
Introduction

The pathophysiological concept of vascular headaches is
based on the reasoning that changes in vessel diameter or
gross changes in cerebral blood flow trigger the pain and
could, in part, explain the mechanism of action of vaso-
constrictor drugs, such as ergotamine [1]. Previous region-
al cerebral blood flow (rCBF) studies have emphasised a

dysfunction of the cerebrovascular regulation in headache,
while, until about 10 years ago the central processing of
headache was only marginally studied [2]. Insights into the
fundamental physiology of these syndromes have been
limited by the lack of methods to visualise the pathophys-
iological background of headache and to examine its
source. Functional neuroimaging of patients has however
revolutionised this area and provided unique insights into
some of the commonest maladies in man.
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Abstract The neuroimaging of
headache patients has revolutionised
our understanding of the pathophysi-
ology of primary headaches and pro-
vided unique insights into these syn-
dromes. Modern imaging studies
point, together with the clinical pic-
ture, towards a central triggering
cause. The early functional imaging
work using positron emission
tomography shed light on the gene-
sis of some syndromes, and has
recently been refined, implying that
the observed activation in migraine
(brainstem) and in several trigemi-
nal-autonomic headaches (hypothal-
amic grey) is involved in the pain
process in either a permissive or
triggering manner rather than simply
as a response to first-division noci-
ception per se. Using the advanced
method of voxel-based morphome-
try, it has been suggested that there

is a correlation between the brain
area activated specifically in acute
cluster headache – the posterior
hypothalamic grey matter – and an
increase in grey matter in the same
region. No structural changes have
been found for migraine and med-
ication overuse headache, whereas
patients with chronic tension-type
headache demonstrated a significant
grey matter decrease in regions
known to be involved in pain pro-
cessing. Modern neuroimaging thus
clearly suggests that most primary
headache syndromes are predomi-
nantly driven from the brain, activat-
ing the trigeminovascular reflex and
needing therapeutics that act on both
sides: centrally and peripherally.
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Diagnostic imaging

The diagnosis of primary headaches is exclusively a clini-
cal task. Population-based findings suggest that some
patients with migraine – with and without aura – are at an
increased risk for subclinical lesions in certain brain areas
[3, 4], which was also suggested by a meta-analysis,
demonstrating that subjects with migraine are at a higher
risk of having white matter lesions on magnetic resonance
images than those without migraine [5]. Whether or not this
is clinically relevant, until today no single instrumental
examination is able to define, ensure or differentiate idio-
pathic headache syndromes. However, in the clinical set-
ting, the use of neuroimaging (CCT, MRI, MR angiogra-
phy, etc.) in headache patients varies widely. Recently, an
EFNS Task Force evaluated (amongst other instrumental
examination tools) the usefulness of imaging procedures in
non-acute headache patients on the basis of evidence from
the literature [6]. Following these recommendations, in
adult and paediatric patients with migraine with no recent
change in attack pattern, no history of seizures and no other
focal neurological signs or symptoms, the routine use of
neuroimaging is not warranted. In patients with atypical
headache patterns, a history of seizures and/or focal neuro-
logical signs or symptoms, magnetic resonance imaging
(MRI) may be warranted. Regarding positron emission
tomography (PET) and functional MRI, they are rated as of
little or no value in the clinical setting, but have vast poten-
tial for exploring the pathophysiology of headaches and the
effects of pharmacological treatment [6].

Functional neuroimaging in experimental headache

To understand the possible impact of functional studies in
primary headache such as migraine and cluster headache,
the neuroimaging pattern of activation in experimental
headache needs to be established. In a PET study on
experimental head pain [7], seven healthy male volunteers
without a history of headache were studied during an
acute pain state evoked by injecting a small amount of
capsaicin subcutaneously into the forehead.

During the acute pain state compared to the resting
state, increases in rCBF were found bilaterally in the ante-
rior insula, the contralateral thalamus, the ipsilateral anteri-
or cingulate cortex and in the cerebellum bilaterally.
Activation of the anterior cingulate cortex has been repeat-
edly reported in PET studies on the sensation of somatic or
visceral pain and attributed to the emotional response to
pain [8–11]. Activations in the insula have been demon-
strated in previous studies following application of heat [9,
12, 13], subcutaneous injection of ethanol [14], somatosen-

sory stimulation [15], and during cluster headache [8] and
atypical facial pain [16]. Given its anatomical connections,
the insula has been suggested as a relay station for sensory
information into the limbic system and is known to play an
important role in the regulation of autonomic responses
[17]. The thalamus is a site where activations would most
be expected in the acute pain state. Activation of the con-
tralateral thalamus due to pain is known from experimental
animals [18] and functional imaging studies in humans [9,
11]. Figure 1 outlines the above-mentioned regions gener-
ally activated in functional imaging studies on pain, the so-
called “pain-matrix”.

More importantly, in comparison to the PET study on
spontaneous migraine [21], no brainstem activity was
found during the acute pain state compared to the resting
state. Also, no hypothalamic activation was seen, as is
seen in nitroglycerin-induced cluster headache [22]. This
confirms that the activations seen in these primary
headache syndromes are specific to the disease.

Neuroimaging in migraine

Migraine: the aura

In up to 15% of cases [23], the migraine headache is pre-
ceded by a visual phenomenon, typically jagged zig-zag

Fig. 1 The pain matrix mainly consists of the thalamus (Th), the
amygdala (Amyg), the insula cortex (Insula), the supplementary
motor area (SMA), the posterior parietal cortex (PPC), the pre-
frontal cortex (PFC), the cingulate cortex (ACC), the periaqueduc-
tal grey (PAG), the basal ganglia and cerebellar cortex (not shown)
and the primary (S1) and secondary (S2, not shown) sensory cor-
tex. For review see Refs. [19, 20]
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lines, that moves slowly across the visual field, known as an
aura. Cortical spreading depression (CSD) of Leao [24] has
been suggested to underlie migraine visual aura, based on
the slow spread of clinical and electrophysiological events
in animal experiments [25, 26]. However, it has been chal-
lenging to test this hypothesis in human cerebral cortex. The
pioneering work of Olesen and colleagues [27–29] using
single photon emission computed tomography (SPECT)
revealed a focal reduction of rCBF for migraine attacks with
aura, usually in the posterior parts of one hemisphere. These
changes were produced by carotid angiography, but similar
changes have been seen in spontaneous attacks with SPECT
[30], PET [31] and perfusion-weighted MRI [32].

The early depolarising or activation phase of experi-
mental spreading depression, however, is associated with
a transient but pronounced cerebral blood flow increase
that precedes spreading hypoperfusion. This typical
hyperperfusion at the front of the wave has been described
in animal experiments [25, 26], but was not detected in
early work using SPECT. One explanation is the spatial
and temporal resolution of SPECT-CBF measurements.

Using MRI-BOLD of visually triggered headache in
patients with migraine, Cao et al. confirmed previous
SPECT reports that CSD-like phenomena can be seen with
neuroimaging techniques. They concluded that at least
visually triggered headache in patients with migraine is
accompanied by spreading suppression of initial neuronal
activation and increased occipital cortex oxygenation [33].

In a recent study, using high-field functional MRI dur-
ing visual aura in three subjects, blood oxygenation level-
dependent (BOLD) signal changes were demonstrated to
be time-locked to onset of the aura [34]. Initially, a focal
increase in BOLD signal developed within extrastriate
cortex. This BOLD change progressed contiguously and
slowly over the occipital cortex, congruent with the
retinotopy of the visual percept. Following the same
retinotopic progression, the BOLD signal then dimin-
ished, as did the BOLD response to visual activation.
Changes in occipital blood flow have also been reported
using PET [35]. Together, these imaging data strongly
suggest that migraine aura is not evoked by ischaemia, but
is more likely due to an electrophysiological event such as
CSD [34]. Given that the global and regional values for
cerebral blood flow decreased significantly after triptan
administration, the aura data also underline that potential-
ly vasoconstrictive agents, such as triptans or ergots,
should not be used during the aura phase of migraine [36].

Migraine: the headache

In contrast to migraine with aura, using SPECT in
migraine without aura, no blood flow changes have been

noticed [37, 38]. These data have been reproduced and
are stable. In 1994 Friberg and colleagues [39] again
demonstrated with SPECT that interictally almost 50% of
migraine sufferers had abnormal interhemispherical
asymmetries in rCBF. These asymmetries were discrete
compared to those seen during the aura phase of a
migraine attack. The authors concluded that, at least
interictally, a cerebrovascular dysregulation existed. In a
very elegant study, the same group [40] combined the
measurement of rCBF and blood flow velocity in the
middle cerebral arteries using transcranial Doppler
sonography. Middle cerebral artery (MCA) velocity on
the headache side was significantly lower than on the
non-headache side, returning to normal values after treat-
ment with sumatriptan. Using SPECT, no change was
seen in the rCBF in the MCA supply territory. The
authors concluded that in the headache phase there might
be a dilatation in the MCA on the headache side which
was reversed by the vasoconstrictor action of the
5HT1B/1D receptor agonist sumatriptan [41, 42]. However,
as the cerebral blood flow was unaffected, its role as such
in the pathogenesis of migraine remains unproven. In
contrast, it should be noted that a transcranial Doppler
study has shown that the vasoconstrictor effect of suma-
triptan is not coupled in time with headache relief [43].

Woods et al. [31] published the first report of PET
measurements in a patient from the start of a spontaneous
migraine attack without aura, while lying in the PET-scan-
ner for another purpose. Previous studies have been few
and in these studies the headache attacks had already com-
menced [44]. The patient was studied while she was par-
ticipating in a visual activation paradigm and was scanned
with 12 successive measurements of rCBF. After the sixth
scan she developed unilateral headache, nausea and
photo- and phonophobia. The first decrease in rCBF,
noted during the seventh scan, was found bilaterally in the
visual association cortex. In each subsequent scan, every
12 min, the decrease in rCBF spread contiguously across
the cortical surface at a relatively constant rate, sparing
the cerebellum, basal ganglia and the thalamus. The
hypoperfusion involved the middle as well as the posteri-
or cerebral artery territories. The authors estimated the
maximal decrease of rCBF to be about 40%, potentially
approaching an ischaemic level. However, most of these
changes were relatively short lasting, with substantial
recovery by the time of the next measurement 12–15 min
later. This case report is remarkable for two reasons. First,
it illustrates for the first time a bilateral spreading hypop-
erfusion in a spontaneous migraine attack measured with
PET. Even more remarkable is the fact that this patient
suffered from visual blurring only and thus from migraine
without aura [45]. These findings are not in line with the
SPECT studies [28, 37, 46] in which no changes in rCBF
in migraine attacks without aura have been observed.
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In the first PET study in patients with migraine with-
out aura [21], significantly higher rCBF values were
found during the acute attack compared to the headache-
free interval in brainstem structures over several planes.
These structures were towards the midline but contralater-
al to the headache side and their localisation has been
refined to the dorsal pons [47, 48]. It has been speculated
that the contralateral changes may represent rostral rather
than caudal control systems [49]. Increased activation was
also found in the inferior anterocaudal cingulate cortex as
well as in the visual and auditory association cortices dur-
ing the attack, but was not detectable in these areas in the
interval scan or after relief from headache- and migraine-
related symptoms through treatment [21].

The consistent increases in rCBF in the brainstem per-
sisted, even after sumatriptan had induced complete relief
from headache, nausea, phonophobia and photophobia.
This increase was not seen outside the attack. It can be
concluded that the observed activation was unlikely to be
just the result of pain perception or increased activity of
the endogenous anti-nociceptive systems. Very recently,
these findings have been replicated and significantly
extended. It seems clear now that the brainstem activation
is indeed highly specific to migraine, but ipsilateral to the
pain and at a slightly different location [48, 50].
Interestingly, the same area was found to be activated in
chronic migraine which was treated using a suboccipital
stimulation [51]. It is certainly beyond the resolution of
the PET scanner to attribute foci of rCBF increases to dis-
tinct brainstem nuclei. However, dysfunction of the regu-
lation of brainstem nuclei involved in anti-nociception
and extra- and intracerebral vascular control provides an
encompassing explanation for many of the facets in
migraine [18, 52]. The importance of the brainstem for the
genesis of migraine is further underlined by the presence
of binding sites for specific anti-migraine compounds
within these structures [53]. The only direct clinical evi-
dence for the brainstem as primum movens in migraine
was reported by Raskin et al. [54] on non-headache
patients who developed migraine-like episodes after
stereotactic intervention with lesioning of the PAG and
more specifically the DRN. Interestingly, these headaches
responded to specific serotonergic agonists.

Migraine and medication overuse headache

Recently, 16 migraine patients suffering from medication
overuse headache were investigated using 18-FDG PET
(measuring glucose metabolism) before and 3 weeks after
medication withdrawal and compared to a control popula-
tion. Before withdrawal, the bilateral thalamus, orbitofrontal

cortex, anterior cingulate gyrus, insula/ventral striatum and
right inferior parietal lobule were hypometabolic, while the
cerebellar vermis was hypermetabolic [55]. Following with-
drawal of analgesics, all areas but the orbitofrontal cortex
showed an almost normal glucose uptake. The authors sug-
gested that medication overuse headache may be associated
with reversible metabolic changes in pain processing struc-
tures like other chronic pain disorders, but also with persis-
tent orbitofrontal hypofunction. Interestingly, the latter is
known to occur in drug dependence, which may predispose
subgroups of migraineurs to recurrent analgesic overuse.

Neuroimaging in trigeminal autonomic cephalalgias

Primary short-lasting headaches broadly divide them-
selves into those associated with prominent cranial auto-
nomic symptoms, so-called trigeminal autonomic cepha-
lalgias (TACs), and those where autonomic symptoms are
minimal or absent. The group of TACs comprises cluster
headache, paroxysmal hemicranias and short-lasting uni-
lateral neuralgiform headache attacks with conjunctival
injection and tearing (SUNCT syndrome) [56]. The con-
cept of TACs signifies a possibly shared pathophysiologi-
cal basis for these syndromes that is not shared with other
primary headaches, such as migraine or tension-type
headache [57]. As thus far findings in functional imaging
of primary headache syndromes have been specific to the
disease [58, 59], these techniques may be helpful in
unravelling the degrees of relationship between clinically
analogous headache syndromes.

TACs are relatively rare when compared to migraine
or tension-type headache, which is likely to be why they
are poorly recognised in primary care. The most remark-
able of the clinical features of cluster headache is the
striking rhythmicity or cycling of the attacks and bouts.
Cluster headache is probably the most severe pain syn-
drome known to humans, with female patients describing
each attack as being worse than childbirth. The syndrome
is well defined from a clinical point of view [56] and
despite the fact that it has been recognised in the literature
for more than two centuries [60], its pathophysiology has
been hitherto poorly understood. Neuroimaging has made
substantial contributions in recent times to understanding
this relatively rare but important syndrome [61, 62].

Despite the fact that the clinical picture of cluster
headache is characteristic, patients are often misdiagnosed
and undertreated [61, 63]. One possible explanation is that
the pathophysiological background of this disease is still
vague and the treatment empirical. In recent years some
pieces of the pathophysiological puzzle have been
reassembled in that the excruciatingly severe unilateral
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pain is likely to be mediated by activation of the first
(ophthalmic) division of the trigeminal nerve, while the
autonomic symptoms are due to activation of the cranial
parasympathetic outflow from the VIIth cranial nerve
[64]. The noteworthy circadian rhythmicity of cluster
headache has led to the concept of a central origin for its
initiation [65–67].

Previous studies of cerebral blood flow in cluster
headache are few in number. Most have been done with
SPECT and the results of this semi-quantitative method
have been quite heterogeneous, some reporting an
increase, some a decrease and some no differences in cor-
tical blood flow, probably due to methodological differ-
ences [68–72]. The more recent study by Di Piero and co-
workers (1997) [73] studied cluster headache patients out
of the active period and normal volunteers using the cold
water pressor test. They demonstrated changes in pain
transmission systems, which bear more detailed examina-
tion. The fact that the alterations are also present out of
the active period of the disease suggested a possible
involvement of central tonic pain mechanisms in the
pathogenesis of cluster headache.

In 1996, the first PET study in cluster headache was
reported [8]. Although the Authors investigated only 4
patients, their findings supported their earlier work [74]
suggesting a preference of the non-dominant hemisphere,
especially for the anterior cingulate cortex, in affective
processing of chronic ongoing pain syndromes. These
interesting results have contributed to an understanding of
central pain transmission systems, but given the small
numbers, require confirmation.

Using PET in a larger patient sample, significant acti-
vations ascribable to acute cluster headache were
observed in the ipsilateral hypothalamic grey matter when
compared to the headache-free state [22]. This highly sig-
nificant activation was not seen in cluster headache
patients out of the bout when compared to the patients
experiencing an acute cluster headache attack [75]. In
contrast to migraine [21], no brainstem activation was
found during the acute attack compared to the resting
state. This is remarkable, as migraine and cluster
headache are often discussed as related disorders and
identical specific compounds, such as ergotamine and
sumatriptan, are currently used in the acute treatment of
both types of headache agents [76]. These data suggest
that while primary headaches such as migraine and cluster
headache may share a common pain pathway, the trigemi-
novascular innervation, the underlying pathogenesis, dif-
fers significantly, as might be inferred from the different
patterns of clinical presentation and responses to preven-
tative agents [76].

Just as it is striking that no brainstem activation occurs
in contrast to acute migraine, no hypothalamic activation

was seen in experimental pain induced by capsaicin injec-
tion into the forehead [7]. This is important because injec-
tion of the forehead would activate first (ophthalmic) divi-
sion afferents, which belong to the trigeminal division
predominantly responsible for pain activation in cluster
headache. Thus, two other types of first division of
trigeminal nerve pain, while sharing neuroanatomical
pathways with cluster headache, do not give rise to hypo-
thalamic activation. This finding clearly implies that the
activation specific to cluster headache is involved in the
pain process in a permissive or triggering manner rather
than simply representing a response to first division noci-
ception per se. From the clinical point of view, it is tempt-
ing to consider a trait change in the hypothalamus that is
converted to a state change when the patient is in the acute
bout. Furthermore, given that this area is involved in cir-
cadian rhythm and sleep-wake cycling [77, 78], these data
establish an involvement of this hypothalamic area as a
primum movens in the acute cluster attack.

These findings prompted the use of deep brain stimu-
lation in the posterior hypothalamic grey matter in a
patient with intractable cluster headache, and led to a
complete relief of attacks [79]. To date, 20 operated
intractable cluster headache patients have been reported
[80, 81], some with a follow up of more than four years
[82, 83]. In order to unravel the brain circuitry mediating
stimulation-induced effects, a very recent study applied
PET in hypothalamic deep brain stimulated patients and
found that stimulation induced activation in the ipsilateral
hypothalamic grey (the site of the stimulator tip), the ipsi-
lateral thalamus, somatosensory cortex and praecuneus,
the anterior cingulate cortex and the ipsilateral trigeminal
nucleus and ganglion [84]. The authors additionally
observed deactivations in the middle temporal gyrus, pos-
terior cingulate cortex and contralateral anterior insula.
Both activations and deactivations are situated in cerebral
structures belonging to neuronal circuits usually activated
in pain transmission and notably in acute cluster headache
attacks. These data argue against an unspecific anti-noci-
ceptive effect or pure inhibition of hypothalamic activity.
Instead, the data suggest a hitherto unrecognised function-
al modulation of the pain processing network as the mode
of action of hypothalamic deep brain stimulation in clus-
ter headache [84].

Shared pathophysiological background?

If it is correct that TACs share a common pathophysiolog-
ical background, it should be possible to delineate similar
structures using functional imaging. SUNCT is among the
rarest idiopathic headache syndromes [85]. Several clini-
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cal features differentiate it from other primary headaches,
such as cluster headache and chronic paroxysmal hemi-
crania (CPH), with the most prominent one being that the
paroxysms of the unilateral pain are very short lasting,
typically between 5 and 250 s. The attacks are frequent,
with a published mean of 30 attacks per day, and a range
of 6–77 [86]. The pain is accompanied by autonomic fea-
tures like conjunctival injection and tearing, but also
sweating of the forehead and rhinorrhoea.

Little is known about its pathophysiology, although the
trigeminal pathways seem to be involved in the entire
range of the idiopathic headaches, and the trigeminal
autonomic reflex has been suggested to account for many
of its features [57]. Even though there are marked differ-
ences in the clinical pictures, such as the frequency and
duration of attacks and the different approach to treat-
ment, many of the basic features of SUNCT, such as
episodicity, autonomic symptoms and unilaterality, are
shared by other headache types, such as cluster headache
and CPH. This suggests a pathophysiological similarity to
these syndromes and prompted the suggestion to unify
them on clinical grounds as TACs [57].

Using functional MRI in 6 consecutive spontaneous
pain attacks in a patient with SUNCT, activation was seen
in the ipsilateral inferior posterior hypothalamic grey
when comparing the pain attacks with the resting state
[87]. These findings have recently been confirmed [88,
89]. The activation in the hypothalamus was seen solely in
the pain state and was in the same area that was demon-
strated to be activated in cluster headache patients [22]

and patients suffering from paroxysmal hemicrania [90],
suggesting considerable commonalities between SUNCT
and cluster headache. Indeed the data may explain the
episodic nature of the pain. Furthermore, a recent case
report investigated, using f-MRI, a 68-year-old patient
suffering from excruciating trigeminal autonomic
headache attacks, in whom frequency, duration and thera-
peutic response allowed no clear-cut classification as one
of the subtypes of TAC [91]. However, the cerebral acti-
vation pattern was similar although not identical to those
previously observed in cluster headache [92] and SUNCT
[87], with a prominent activation in the hypothalamic grey
matter [91]. This case study underlines the conceptual
value of the term “TAC” for the group of headaches focus-
ing on the trigeminal autonomic reflex and moreover
emphasises the importance of the hypothalamus as a key
region in the pathophysiological process of this entity.

Another recent case report of 2 SUNCT patients inves-
tigated using f-MRI and BOLD reported a bilateral hypo-
thalamic activation, which was even positively correlated
to increasing pain levels [89]. This report certainly
strengthens the role of the hypothalamus in the patho-
physiology of TACs, but considering that only 2 patients
are reported it does not justify questioning the basis for
the laterality of the attacks.

Hemicrania continua is a strictly unilateral, continuous
headache of moderate intensity, with superimposed exac-
erbations of severe intensity that are accompanied by
trigeminal autonomic features and migrainous symptoms
[93]. The syndrome is exquisitely responsive to

Fig. 2 Summary of current func-
tional imaging studies in different
forms of trigeminal autonomic
headache syndromes [22, 87, 88,
90–92, 95–97]
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indomethacin. In seven patients with hemicrania continua
a significant activation of the contralateral posterior hypo-
thalamus and ipsilateral dorsal rostral pons in association
with the headache was described. In addition, there was
activation of the ipsilateral ventrolateral midbrain, which
extended over the red nucleus and the substantia nigra,
and bilateral pontomedullary junction. This study demon-
strated nicely that the neuroimaging markers of trigeminal
autonomic headaches and migrainous syndromes are also
apparent in hemicrania continua, mirroring the clinical
phenotype, which exhibits a certain overlap with trigemi-
nal autonomic headaches and migraine [94]. Taken
together, just as in the case of an atypical trigeminal auto-
nomic headache [91], the functional imaging data in hem-
icrania continua [94] impressively emphasises that prima-
ry headache syndromes can be distinguished on a func-
tional neuroanatomic basis by areas of activation specific
to the clinical presentation (Fig. 2).

Morphometric studies: pointing towards a lesion

Fundamental to the concept of idiopathic or primary
headache, including migraine, tension-type headache and
cluster headache, is the currently accepted view that these
conditions are due to abnormal brain function with com-
pletely normal brain structure [45]. Given the consistency
of the PET findings with the clinical presentation in clus-
ter headache, the subsequent question is whether the
brains of such patients are structurally normal. Voxel-
based morphometry, an objective and automated method
of analysing changes in brain structure [98–100], was
used to study the structure of the brains of patients with
cluster headache [101].

Using the voxel-based morphometric analysis of the
structural T1-weighted MRI scans, a significant structural
difference in grey matter density was found in patients
with cluster headache when compared to healthy volun-
teers. This difference consists of an increase in volume
and was present for the entire cohort. The difference was
also present when patients in- and outside a bout were
compared with the control group. This structural differ-
ence is bilaterally situated in the diencephalon, adjacent to
the third ventricle and rostral to the aqueduct, coinciding
with the inferior posterior hypothalamus. In terms of the
stereotaxic coordinates [102] it is virtually identical to the
area in which activation during an acute cluster headache
attack was demonstrated in the PET study. No other areas
of change were noted [95].

Co-localisation of morphometric and functional
changes means that two different imaging techniques sep-
arately identify a highly specific brain area previously

considered on clinical and biological grounds to be
involved in the genesis of the cluster headache syndrome
[103]. The structural data relate to a morphometric
change of the neuronal density in this region, whilst the
functional imaging data are related to the neuronal activ-
ity in this area. Together they demonstrate for the first
time the precise anatomical location for the central ner-
vous system lesion of cluster headache.

Regarding migraine, no global or regional structural
differences between patients with migraine [104] and
controls, or between patients suffering from medication
overuse headache (MOH) and controls [105] were found.
The authors suggested that migraine and MOH, in con-
trast to cluster headache, may primarily be a biochemi-
cal/biophysical disorder. It may well be, however, that
structural studies of a condition that is potentially genet-
ically heterogenous, such as migraine, miss subtle
changes that might segregate with a more homogenous
genotype. A very recent finding suggests that the brains
from CTTH patients are different on a structural level
from the brains of migraine patients and the brains of
healthy controls [105]. This change in grey matter in
CTTH patients is restricted to structures involved in pain
processing and could reflect either the cause or the con-
sequence of chronic head pain. At the moment these data
suggest that while CTTH and MOH may share a common
signature feature, namely the frequent head pain, the
underlying pathogenesis differs significantly, as inferred
from the different clinical patterns of pain characterisa-
tion and responses to treatment.

Dilatation of cerebral blood vessels in headache is an
epiphenomenon

In addition to the activations in non-specific structures
associated with pain transmission, such as the cingulate,
insula cortex, frontal lobe and thalamus, in the study of
experimental head pain described above [7] there was a
bilateral pattern of activation in midline structures over
several planes, slightly lateralised to the left, anterior to
the brainstem and posterior to the chiasmatic region [106].
Superimposed on an MRI template, the location of the
activation covers intracranial arteries as well as the region
of the cavernous sinus bilaterally. Similarly, in the cluster
headache study there was a strong activation observed in
the same region, the cavernous sinus [75] suggesting a
vasodilatation mediated by the ophthalmic division of the
trigeminovascular system.

Using magnetic resonance angiographic techniques,
injection of capsaicin into the skin innervated by the oph-
thalmic (first) division of the trigeminal nerve elicited an
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increase in vascular diameter of the internal carotid artery
when compared to the mean baseline [58]. Injection of
capsaicin into the skin of the chin to stimulate the
mandibular (third) division of the trigeminal nerve, and
into the leg, led to a similar pain perception but failed to
produce any significant change in vessel calibre. The data
suggest that there is a highly functionally organised,
somatotopically congruent trigeminal innervation of the
cranial vessels, with a potent vasodilator effect of the oph-
thalmic division on the large intracranial vessels.

Taken together the data suggest that neurovascular
activation in the trigeminal system is a function of its
afferent role in any form of pain, and is highly potent and
somatotopically organised. Pain signals in the ophthalmic
division can generate vascular change de novo without a
superimposed primary headache. The data are consistent
with the notion that pain triggers changes in vessel calibre
in migraine and cluster headache, not vice versa. These
conditions should therefore be regarded as primary neu-
rovascular headaches and not as vascular headaches.
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