientific, Lafayette, CO,
USA) at 540 nm, and cell viability was determined as a percentage of the control cells.

3.8. NO Production

The cells were prepared as described for the MTT assay. RAW264.7 macrophages (4 × 104 cells/well)
were seeded in 96-well plates for 24 h and then starved in DMEM supplemented with 1% FBS overnight
before treatment. After starvation, the cells were pre-incubated with different concentrations of β-CD,
tCIN, and CIs for 30 min, and then stimulated with LPS (1 µg/mL). After 24 h, the supernatant
was collected, and NO production was determined using an NO detection kit, according to the
manufacturer’s protocol.

3.9. ROS Determination

The level of intracellular ROS induced by LPS was determined using 2′,7′-dichloro-dihydrofluorescein
diacetate (H2DCFDA, D-399), also known as dichlorofluorescin diacetate (Life Technologies Korea
LLC, Seoul, Korea), according to the manufacturer’s protocol. Briefly, RAW cells were seeded in
black-walled, transparent-bottom 96-well plates (Thermo Scientific Nunc, Rochester, NY, USA) for 24 h
and starved overnight before treatment, as described above. The cells were treated with 20 µM
H2DCFDA for 1 h in a humidified cell culture incubator and washed twice with phosphate-buffered
saline (PBS). H2DCFDA fluorescence was analyzed using a Spectra Max M2e spectrophotometer
(Molecular Devices, Bath, UK), at an excitation wavelength of 485 nm, and the fluorescein signal
was detected at an emission wavelength of 535 nm. The relative ratio of each sample intensity was
calculated as a percentage of the control group value. Fluorescence images were obtained using
a Nikon Eclipse Ti fluorescent microscope (Nikon Inc., Tokyo, Japan) at 100×magnification.

3.10. Statistical Analysis

Data are presented as the mean± standard deviation (SD). The significance of differences between
groups was assessed using multiple comparisons and analysis of variance (ANOVA), followed by
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the Tukey honest significant difference (HSD) test. Differences with P values of less than 0.05 were
considered statistically significant.

4. Conclusions

In this study, tCIN was solubilized by formulating it as an inclusion complex with β-CD polymer
using molecular inclusion techniques. The encapsulation efficiency was confirmed to be 85%, and high
retention of tCIN was maintained for 4 weeks. In addition, tCIN self-inclusion in the β-CD polymer
did not elevate the toxicity to more than that of tCIN alone. In fact, the CIs appeared to prevent
the oxidation of tCIN during prolonged storage. NO assays revealed that the β-CD self-inclusion
method did not affect the NO-reducing effects of tCIN, even after 3 weeks of storage. Furthermore,
the results of DPPH and ABTS radical-scavenging activity assay, and the DCF-DA assay showed
that β-CD self-inclusion had no negative effects on the anti-oxidative properties of tCIN. Collectively,
these results indicated that tCIN self-inclusion in β-CD could play an important role in developing
nano-functional food applications.
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