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Background. The main factor characteristic for low-grade systemic inflammation typical for obesity is oxidative stress (OS).
Reactive oxygen species (ROS) production is higher and more increased in time in the obese patients than in lean subjects.
Aims. To assess the effect of ileal transposition (IT) and sham types of bariatric procedures on the antioxidative systems in the
liver tissue of Zucker rats (Crl:ZUC Leprfa). Method. 21 animals were divided into the experimental groups: control group (n = 7),
sham group (n = 7), and IT group (n = 7). Sham and IT animals underwent selected surgery. The concentration of total
antioxidant capacity (TAC), total antioxidant status (TOS), and activity of glutathione reductase (glutathione-disulfide
reductase, GR, GSR), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), and total superoxide
dismutase activity (SOD) were assessed in liver tissue 3 months after surgery. Results. IT procedure significantly increased TAC
when compared to sham and the control group. Animals after IT showed higher levels of TOS when compared to sham
procedure. The total amount of TOS was similar in IT and control groups. GPx activity was increased in the groups submitted
to the sham and IT surgery in relation to control. GR and CAT activities were significantly higher after IT in comparison to
control and sham procedures. Total SOD and MnSOD were significantly higher in sham-operated animals in comparison to IT
intervention and control groups. Conclusions. IT procedure had a positive impact on the diminishing of oxidative stress
measured by TAC and TOS markers. The dynamic, adaptive, and protective mechanisms of enzymatic antioxidant systems were
observed after the IT but not sham procedure. Nevertheless, 3 months after surgery, the midterm effect of bariatric surgery was
observed, which might not fully balance the antioxidative response.
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1. Introduction

One of the main factors characteristic for low-grade systemic
inflammation and an immune activation characteristic for
obesity is OS. ROS generation and inflammation increase
more in time in obese patients than in lean subjects [1].

Bariatric surgery is, so far, the most efficient procedure
for achieving significant and long-term body mass reduction
in morbidly obese subjects [2]. It has been also showed to
induce remission and significant improvement in type 2
diabetes mellitus and fatty liver disease. Bariatric surgery
lowered mortality from cardiovascular risk and improved
blood pressure, dyslipidemia, and dysglycemia [2–5]. Also,
Roux-en-Y gastric bypass procedure (RYGB) was reported
to significantly decrease the level of lipid peroxidation [4].
Ileal transposition (IT) is a type of jejunoileal bypass, notably
reducing food intake [6]. Pathophysiologically, the remission
of type 2 diabetes is associated with the active delivery of ali-
ment to the terminal ileum [7]. Nevertheless, the compara-
tive studies on OS after IT and sham procedures were not
performed. In this work, we decided to use diabetic and obese
Zucker rats (Crl:ZUC-Leprfa, ZF) as an animal model of obe-
sity, phenotypically close to human obesity [8].

The antioxidant defence under the conditions of OS
caused by obesity considers the cumulative action of enzy-
matic and nonenzymatic antioxidant systems present in
liver tissue [9]. The dynamic interaction between antioxi-
dants as an answer to the IT and sham bariatric procedures
is, therefore, the main aim of this study, hence giving a dis-
cernment into the sensitive balance between oxidative stress
and antioxidant parameters 3 months after the surgery.
This work is a new attempt at indicating the importance
of comprehending the complex processes of the homeo-
static control of antioxidants in liver tissue and its dynamic
changes under oxidative stress development after IT and
sham surgery.

2. Materials and Methods

2.1. Animals, Diet, and Study Design. The study was con-
ducted according to the Guide for the Care and Use of Labo-
ratory Animals (Directive 2010/63/EU) and the Ethics
Committee of the Medical University of Silesia in Katowice,
Poland. 21 male, obese12-week-old Zucker rats (Crl:ZUC
Leprfa, Charles River Breeding Laboratories, Wilmington,
Mass, USA). The animals were kept under controlled con-
ditions on a 12/12-hour light and dark cycle, in humidity
70± 1%, with unlimited access to water and rat food (Provimi
Kliba AG, Kaiseraugst, Switzerland). Food contained 24% of
protein, 4.9% of fat, 7% of crude ashes, 4.7% of crude fibre,
lysine (13.6 g/kg), calcium (12 g/kg), methionine (4.5 g/kg),
and phosphorus (8.3 g/kg).

After one week of acclimatisation, the animals were
assigned to three experimental groups: control group CD
(n = 7), sham group (n = 7), and IT group (n = 7). The
sham and IT groups underwent two different types of sur-
gery: sham, which is a control type of surgery, and IT
(Figure 1). The control group was not included in any type
of surgical intervention.

2.2. Ileal Transposition and Sham Surgery. The surgery pro-
cedures were previously described by Grüeneberger et al.
[7]. Isoflurane 2% with oxygen flow at 2 l/min under sponta-
neous breathing was used to induce and maintain anaesthe-
sia. After an abdominal midline incision, length 4–5 cm was
performed and the Bauhin’s valve was determined. 50% of
the distal ileum was localized and transected. The ileal conti-
nuity was restored by an end-to-end extramucosal anasto-
mosis using PDS 6/0 (Ethicon, Blue Ash, OH), excluding
the transposed segment. Then, the ligament of Treitz was
determined, and the jejunum was divided 5 cm aborally.
The transposed segment of ileum was inserted in an iso-
peristaltic fashion, and two end-to-end anastomoses were
performed. For control and sham surgery, transections
were performed at all three analogous points. Anastomoses
were completed correspondingly, nevertheless without IT
(Figure 1). Fascia and skin closures were performed as a
continuous suture using Monocryl 4/0 and Vicryl 4/0. After
the surgery, all rats were kept on a liquid diet for 24 h
(Nutrison, Nutricia, Poland).

2.3. Tissue Collection. Isoflurane 2% with oxygen flow at
2 l/min under spontaneous breathing was used to induce
and maintain anaesthesia. At the end of the 12th week after
surgery, corresponding to the 15th week of the experiment,
the tissue of the liver was collected and the rats were eutha-
nized. The muscle tissue (100mg) was homogenized in 1ml
of a homogenising buffer. All samples were snap frozen in
liquid nitrogen and stored at −80°C until further analysis.
All experimental procedures were approved by the Ethical
Committee for Animal Experimentation of the Medical
University of Silesia (58/2014).

2.4. Oxidative Stress Marker Analysis. The total antioxidant
capacity (TAC), total antioxidant status (TOS), and the activ-
ity of the following antioxidant enzymes: glutathione perox-
idase (GPx), glutathione reductase (glutathione-disulfide
reductase, GR, GSR), catalase (CAT), glutathione S-
transferase (GST), total superoxide dismutase activity
(SOD) in the liver tissue of the control, IT and Sham operated
rats were determined.

Sham Ileal transposition

Figure 1: The scheme of the IT surgery.
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2.5. Total Antioxidant Capacity (TAC). TAC was measured
using a commercial kit (Randox Co., England). The 2.2′
azino-di-(3-ethylbenzothiazoline sulphonate) (ABTS) was
incubated with a peroxidase (metmyoglobin) and hydrogen
peroxide to produce the radical cation ABTS+, which has a
relatively stable blue-green colour and was measured at
600nm. The suppression of the colour was compared to the
standard for TAC measurement assays (Trolox). The assay
results are expressed as a Trolox equivalent (mmol/l). The
inter- and intra-assay coefficients of variations (CV) were
1.1% and 3.8%, respectively.

2.6. Total Oxidative Status (TOS). The method according to
Erel [9] uses the oxidation of iron (II) ions to iron (III) ions
in an acidic medium. Then iron (III) ions with xylene orange
form a colourful complex ranging up to a blue-purple col-
ouration. Absorption readings were taken with a 560nm fil-
ter on the VICTOR-X3 from PerkinElmer. The TOS level
was calculated from the calibration curve using H2O2 as the
standard. Values are expressed in μmol/l.

2.7. Oxidative Enzyme Analysis

2.7.1. Glutathione Reductase Activity (EC 1.8.1.7). GR enzy-
matic activity in the liver tissue was evaluated by a decrease
in the concentration of NADPH in the samples using a GR
buffer (200mM sodium phosphate pH7.5, 6.3mm EDTA)
and kinetic reading was performed at a wavelength of
340nm for 10 minutes [10].

2.7.2. Catalase Activity (EC 1.11.1.6). The catalase activity in
the liver tissue was measured using Aebi methods. Briefly, a
50mM TRIS/HCl buffer, pH7.4, and perhydrol were mixed
with 50μl of tissue. After 10 seconds, the absorbance was
read at λ=240nm, every 30 seconds for 2 minutes. The enzy-
matic activity was expressed in IU/mg protein [11].

2.7.3. Glutathione Peroxidase Activity (EC 1.11.1.9). To mea-
sure the activity of glutathione peroxidase, 40mM sodium
azide, GSH (diluted in 5% metaphosphoric acid), GR (GPx
diluted in the buffer), NADPH (diluted with sodium bicar-
bonate 5%), and 0.5mM tert-butyl were incubated in the
liver tissue with a GPx buffer (100mM potassium phosphate
with 1mM EDTA pH7.7). The decay of NADPH concentra-
tion was evaluated for 10 minutes in a spectrophotometer, at
340 nm [12].

2.7.4. Glutathione S-Transferase Activity (EC 2.5.1.18).
Transferase activity of glutathione S-transferase in the liver
tissue was estimated by the kinetic method, previously
described by Habig and Jakoby [13]. 1-Chloro-2,3-dinitro-
benzene was used as a substrate and results are expressed in
IU/g protein.

2.7.5. Superoxide Dismutase Analysis (EC 1.15.1.1). SOD iso-
enzymes’ activity was determined with the use of the spectro-
photometric method by Oyanagui [14]. KCN was used as the
inhibitor of the CuZnSOD isoenzyme. CuZnSOD activity
was calculated as the difference between total SOD activity
and MnSOD activity. SOD activity was calculated against a

blank probe (containing bidistilled water). Enzyme activity
was expressed as nitrite units (NU) per mg of protein in
tissue. One NU exhibits 50% inhibition of formation of nitrite
ion under the method’s condition [14].

2.7.6. Protein Concentration. Protein concentration was
determined by Lowry methods using bovine serum albumin
as the standard [15].

3. Statistical Analysis

Statistical analysis was completed using STATISTICA 12.5
PL (StatSoft, Cracow, Poland.). A p value below 0.05 was
accepted as statistically significant. All tests were two tailed.
Interval data were expressed as a mean value± standard
deviation in the case of a normal distribution or as median/
lower-upper quartile range in the case of data with skewed
or nonnormal distribution. Distribution of variables was
evaluated by the Shapiro-Wilk test, and the quantile-
quantile plot. The homogeneity of variances was assessed
by the Levene test. The two-way parametric ANOVA with
post hoc contrast analysis, nonparametric Kruskal-Wallis
test, or Mann-Whitney U test were used in order to compare
the data. In the case of skewed data distribution, logarithmic
transformation was done before analysis.

4. Results

The IT procedure increased significantly the TAC amount in
comparison to the sham (p < 0 001) and control groups
(p < 0 01). The lowest level of this parameter was observed
in the sham-operated group (control vs. sham p < 0 01;
Figure 2, Table 1). Also, the TOS parameter was significantly
reduced in sham-operated rats. The control and IT groups
showed a significantly higher TOS amount assessed in the
liver tissue than sham-operated animals (control vs. sham
p < 0 1, IT vs. sham p < 0 01; Figure 3, Table 1).

Significantly higher GPx activity was observed in the
groups submitted to the IT and sham types of procedure
when compared to the control group (control vs. sham p <
0 001, IT vs. sham p < 0 001; Figure 4, Table 1). The signifi-
cant differences in the GR activity were found between the
control, IT, and sham groups (control vs. sham p < 0 01,
IT vs. control p < 0 05, IT vs. sham p < 0 001; Figure 5,
Table 1). The GR activity was significantly higher in control
and IT-operated animals when compared to animals submit-
ted to the sham procedure. The IT procedure significantly
influenced CAT activity in comparison to control and
sham-operated animals (IT vs. control p < 0 001, IT vs. sham
p < 0 001). After IT surgery, the CAT activity was twofold
higher than in other studied animals (Figure 6, Table 1). Tak-
ing into consideration GST activity, there were no significant
differences between the analysed groups observed (Table 1).
The sham surgical intervention significantly increased total
SOD activity when compared to control and IT-operated
animals (control vs. sham p < 0 05, IT vs. sham p < 0 05;
Figure 7, Table 1). A similar pattern for MnSOD activity
was observed, where the highest activity of this enzyme was
detected in sham-operated animals in comparison to the
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control and IT groups (control vs. sham p < 0 05, IT vs. sham
p < 0 001; Figure 8, Table 1). CuZnSOD showed the same
level of activity and no significant differences in the analysed
groups: control, sham, and IT (Table 1).

5. Discussion

Bariatric surgery is currently one of the leading treatment
options for morbid obesity, giving efficient and long-lasting
results in reference to weight loss and glycemic control
[16–18]. In this study, we have concentrated on the analysis
of the influence of IT and sham procedures on the oxidative
stress parameters measured in the liver tissue of animals 3
months after the IT and sham procedures: (i) the ileal trans-
position significantly increased TAC in comparison to sham-
operated animals and the control group; (ii) animals after IT
showed higher levels of TOS than sham-operated rats, and at
the baseline, the total amount of TOS was congruous in IT
and control study groups; (iii) GPx activity was increased in
the groups submitted to the Sham and IT surgery in relation
to control; (iv) GR and CAT were significantly higher after IT
in comparison to the control and sham procedures; (vi) all
analysed isoforms of SOD showed a similar pattern of activ-
ity in analysed groups. Total SOD and MnSOD were signifi-
cantly higher in sham-operated animals in comparison to the
IT intervention and control groups.

Obesity, a chronic disease, is interconnected with the
augmentation of a broad range of health problems, which
may lead to morbidity and mortality [19]. Under pathophys-
iological conditions such as overweight, T2DM, cardiovascu-
lar disease, and atherogenic processes, OS is induced and,
successively, is associated with a defective production of
adipokines, which further the progress of the metabolic
syndrome [19, 20]. TAC is understood as the additive action
of all the antioxidants present in the selected tissue; hence, it
is an integrated factor rather than the ordinary sum of
measurable antioxidants, strongly modified by OS [21–23].
According to Serafini and Del Rio [23], TAC should be
understood as a “conception” rather than an analytical

technique, an idea of total antioxidant efficiency reflecting
the complex aspects of redox interactions. Plasma TAC
values were observed to be decreased in patients with type 1
diabetes and type 2 diabetes in comparison to matched
healthy controls [24–26]. Other human studies also reported
higher levels of oxidative stress, despite excessive antioxidant
capacity, in the plasma of patients with uncomplicated type 2
diabetes compared with healthy control subjects [27]. The
TAC concentration was decreased under the condition of
obesity, which was associated with systemic antioxidant
defence and increased oxidative stress [28]. The significant
differences in TAC between the IT, sham, and control liver
samples in the present study suggest that reduced total ROS
content in the IT group is more likely due to increased scav-
enging of free radicals and other toxic species. Our observed
increase in TAC in IT animals compared to Sham and
controls further fosters evidence proposing that reduced oxi-
dative stress after an IT procedure may be the main contrib-
utor for ameliorating insulin resistance and the negative
consequences of obesity conditions. The levels of different
oxidant species may be analysed separately, but the measure-
ments are demanding, costly, and require advanced tech-
niques [29]. Since the analysis of various oxidant molecules
independently is not practical and their oxidant effects are
additive, the body’s oxidant/antioxidant status can be ascer-
tained by measuring the TOS [29]. Therefore, TAC and
TOS are more precise markers of the oxidative and antioxi-
dative status of individuals and TOS levels can be understood
as a general indicator of oxidant molecules [29]. 3 months
after a sham procedure, liver antioxidant systems seem to
be able to neutralize only part of the ROS produced, which
was observed in significantly reduced TOS in the sham group
when compared to the IT and control groups. We suggest
that stress connected with sham intervention, which is a kind
of control procedure without therapeutic outcomes, was too
high and the system did not restore TOS to levels observed
in other control and IT groups. We believe that the IT proce-
dure showed a beneficial effect on the TOS amount in com-
parison to sham but did not improve the TOS amount
significantly as was visible for the TAC amount.

H2O2 is metabolised by CAT and GPx and in that way
reduced to water and molecular oxygen. GPx reduces H2O2
and organic peroxides (ROO) while oxidising glutathione
(GSH) [30]. Oxidised glutathione (GSSG) is subsequently
reduced back to GSH by glutathione reductase (GR) in the
presence of NADPH (or the corresponding alcohol (ROH))
and GSSG. The reduced form of GSH is a key intracellular,
most abundant antioxidant, which conjugates with electro-
philes and takes a part in the metabolism and detoxification
of endogenous compounds as well as xenobiotics [30].
Changes in glutathione status have been broadly reported
in oxidative stress-related disorders, but the present study is
the first comprehensively investigating the enzymes of gluta-
thione status such as GR and GPx in the liver tissue of dia-
betic and obese Zucker rats after IT and sham surgery. The
special attention is focused on the changes in GPx activity,
as the expression of the enzyme is proved to be increased
under conditions of excessive ROS production [31]. The
increased values of GPx in the liver tissue of the animals after
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Figure 2: Mean values of TAC concentration in liver tissue of rats
subjected to IT, sham operation type, and control group. Statistical
significance was set at p < 0 001. The statistical significance IT,
sham operation type vs. control group was shown, and individual
points are connected for the reader’s convenience.
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the sham, but not IT procedure, may suggest that the dis-
turbed liver glutathione status of rats might result from the
enhancement of GSH consumption in the process catalysed

by glutathione peroxidase. It appears feasible that the attenu-
ation of oxidative stress accomplished by the IT treatment
affects the expression of the GPx of glutathione metabolism,

Table 1: Antioxidant concentration and activity in liver tissue 3 months after IT surgery. Statistical significance was set at p < 0 05.

Control Sham IT p
p 1

Control vs sham
p 2

IT vs control
p 3

IT vs sham

TAC (μmol/g) 148.71± 15.71 115.63± 6.68 175.62± 17.29 <0.001 <0.01 <0.01 <0.001
TOS (μmol/g) 0.27± 0.07 0.15± 0.03 0.26± 0.05 <0.001 <0.01 0.939 <0.01
GPx (IU/g) 72.02± 15.77 190.70± 31.32 161.21± 35.24 <0.001 <0.001 <0.001 0.177

GR (IU/g) 64.09± 27.74 34.22± 11.40 89.36± 19.50 <0.001 <0.01 <0.05 <0.001
CAT (IU/g) 338.38± 68.20 333.22± 42.85 676.43± 160.44 <0.001 0.996 <0.001 <0.001
Total SOD (NU/mg) 477.12± 44.51 579.82± 69.38 478.24± 96.53 <0.05 <0.05 0.999 <0.05
MnSOD (NU/mg) 91.09± 20.43 126.10± 38.10 65.49± 11.60 <0.001 <0.05 0.145 <0.001
GST (IU/g) 35.29± 1.63 40.31± 4.84 38.16± 6.46 0.179 — — —

CuZnSOD (NU/mg) 386.27± 47.40 439.41± 60.06 368.75± 71.10 0.086 — — —

Abbreviations: GPX: glutathione peroxidase; GR: glutathione reductase; CAT: catalase, SOD: total superoxide dismutase; MnSOD: Mn superoxide dismutase;
ZnSOD: Zn superoxide dismutase; GST: glutathione S-transferase: TAC: total antioxidant capacity; TOS: total oxidative status.
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Figure 4: Mean values of GPx activity in liver tissue of rats
subjected to IT, sham operation type, and control group. Statistical
significance was set at p < 0 05. The statistical significance IT,
sham operation type vs. control group was shown, and individual
points are connected for the reader’s convenience.
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points are connected for the reader’s convenience.

Control Sham IT

Vertical lines depict 95% confidence interval
900

800

700

600

500

400

300

200

CA
T 

[I
U

/g
 p

ro
te

in
]

�휌 < 0.001

�휌 = 0.996
�휌 < 0.001

Figure 6: Mean values of CAT activity in liver tissue of rats
subjected to IT, sham operation type, and control group. Statistical
significance was set at p < 0 05. The statistical significance IT,
sham operation type vs. control group was shown, and individual
points are connected for the reader’s convenience.
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which has been proposed to be ROS sensitive [31]. Other
human studies proved the correlation between visceral fat
accumulation and the enhanced oxidative status, where there
is a significant decrease of GPx activity in the subgroups of
the highest BMI category and the highest quartiles of waist
circumference (WC) [32, 33]. The positive, reductive impact
of the IT procedure on the body weight of operated rats was
already presented by Grüeneberger et al., and thus, we can
assume that the antioxidant defence measured by GPx activ-
ity was significantly stronger in the IT but not in the sham
group [7]. The control group, without any intervention,
expressed the lowest level of GPx activity. The differences
in the mobilization of the GPx/GR system in sham-
operated animals may be understood as inefficiency or over-
loading of GR activity with the free radical formation when
compared to the control and IT procedures. There was a sig-
nificant increase in CAT enzymatic activity in IT-operated
animals. This can be a positive effect of the bariatric proce-
dure on the CAT antioxidative defence as it is known that
CAT activity was found to be significantly diminished upon
the increase of adipose tissue [19].

Under the conditions of long persisting obesity, the pool
of antioxidant sources can be diminished, further affecting
the activity of enzymes such as superoxide dismutase
(SOD). In human subjects, the activity of SOD in obese indi-
viduals was significantly reduced in comparison to that in
healthy subjects, intensifying the development of obesity-
related health problems [19]. Obesity has been connected
with an enhanced expression of NADPH oxidase and a
restriction in the expression of various antioxidant proteins.
In this study, which is an animal model of obesity, the total
SOD and MnSOD measured in the sham group were signif-
icantly increased in comparison to the IT and control groups.
The elevation of SOD activity may be understood as amplifi-
cation of antioxidant capacity in sham animals and conse-
quently a reduction in oxidative lesions. It is essential to
indicate that an increase in total SOD, MnSOD, and CAT
activities after bariatric surgery can be related to the time
after surgery and reduction of adipose tissue. It is known that
metabolic surgery improves the inflammatory response
during the medium term after surgery. Human studies have
found that oxidative stress was significantly reduced 6
months after bariatric surgery [19, 34, 35]. Murri et al.
reported that 9 months after biliopancreatic diversion, the
TAC and the activity of CAT and SOD did not change signif-
icantly during the study [36]. It is suggested that a long-term
effect of bariatric surgery observed by reduced mass of adipo-
cytes, and thus decline in the synthesis of molecules directly
related to hypertrophic adipose tissue, might balance the
antioxidant response.

6. Conclusions

We conclude that the IT procedure had a positive impact on
the reduction of oxidative stress, measured by TAC and TOS
parameters in the liver tissue of obese rats. The dynamic,
adaptive, and protective mechanisms of enzymatic antioxi-
dant systems were observed after the IT but not sham proce-
dure. Nevertheless, 3 months after surgery, the midterm
effect of bariatric surgery was observed, which might not fully
balance the antioxidative response.
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