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Acute promyelocytic leukemia (APL) is charac-
terized by nonrandom reciprocal translocations 
that always involve the retinoic acid receptor α 
(RARα) gene on chromosome 17. RARα fuses 
to the promyelocytic leukemia (PML) gene in the 
vast majority of APL cases (1, 2). These chro-
mosomal translocations generate X-RARα and 
RARα-X fusion proteins. X-RARα fusion 
proteins are oncogenic in vivo (2–6).

APL is characterized by a distinctive block 
of diff erentiation at the promyelocytic stage of 
mye loid development and by unique sensitiv-
ity to retinoic acid (RA) treatment (1, 2). RARα 
binds to retinoic acid response elements (RARE) 
as a heterodimer with RXRα (1). In the absence 
of RA, the RARα/RXRα heterodimer inhibits 
transcription through recruitment of histone 
 deacetylases (HDACs; e.g., HDAC1),  nuclear 

receptor corepressors such as N-CoR or SMRT, 
and DNA methyltrasferases (DNMT) (7). In the 
presence of a physiological concentration of 
RA (10−8 M), the RARα/RXRα heterodimer 
 dissociates from the HDAC complex and  recruits 
transcriptional coactivators (8). In contrast, at 
physiological RA concentration, PML-RARα 
protein acts as a dominant negative (DN) RARα 
by forming aberrant complexes with HDAC and 
DNMT through the PML moiety of the fusion 
protein (4, 8–11). At a pharmacological dose of 
RA, PML-RARα releases the HDAC complex 
and activates transcription, thus mimicking 
RARα. Point mutations have been reported 
in the RARα ligand-binding domain of PML-
RARα in cases with acquired resistance to RA 
(12). Collectively, these data suggest that aber-
rant recruitment of HDAC to RARE represents 
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The promyelocytic leukemia–retinoic acid receptor 𝛂 (PML-RAR𝛂) protein of acute promy-

elocytic leukemia (APL) is oncogenic in vivo. It has been hypothesized that the ability of 

PML-RAR𝛂 to inhibit RAR𝛂 function through PML-dependent aberrant recruitment of 

histone deacetylases (HDACs) and chromatin remodeling is the key initiating event for 

leukemogenesis. To elucidate the role of HDAC in this process, we have generated HDAC1–

RAR𝛂 fusion proteins and tested their activity and oncogenicity in vitro and in vivo in 

transgenic mice (TM). In parallel, we studied the in vivo leukemogenic potential of domi-

nant negative (DN) and truncated RAR𝛂 mutants, as well as that of PML-RAR𝛂 mutants 

that are insensitive to retinoic acid. Surprisingly, although HDAC1-RAR𝛂 did act as a bona 

fi de DN RAR𝛂 mutant in cellular in vitro and in cell culture, this fusion protein, as well as 

other DN RAR𝛂 mutants, did not cause a block in myeloid differentiation in vivo in TM and 

were not leukemogenic. Comparative analysis of these TM and of TM/PML−/− and p53−/− 

compound mutants lends support to a model by which the RAR𝛂 and PML blockade is 

necessary, but not suffi cient, for leukemogenesis and the PML domain of the fusion protein 

provides unique functions that are required for leukemia initiation.
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a key event in APL leukemogenesis. However, the PML-
RARα oncoprotein can also interfere with the function of the 
remaining PML allele through heterodimerization (1, 2), and 
it remains to be determined to what extent each of these pro-
cesses contributes to APL leukemogenesis.

RESULTS AND D I S C U S S I O N 

To determine whether aberrant HDAC-dependent tran-
scriptional repression is necessary and suffi  cient for leuke-
mogenesis, we generated transgenic mice harboring the 
following: (a) DN RARα mutants along with their PML-
RARα counterpart and (b) an artifi cial HDAC–RARα 
 fusion protein along with its enzymatically inactive counter-
part. We also studied in vivo an RARα truncated mutant 
corresponding to the moiety of RARα invariably shared by 
all the APL fusion proteins (1, 2) (Fig. 1 A).

RARαE carries a glycine (G) to glutamate (E) substitu-
tion at amino acid 303 in the RARαE domain that is respon-
sible for ligand binding. This mutation leads to RA resistance 
and in vivo photocopies the RARα KO phenotype (13). 
RARαM4 carries a leucine (L) to proline (P) substitution at 
amino acid 398 in domain E; and PML-RARαM4 harbors 
the same mutation found in RARαM4 (14). This mutation 
leads to RA-insensitive transcriptional repression (14).

HDAC1-RARα expresses the full-length HDAC1 cod-
ing sequence fused to RARα. HDAC1 is part of the aberrant 
PML-RARα transcription (4, 9, 10). mHDAC1-RARα 
carries a point mutation that abrogates HDAC1 enzymatic 
activity (histidine to phenylalanine at HDAC1 amino acid 
199) (15). ∆RARα carries a deletion that removes domain 
A from RARα. This deletion is identical to the one  observed 
in the X-RARα fusion proteins and removes a  domain 
 responsible for transcriptional activation function (1, 16). 
These constructs were cloned in the human cathepsin-G 
(hCG)  minigene (3, 4) and used to generate transgenic lines 
(Fig. 1, B and C).

We assessed whether HDAC1-RARα displayed the dis-
tinctive features of the X-RARα fusion proteins. We found that 
HDAC1-RARα can homodimerize and  heterodimerize with 
RXRα within the cell (Fig. 2, A and B). HDAC1-RARα 
can eff ectively bind to the DR5  consensus sequence. Electro-
mobility shift analysis (EMSA) produced a single HDAC1–
RARα protein DNA complex, whereas HDAC1-RARα 
with RXRα formed two  complexes (Fig. 2 C). These bands 
were abolished by the addition of an excess of unlabeled DR5 
and super shifted with specifi c antibodies (Fig. 2 C). These 
data demonstrate that HDAC1-RARα forms homo- and, 
and more  effi  ciently, heterodimers that are able to bind to the 
DR5  consensus sequence, as previously demonstrated in the 
case of other APL fusion proteins (17, 18).

Next, we investigated whether HDAC1-RARα acts 
as a transcriptional repressor. Vectors expressing RARα, 
PML-RARα, PLZF-RARα, HDAC1-RARα, mHDAC1-
RARα, and HDAC1 were transfected into 293T cells 
 together with RARβ-luc, a luciferase reporter construct 
containing the RARα-responsive promoter region of 

RARβ. Luciferase assays demonstrated that HDAC1-RARα 
acted as a potent transcriptional repressor (Fig. 3 A). As ex-
pected as the result of disruption of HDAC1 enzymatic 
 activity, mHDAC1-RARα showed a much weaker tran-
scriptional repression. HDAC1-RARα, PLZF-RARα, and 
PML-RARα repressed transcription equally well in the 
presence of RA, whereas mHDAC1-RARα did not (Fig. 3 A). 
HDAC1-RARα, therefore, acts as an aberrant transcrip-
tional repressor and this property depends on the HDAC1 
enzymatic activity.

Figure 1. Generation of the mutant RAR𝛂 transgenic mice. 

(A) Mutant RARα cDNAs were cloned into the SalI site of the hCG 

 expression cassette. Shaded boxes: PML and HDAC1 sequences. Capital 

letters: RARα domains. A schematic representation of the hCG is 

 provided at the bottom of panel A. The regions fl anking the 5′ and 3′ 
of the polylinker are indicated (5′ FL and 3′ FL, respectively). The 5′ FL 

region comprises the hCG promoter. White boxes: exons. Restriction 

endonuclease sites are indicated. CT: probe for Southern blotting. 

(B) Southern blot of genomic DNA from transgenic founders digested 

with EcoRI and hybridized with probe CT. The transgene examined is 

indicated on the left side of the panel. Probes for the single copy genes 

p62DOK or PLZF were used as internal standards. WT, wild type. The num-

bers above the individual panels indicate the founder lines. (C) RT-PCR 

analysis of RARα mutant mRNA extracted from bone marrow cells. 

RT, reverse transcriptase.
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Chromatin immunoprecipitation (ChIP) experiments on 
the promoter of the cytoplasmic retinoic acid binding protein II 
(CRABPII) gene revealed that HDAC1-RARα inhibited 
acetylation of histone H3 (Fig. 3 B). HDAC1 and HDAC1-
RARα both inhibited histone H3 and H4 acetylation by the 
bromodomain of the p300 protein (19). This inhibition was 
partially abrogated with mHDAC1-RARα (Fig. 3 C). Thus, 
HDAC1-RARα displays HDAC activity.

Because both PML-RARα and PLZF-RARα block 
TGFβ1 and vitamin D3–induced cellular diff erentiation of 
U937 cells (20, 21), we tested whether constitutive expres-
sion of HDAC1-RARα aff ected cellular diff erentiation upon 
TGFβ1 and vitamin D3 treatment. We found a signifi cant 
reduction in the induction of the myeloid marker CD11b 
in cells transduced with MIGR1-PLZF-RARα (P = 0.01, 
 calculated by the Student’s t test) and MIGR1-HDAC1-
RARα (P = 0.02, calculated by the Student’s t test), whereas 
MIGR1-mHDAC1-RARa and MIGR1-HDAC1 exerted 
no signifi cant eff ect on myeloid diff erentiation (Fig. 3 D). 
Collectively, these data suggest that HDAC1-RARα shares 
many of the features of the X-RARα protein, including its 
ability to act as a transcriptional repressor of RARα through 
HDAC activity.

We derived six ∆RARα, six RARαE, four RARαM4, 
fi ve PML-RARαM4, three HDAC1-RARα, and three 
mHDAC1-RARα hCG-transgenic lines (Figs. 1 B and 4 A) 
(3, 4). The transgene was invariably expressed (Fig. 1 C). 
Leukemia was observed in three PML-RARαM4 transgenic 
lines. Latency was 8–9 mo (Fig. 4 A), in agreement with 
what we observed in PML-RARα transgenic lines (3). Strik-
ingly, only 1 of the RARαE transgenic lines out of the 19 
lines expressing DN RARα mutants (∆RARα, RARαM4, 
RARαE, and HDAC1-RARα) developed leukemia after a 
long latency (18–19 mo) and at low penetrance (Fig. 4, A–C). 
Morphological analysis of the leukemic bone marrows and 
spleens revealed the presence of blasts with promyelocytic 
features. Flow cytometric analysis with Mac-1, Gr-1, c-kit, 
B220, CD3, and Ter119 cell surface markers of the  confi rmed 
the diagnosis of APL (Fig. 4, B and C, and not  depicted). 
RARaE-induced leukemias were transplantable in secondary 
recipients and leukemic mice showed no response to RA 
treatment as compared with PML-RARα leukemic mice 
(Fig. 4 D) (mean survival time: 10.4 d; 95% confi dence 
interval = 1.9–18.9 d vs. mean survival time: 44.3 d; 95% 
confi dence interval = 36.7–51.9 d) (22).

The RARα gene is invariably involved in the APL-
 associated chromosomal translocations (1, 2). Therefore, 
 alteration of RARα pathway has been thought to play a 
central role in APL pathogenesis. Indeed, RA inhibits the 
proliferation of hematopoietic precursors and promotes the 
terminal granulocytic diff erentiation of granulocyte/mono-
cyte progenitors and multipotent erythroid/monocytic cells. 
 Vitamin A defi ciency, unligated RARα, RARα antagonist, 
or DN RARα can block myeloid diff erentiation (23). 
Moreover, the X-RARα fusion proteins can block diff er-
entiation when overexpressed in myeloid leukemia cell lines 

Figure 2. Biochemical properties of HDAC1-RAR𝛂. (A) HDAC1-RARα 

homo- and heterodimerizes in vivo. 293T cells were transfected as indi-

cated. Immunoprecipitation (IP) was performed with the anti-Flag antibody 

and Western blots with the anti-Xpress antibody (top). The blot was stripped 

and rehybridized with anti-Flag antibody (bottom). Arrows indicate specifi c 

bands; (B) HDAC1-RARα heterodimerizes with RXRα within the cell. 293T 

cells were transfected as indicated. IP was performed with anti-Flag and 

immunoblot blot analysis was performed with an anti-RXRα antibody (top). 

The blots were stripped and rehybridized with anti-Flag antibody (bottom). 

Flag-RARα was used as a positive control. (C) HDAC1-RARα homodimers 

and HDAC1-RARα/RXRα bind to DR5 in vitro. (top) In vitro translated pro-

teins were incubated with 32P-labeled DR5 probe as indicated and resolved 

by electrophoresis. Competition and bandshift experiments were performed 

as indicated (bottom). Arrows indicate specifi c protein–DNA complexes. 

HR: HDAC1-RARα, hom: homodimer, het: heterodimer, *, supershifted band 

with anti-RXRα antibody; **, nonspecifi c bands.
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such as U937 cells and interference with PML function 
seems not to be required for this function (20, 21). These 
observations support the notion that DN blockade of the 

RARα pathway is crucial for APL leukemogenesis. Our in 
vivo genetic analysis challenges this notion, allowing us to 
reach three major conclusions.

Figure 3. Biological properties of HDAC1-RAR𝛂. (A) HDAC1-RARα 

is a transcriptional repressor. Luciferase assay in transfected 293 cells. 

(black bars) RA-treated cells; (white bars) untreated cells. Luciferase activi-

ties were expressed relative to the value of lysates transfected with the 

reporter alone. (B) HDAC1-RARα binds to RARE and deacetylates histone 

H3. (top) ChIP assay on lysate of transiently transfected 293T cells with the 

indicated antibodies. PCR was performed with RARE specifi c primers. (mid-

dle) PCR analysis performed with RARE-specifi c primers on the cell lysates 

was used for ChIP assay. (bottom) The intensity of the bands was deter-

mined by densitometry. The value obtained from the lysate transfected with 

the empty vector is expressed as 1. (C) HDAC1-RARα represses the acetyla-

tion of  histone H3 and H4 induced by BrHAT. 293T cells were cotransfected 

as indicated and the lysate was immunoblotted. The same membrane was 

hybridized and stripped in series with the indicated antibodies. The arrows 

indicate transfected Flag-tagged proteins (bottom). The ratio of acetylated/

total histone levels was assessed by densitometry and provided by the his-

togram at the bottom. The value obtained from the lysate transfected with 

pCMV alone is expressed arbitrarily as 100%. The value for acetylated 

H3/total H3 and acetylated H4/total H4 is provided. (D) HDAC1-RARα inhibits 

the differentiation of U937. Cells were retrovirally transduced as indicated. 

Transduced cells were isolated by cell sorting and cultured with or without 

2 ng/ml of TGFβ1 in addition to 500 ng/ml of vitamin D3 for 96 h. Expression 

of CD11b was detected by fl ow cytometry. (black bars) percentage of 

treated cells expressing CD11b; (white bars) untreated cells. After treatment, 

CD11b expression is signifi cantly reduced in PLZF-RARα (P = 0.01) and 

HDAC1-RARα (P = 0.02). Error bars indicate standard deviations.
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The fi rst major conclusion is that HDAC1-dependent 
DN blockade of RARα function is neither suffi  cient to cause 
leukemia nor to block myeloid diff erentiation in vivo. The 
fact that only PML-RARα and PML-RARαM4 (which 
 retain the X moiety), but none of the other DN RARα 
 mutants triggered leukemia in multiple transgenic lines dem-

onstrates that inhibition of RARα per se is not suffi  cient to 
initiate leukemogenesis. Our experiments do not rule out 
that HDAC-chimeric constructs other than HDAC1-RARα 
may display a leukemogenic eff ect. Indeed, corepressors do 
not solely recruit HDAC1, but also other types/classes of 
 histone deacetylases, and PML interacts with both HDAC1 

Figure 4. Characteristics of leukemias induced by PML-RAR𝛂M4 

and RAR𝛂E. (A) Schematic representation of transgenic lines and respec-

tive leukemia incidence. (B) Peripheral blood (PB) and bone marrow cells 

(BM) from representative leukemic RARαE, PML-RARαM4, and PML-RARα 

transgenic mice stained with the Wright-Giemsa stain (×1,000). Note the 

presence of leukemic blasts in both BM and PB. (C) Flow cytometric analy-

sis of BM cells from representative leukemic RARαE, PML-RARαM4, and 

PML-RARα transgenic mice. Anti–Mac-1 and c-kit antibodies were 

used. (green line) Isotypic control. The percentages of positive cells are 

given in the respective histograms. (D) Leukemia induced by RARαE is 

resistant to RA treatment in vivo. Percentage of leukemic cells present in 

the PB of two RARαE transgenic mice (blue) and three nude mice (red) 

transplanted with leukemic cells obtained from RARαE transgenic mice. 

The horizontal axis indicates the length of treatment in days. Crosses 

indicate the time of death of each animal. RA had no impact on the 

 percentage of leukemic cells present in the PB.
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and 2. However, prior observations support this conclusion 
as PLZF-RARα, transgenic mice develop leukemia, but not 
a block of myeloid diff erentiation, whereas RARα−/− mice 
display a normal myeloid diff erentiation (4, 24).

The second major conclusion is that only one out of the 
six RARαE lines developed APL after a long latency (1.5 yr) 
with very low incidence. This observation strongly suggests 
that blockade of RARα function is necessary, but not suffi  -
cient, for leukemogenesis. Interestingly, these leukemias were 
resistant to RA, demonstrating that RARαE functions in 
these leukemic cells as an RA-insensitive receptor.

The third major conclusion is that PML moiety is impor-
tant in leukemogenesis not solely because it permits aberrant 
recruitment of HDAC1 and HDAC2, DNMT or homodi-
merization (11, 18, 25, 26) but also because it interferes 
with the tumor suppressive function of the wild-type 
PML gene product. Indeed, only PML-RARα and PML-
RARαM4 lead to a DN disruption of the PML-NB both 
in vitro and in vivo (unpublished data). The critical role 
of PML functional inactivation is further underscored 
by the fact that APL is dramatically accelerated in PML-
RARα/PML−/− mice (27). In addition, through the PML/X 
moiety,  the fusion protein acquires aberrant gain-of-function  
properties (e.g., aberrant DNA binding activity) (28). 
Indeed, it has been shown that PML-RARα homodimer 
binds specifi c DNA sites that are not preferentially recog-
nized by the RARα/RXRα heterodimer, thus suggesting 
the possibility that X-RARα may exert oncogenic func-
tions that are not derived from its DN activity against the 
RARα/RXRα heterodimer (28, 29). This is  supported 
by the fact that neither RARαM4 nor RARαE  triggered 
leukemia even in the absence of PML: MRP8-RARαM4/
PML−/− and MRP8-RARαE/PML−/− mice did not de-
velop leukemia during a 12-mo follow up (unpublished 
data and Kogan, S., personal communication). Interestingly, 
RARαM4 did not trigger leukemia in the absence of p53, 
either; MRP8-RARαM4/p53−/− compound mutants succu-
mbed to lymphoma with incidence and onset similar to p53 
null mice (Kogan, S., personal communication).

We propose a model by which the combined inactivation 
of the X and RARα pathways are both required, but not 
 suffi  cient, for tumor initiation. PML-RARα is bestowed 
with additional PML-dependent functional gains that criti-
cally contribute toward full-blown transformation. Never-
theless, additional genetic abnormalities are required for 
leukemogenesis even in the presence of the full-length onco-
genic fusion protein, as strongly suggested by the long leuke-
mia latency observed in any of the X-RARα transgenic 
models and the recurrent chromosomal abnormalities that 
the leukemic blasts from these models invariably harbor at 
presentation (30, 31).

On the basis of this model, it remains to be explained why 
RA and HDAC inhibitors are eff ective in APL treatment. 
In this respect, it is tempting to speculate that the blockade of 
the RARα pathway, while not suffi  cient for  leukemia initia-
tion, may be necessary for leukemia maintenance.

MATERIALS AND METHODS
Cells and expression vectors. Cells were obtained from the American Type 

Culture Collection. Vitamin D3 was obtained from Sigma-Aldrich and TGFβ1 

was obtained from PeproTech. Plasmids expressing RARα, RXRα, RARαM4, 

PML-RARα, PML-RARαM4, PLZF-RARα, HDAC1-FLAG (provided by 

P.A. Marks and V. Richon, Memorial Sloan Kettering Cancer Center, New 

York, NY), His-BrHAT (provided by A. Tomita, Nagoya University, Nagoya 

Aichi, Japan), and RARαE have been described previously (4, 13, 14, 19, 32). 

pSG5-HDAC1-RARα carries the full-length HDAC1 gene fused in frame 

with the full-length RARα. Mutant HDAC1-RARα (mHDAC1-RARα) 

was generated by site-directed mutagenesis. pSG5-∆RARα was generated 

by PCR. pCMV-PML-RARα, pCMV-HDAC1-RARα, pCMV-mHDAC1-

RARα, and pCMV-HDAC1 are pCMV-Tag 2B (FLAG-tagged) derivative 

(Stratagene). pCDNA3.1/His-HDAC1-RARα, pCDNA3.1/His-RXR, 

pCDNA3.1/His-RARαE, and pCDNA3.1/His-RARαM4 were obtained by 

cloning the respective cDNAs into pCDNA3.1/His C (Invitrogen). To gener-

ate retroviral constructs, Flag-tagged RARα, PLZF-RARα, HDAC1-RARα, 

mHDAC1-RARα, and HDAC1 were cloned into pMIGR1. The sequence of 

each vector was confi rmed sequencing.

Transgenic mice. RARα mutants were cloned into the SalI site of the 

hCG minigene vector (3, 4). All constructs were sequenced. Egg injection was 

performed as described previously (3, 4). The mouse studies were  approved 

and overseen by the Institutional Animal Care and Use Committee.

Antibodies, immunoprecipitations, and Western blot analyses. 

We used the antibodies specifi c for: RARα (C-20) and RXRα (D-20) 

(Santa Cruz Biotechnology, Inc.), histone H3, H4, acetylated histone H3 and 

H4 (Upstate Biotechnology); PML (Chemicon International), M2 anti-Flag 

(Sigma-Aldrich), and anti-Xpress (Invitrogen).

Gel shift assay. RARα, RXRα, and HDAC1-RARα proteins were 

 generated in vitro by TNT Coupled Reticulocyte Lysate Systems  (Promega). 

Protein synthesis was confi rmed by Western blot. Aliquots were used for gel 

shift analysis with the 32P-labeled DR5 oligonucleotide: 5′-G G G A C A A A G-

G T C A A C G A A A G G TCAGAGCCC-3′ (29). For competition assays, we 

used 100-fold molar excess of unlabeled DR5. For supershift experiments, 

we used anti-RARα, anti-RXRα antibodies, or normal rabbit IgG (Santa 

Cruz Biotechnology, Inc.).

Luciferase assay. 293T cells were cotransfected with RARβ-luc and 

pRL-TK (encoding fi refl y and renilla luciferases, respectively) and the 

 relevant pSG5 expression constructs using Eff ectene Transfection Reagent 

(QIAGEN). Cultures were treated with 10−6 M of RA 24 h after transfection. 

Luciferase and renilla assays were done 48 h after transfection.

Chromatin immunoprecipitation (ChIP) assay. We used the ChIP 

 assay kit (Upstate Biotechnology).

Retroviral transduction and fl ow cytometry analysis of U937 cells. 

Recombinant retroviruses were used to transduce U937 cells by spinocula-

tion for three consecutive days. GFP-positive cells were sorted with MoFlo 

(DakoCytomation). Expression of mutant RARα was confi rmed by 

Western blot. CD11b was quantifi ed by FACScan (BD Biosciences). These 

 experiments were repeated fi ve times. The unpaired Student’s t test was used 

to compare CD11b expression between cells transduced with the MIGR1 

vector and the ones transduced with MIGR1 vectors expressing PLZF-

RARα, PML-RARα, HDAC1-RARα, and mHDAC1-RARα.

Southern blot analysis. Southern blots were done as described using 

probes for the hCG, p62DOK1 and PLZF genes (3, 4).

RT-nested PCR. Total RNA was extracted from mouse bone marrow with 

TRIzol (Invitrogen) and treated with DNase I. RT was performed using 2 μg 

of total RNA with SuperScript First-Strand Synthesis System (Invitrogen). 

1 μl of cDNA was used for nested PCR.
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Follow up of transgenic mice. Mice were monitored and diagnosed with 

leukemia as described previously (24, 27). Diagnosis was confi rmed by mor-

phological and fl ow cytometric analysis of bone marrow cells with Mac-1 

(CD11b), Gr-1, c-kit (CD117), Sca-1, B220, CD3, and Ter119 antibodies 

(BD Biosciences).

Bone marrow transplants in nude mice and ATRA treatment. 

Leukemic cells were obtained from bone marrow and spleens of leukemic 

RARαE TM. 4–8-wk-old Nu/J Hfh 11nu nude mice were injected with 

2 × 106  leukemic cells intravenously. Transplanted nude mice (NM) were 

bled once a week. The leukemic TM and the NM that developed leukemia 

after transplantation received intraperitoneal injections of 1.5 μg/g of RA 

daily (22).
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