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Differentiation of low and high 
grade renal cell carcinoma 
on routine MRI with an externally 
validated automatic machine 
learning algorithm
Subhanik Purkayastha1,9, Yijun Zhao2,9, Jing Wu2, Rong Hu8, Aidan McGirr4, 
Sukhdeep Singh4, Ken Chang5, Raymond Y. Huang6, Paul J. Zhang7, Alvin Silva4, 
Michael C. Soulen3, S. William Stavropoulos3, Zishu Zhang2 & Harrison X. Bai1*

Pre-treatment determination of renal cell carcinoma aggressiveness may help guide clinical decision-
making. We aimed to differentiate low-grade (Fuhrman I–II) from high-grade (Fuhrman III–IV) renal cell 
carcinoma using radiomics features extracted from routine MRI. 482 pathologically confirmed renal 
cell carcinoma lesions from 2008 to 2019 in a multicenter cohort were retrospectively identified. 439 
lesions with information on Fuhrman grade from 4 institutions were divided into training and test sets 
with an 8:2 split for model development and internal validation. Another 43 lesions from a separate 
institution were set aside for independent external validation. The performance of TPOT (Tree-Based 
Pipeline Optimization Tool), an automatic machine learning pipeline optimizer, was compared to 
hand-optimized machine learning pipeline. The best-performing hand-optimized pipeline was a 
Bayesian classifier with Fischer Score feature selection, achieving an external validation ROC AUC of 
0.59 (95% CI 0.49–0.68), accuracy of 0.77 (95% CI 0.68–0.84), sensitivity of 0.38 (95% CI 0.29–0.48), 
and specificity of 0.86 (95% CI 0.78–0.92). The best-performing TPOT pipeline achieved an external 
validation ROC AUC of 0.60 (95% CI 0.50–0.69), accuracy of 0.81 (95% CI 0.72–0.88), sensitivity of 0.12 
(95% CI 0.14–0.30), and specificity of 0.97 (95% CI 0.87–0.97). Automated machine learning pipelines 
can perform equivalent to or better than hand-optimized pipeline on an external validation test non-
invasively predicting Fuhrman grade of renal cell carcinoma using conventional MRI.

Renal cell carcinoma (RCC) is the most prevalent renal malignancy in  adults1. While the current standard 
for RCC management is partial or radical nephrectomy, the rising incidence of small RCC has led to the con-
sideration of alternative treatment options for lower risk lesions, including percutaneous ablation and active 
 surveillance2. Therefore, pre-treatment assessment of tumor aggressiveness is now of supreme importance for 
risk stratification and clinical decision making.

RCC outcome is closely linked to its pathological Fuhrman grade, which classifies RCC as low grade (Grade 
I–II) or high grade (Grade III–IV) according to the size, shape, staining, and presence or absence of nucleoli in 
the nuclei of cancer  cells3. High-grade tumors are more invasive with metastasis potential and poor  prognosis4,5. 
Biopsy is an invasive procedure with risk of complications and limited by the tumor  heterogeneity6.
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Recently, machine learning-based CT radiomics have been applied in prediction of Fuhrman grade with 
good  results7–9. Radiomics, an emerging field in medical imaging, has grown exponentially for clinical decision 
 support10–12. With a high volume of radiomic features extracted, feature choice in pipeline creation critically 
influences the results of final disease prediction or  classification12,13. However, the selection of the most optimized 
pipeline requires extensive testing. The TPOT (Tree-Based Pipeline Optimization Tool) is an automated machine 
learning (autoML) that automatically chooses the most optimal machine learning pipeline and has been shown 
to outperform standard  ML14–16.

The goal of the current study was to predict RCC grading using MR-based radiomics and compare perfor-
mance of autoML with expert manual pipeline optimization on an external validation set.

Methods and materials
Patient cohort. Patients with histologically confirmed RCCs with available Fuhrman grading (I–IV) 
from two large academic centers in the United States (HUP and MAY), two hospitals in People’s Republic of 
China (SXH and PHH) and The Cancer Imaging Archive (TCIA) were retrospectively identified. The study 
was approved by the Institutional Review Boards of HUP, MAY, SXH, and PHH. With the agreement to use 
TCGA/TCIA data, the IRB approval of our study was waived for TCIA. The inclusion criteria were (1) patho-
logically confirmed RCC with reported histological Fuhrman grade (2) available preoperative MRI including 
T2-weighted (T2) and T1-contrast (T1C) enhanced sequences, (3) quality of the images was adequate for analy-
sis, without motion or artifacts. The exclusion criteria consisted of (1) patients with WHO/ISUP grading (2) 
patients diagnosed through biopsy (3) patients with no reported Fuhrman grade (4) patients with incomplete or 
inappropriate image protocol. If dynamic enhancement was performed, the earliest phase on.

T1C sequence was chosen. Our final cohort consisted of 482 RCC lesions (374 lesions from HUP, 43 lesions 
from MAY, 39 lesions from TCIA, 11 lesions from SXH, and 15 lesions from PHH). Histopathological diagnosis 
in the form of Fuhrman grade was obtained for all 482 tumors after surgical excision. RCCs were grouped into 
low grade (grades I and II) and high grade (grades III and IV).

Tumor segmentation. MR images of all patients were loaded into 3D Slicer software (v4.6), 3D regions 
of interest were manually drawn slice-by-slice on the T2 and T1C sequences by an abdominal radiologist (Y.Z.) 
with 5 years of experience reading abdominal  MRI17.

Image pre-processing. Preprocessing of the lesion images involved n4 bias correction and intensity nor-
malization using ANTS and SimpleITK, respectively. The training set images were scaled to 200 by 200 pixel 
squares using bilinear interpolation, and augmented with horizontal/vertical flip, shear, and zoom transforma-
tions to add variability to the set.

Training, validation, and testing. The 43 lesions from MAY were first separated out to use as our exter-
nal testing set. The rest of the 439 lesions in our dataset were portioned into training and testing sets in a ratio 
of 8:2. Overall, the training set consisted of 351 lesions, the testing set consisted of 88 patients, and our external 
testing set consisted of 43 patients. The cohort can be seen in Table 1.

Radiomics analysis. Radiomics features were extracted from each patient’s MRI for both T1C and T2WI 
sequences. For each image space, 79 non-texture (morphology and intensity-based) and 94 texture features were 
extracted according to the guidelines defined by the Image Biomarker Standardization Initiative (IBSI)18. Each 
of the 94 texture features were computed 32 times using all possible combinations of the following extraction 
parameters, a process known as “texture optimization” (REF): (1) isotropic voxels of size 1 mm, 2 mm, 3 mm, 
and 4 mm, (2) fixed bin number (FBN) discretization algorithm, with and without equalization, and (3) the 
number of gray levels of 8, 16, 32, and 64 for FBN. A total of (79 + 32 × 94), or 3087, radiomics features were thus 
computed in this study. All the features were normalized using unity-based normalization and features from 
T1C and T2WI were combined into one dataset. In order to reduce dimensionality of the datasets, radiomics 
features were selected for training using thirteen different feature selection methods. Ten machine learning clas-
sifiers were trained and tested on features from the same splits of patients used in the deep learning methods. 
The detailed feature selection methods and classifiers used are shown in Supplementary Table 1. Each classifier 
was trained on the training set thirteen times using thirteen different feature selection methods and validated 
through tenfold cross-validation. Classifiers were trained on 10, 30, 50, and 100 selected features and perfor-
mances were compared on the testing set. In addition to performance, the stability of both classifiers and feature 
selection methods was recorded. Relative standard deviation (RSD%) was calculated for classifier stability. Each 
classifier was trained and validated on different sub-samples of the data 100 times, and RSD % was calculated by 
the standard deviation of AUC divided by the mean of AUC for these 100 trials. A stability measure proposed 
by Nogueira et al. was used for feature selection  stability19. This function quantified stability of feature selection 
as the similarity between selected feature sets obtained by the same method over multiple trials. The same fea-
ture selection method was run on varying sets of training data 100 times, selecting 50 features at a time. With 
this data, the stability function outputted a number between 0 and 1, where 1 is most stable, or least variance 
between selected features and 0 is least stable, or most variance between selected features. The performance 
of the top-performing classifier was then compared to the performance of an automated optimized machine 
learning pipeline computed by TPOT, a Tree-Based Pipeline Optimization Tool that chooses the most optimal 
machine learning pipeline for an inputted dataset through genetic programming. To reduce stochasticity, 10 
iterations of the TPOT software were run on the training and testing sets. The best-performing hand-optimized 
model and the best-performing TPOT pipeline were then tested on the final external testing set.
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Statistical analysis. For the radiomics analysis methods, the following performance metrics were calcu-
lated: accuracy, sensitivity, specificity, and area under Receiver Operating Characteristic curve (ROC AUC). In 
addition, the median, mean, and standard deviation ROC AUC was calculated for each classifier’s performance 

Table 1.  Patient demographics, clinical features and tumor characteristics for overall cohort in training, 
validation, and test sets. *Statistically significant.

Training set Validation set Test set

P valueN = 351 N = 88 N = 43

Age, median, range (years) 60.0 (27–92) 62.5 (30–81) 64.0 (38–85) 0.004*

Gender 0.092

 Male 236 (67.2%) 61 (69.3%) 42 (82.4%)

 Female 115 (32.8%) 27 (30.7%) 9 (17.6%)

Race 0.034*

 White 241 (68.7%) 55 (62.5%) 45 (88.2%)

 Black 60 (17.1%) 21 (23.9%) 6 (11.8%)

 Asian 32 (9.1%) 9 (10.2%) 0 (18.1%)

 Unknown 18 (5.1%) 3 (3.4%) 0 (4.1%)

 Von Hipple– Lindau syndrome 6 (1.7%) 1 (1.1%) 0 (0%) 0.425

Subtype < 0.001*

 Clear cell 249 (71.0%) 66 (75.0%) 22 (43.1%)

 Papillary 78 (22.2%) 9 (10.2%) 22 (43.1%)

 Chromophobe 1 (0.3%) 3 (3.4%) 5 (9.8%)

 Clear cell papillary 15 (4.3%) 8 (9.1%) 0 (0%)

 Multilocular cystic 3 (0.9%) 1 (1.1%) 2 (3.9%)

 Unclassified 5 (1.4%) 1 (1.1%) 0 (0%)

Laterality 0.820

 Left 166 (47.3%) 40 (45.5%) 26 (51.0%)

 Right 185 (52.7%) 48 (54.5%) 25 (49.0%)

Location 0.367

 Upper 116(33.0%) 36 (40.9%) 13 (25.5%)

 Interpole 142 (40.5%) 33 (37.5%) 21 (41.2%)

 Lower 93 (26.5%) 19 (21.6%) 17 (33.3%)

 Tumor size, median, range (cm) 3.5 (0.9–18.7) 3.3 (1.0–17.2) 3.0 (0.2–15.5) 0.693

 Renal vein invasion 36 (10.3%) 9 (10.2%) 0 (13.3%) 0.006*

Histological grade 0.351

 Low grade 226 (64.4%) 59 (67.0%) 38 (74.5%)

 High grade 125 (35.6%) 29 (33.0%) 13 (25.5%)

T stage 0.330

 T1a 174 (49.6%) 48 (54.5%) 33 (64.7%)

 T1b 66 (18.8%) 15 (17.0%) 11 (21.6%)

 T2a 11 (3.1%) 2 (2.3%) 1 (2.0%)

 T2b 5 (1.4%) 2 (2.3%) 1 (2.0%)

 T3a 48 (13.7%) 11 (12.5%) 1 (2.0%)

 T3b 10 (2.8%) 1 (1.1%) 0 (0%)

 T3c 0 (0%) 0 (0%) 0 (0%)

 T4 0 (0%) 1 (1.1%) 0 (0%)

 Unavailable 37 (10.5%) 8 (9.1%) 4 (7.8%)

 Lymph node metastasis 5 (1.4%) 0 (0%) 0 (0%) 0.764

 Distant metastasis 14 (4.0%) 5 (5.7%) 0 (0%) 0.094

Institution < 0.001*

 HUP 299 (85.2%) 75 (85. 2%) 0 (0%)

 SXY 8 (2.3%) 3 (3.4%) 0 (0%)

 PPH 12 (3.4%) 3 (3.4%) 0 (0%)

 TCIA 32 (9.1%) 7 (8.0%) 0 (0%)

MAY 0 (0%) 0 (0%) 51 (100.0%)
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on the testing set. The ROC curve and Precision-Recall curve were plotted to measure the performance of the 
binary classifiers. Average accuracy, sensitivity, and specificity with 95% confidence interval were calculated 
using the adjusted Wald method. The p-values quantifying the differences in performance between the TPOT 
and hand-optimized pipelines were calculated using the binomial test for specificity, sensitivity, and accuracy 
and the Wilcoxon test for ROC-AUC 20.

Code availability. The implementation of the radiomics feature extraction was based on “radiomics-
develop” package of McGill  University21,22. This code is available for public use on Github at https ://githu b.com/
mvall ieres /radio mics-devel op. The auto-ML script utilized the TPOT package from the Epistasis Lab and can be 
found at https ://githu b.com/Epist asisL ab/tpot. The implementation of the machine learning models was based 
on the sklearn package of Python. To allow others to develop similar models, the code is publicly available at 
https ://githu b.com/subha nik19 99/Radio mics-ML.

Results
Patient and tumor characteristics. Supplementary Table 2 shows the clinicopathologic characteristics 
of our cohort. High grade RCCs were significantly larger than low grade RCCs (mean size, 4.9 cm vs. 2.7 cm, 
p < 0.001). Renal vein invasion was found in 34 high-grade RCC lesions, whereas only 11 low grade RCC lesions 
presented with this feature (p < 0.001). There was significant difference in T stage between the two groups 
(p < 0.001). Presence of lymph node involvement and distance metastasis were more common in high-grade 
RCC than low-grade RCC (p = 0.004, and p = 0.001, respectively).

Internal testing results. The radiomics analysis showed that the Bayesian classifier (BY) had the highest 
median and mean validation ROC AUC scores in predicting the grade of renal tumors. Specifically, BY achieved 
a median ROC AUC of 0.61 (95% CI 0.51–0.70) and a mean ROC AUC of 0.60 (95% CI 0.50–0.69). The median 
and mean ROC AUCs for all the classifiers are shown in Supplementary Table  4. A heatmap displaying the 
validation ROC AUCs of the classifier and feature selection methods on 50 selected features is shown in Fig. 1. 
The Fischer score (FSCR) feature selection method corresponded to the highest median and mean validation 
ROC AUC among classifiers. Specifically, FSCR corresponded to a median validation ROC AUC of 0.58 (95% 
CI 0.48–0.67) and mean ROC AUC of 0.56 (95% CI 0.46–0.65). The median and mean ROC AUCs for all the 
feature selection methods are shown in Supplementary Table 5. Stability measures of all the classifiers and fea-
ture selection methods are shown in Supplementary Tables 6 and 7. The TPOT pipeline specifics are shown in 
Supplementary Table 8. Out of the 10 TPOT pipelines, Pipeline 6 had the highest median and mean validation 
ROC AUC. The RandomForestClassifier exported by TPOT in Pipeline 6 achieved a validation ROC AUC of 
0.67 (95% CI 0.57–0.75) as shown in Table 2. The validation performances of the other 9 TPOT pipelines are also 
shown in Table 2. The performance of BY was compared to the performance of the Pipeline 6 exported by TPOT. 
In comparing the internal testing results, the Bayesian classifier’s best performance produced a slightly higher 
validation ROC AUC than that of the best TPOT-exported pipeline (0.68 vs. 0.67). Heatmap of ROC-AUCs on 
internal testing set of classifier and feature selection combinations for 10, 30, 100 selected features were shown 
in Supplementary Figs. 1–3.

External testing results. As the top-performing classifier and feature selection model, BY and FSCR were 
then tested on the final external testing set. This hand-optimized pipeline achieved a test ROC AUC of 0.59 (95% 
CI 0.49–0.68), accuracy of 0.77 (95% CI 0.68–0.84), sensitivity of 0.38 (95% CI 0.29–0.48), and a specificity of 
0.86 (95% CI 0.78–0.92). The top-performing TPOT exported pipeline was also tested on the external test set 
for comparison. This pipeline achieved a test ROC AUC of 0.60 (95% CI 0.50–0.69), accuracy of 0.81 (95% CI 
0.72–0.88), sensitivity of 0.12 (95% CI 0.14–0.30), and specificity of 0.97 (95% CI 0.87–0.97). In comparing the 
performance of the TPOT-exported pipeline to the BY/FSCR pipeline, the TPOT pipeline achieved a higher test 
ROC AUC (0.60 vs. 0.59, p = 0.94), a higher test accuracy (0.81 vs. 0.77, p = 0.71), a lower sensitivity (0.13 vs. 

Table 2.  Comparison results of 10 TPOT models. a Model 6 was selected as the final TPOT model for further 
external validation.

Model index AUC Accuracy Sensitivity Specificity Precision Hamming loss Kappa

1 0.52 0.58 0.11 0.92 0.43 0.42 0.03

2 0.65 0.73 0.46 0.85 0.43 0.27 0.33

3 0.65 0.75 0.38 0.92 0.44 0.25 0.34

4 0.65 0.75 0.38 0.92 0.44 0.25 0.34

5 0.63 0.73 0.38 0.88 0.41 0.28 0.29

6a 0.67 0.76 0.42 0.92 0.47 0.24 0.38

7 0.61 0.71 0.35 0.86 0.38 0.29 0.23

8 0.55 0.71 0.15 0.95 0.35 0.29 0.13

9 0.65 0.75 0.38 0.92 0.44 0.25 0.34

10 0.61 0.73 0.31 0.92 0.40 0.27 0.26

https://github.com/mvallieres/radiomics-develop
https://github.com/mvallieres/radiomics-develop
https://github.com/EpistasisLab/tpot
https://github.com/subhanik1999/Radiomics-ML
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0.38, p = 0.07), and a higher specificity (0.97 vs. 0.86, p = 0.004). The ROC curves for both the manual expert-
optimized and TPOT pipelines are shown in Fig. 2.

Discussion
Prior to the development of our ML-based MRI radiomics study, manual MRI characteristics, such as appar-
ent diffusion coefficient (ADC) measurements, have been used to differentiate low and high grade RCC. In 
such cases, ADC measurements are taken using different region-of-interest (ROI) placement techniques to 
distinguish between low and high grade. A study using ADC differentiation by Aslan et al. demonstrates an 
accuracy value of 0.75 whereas our study displays a top accuracy of 0.8123. ML-based radiomics methods have 
potential to enhance differentiation based on grade compared to manual ADC computation. In this study, we 
specifically compared automatic and manually optimized machine learning pipeline using MR-based radiom-
ics in discriminating between low and high grade RCCs. The TPOT-exported pipeline and the top manually 
optimized pipeline achieved similar accuracy. When a machine learning model is implemented as a tool for RCC 
risk stratification, high specificity is the most important performance measure. With higher specificity, low risk 
patients can potentially be offered less invasive alternative treatment to preserve renal function and minimize 
long-term complications. In our study, TPOT generated a pipeline which had higher specificity than the top 
manually optimized pipeline on the external test set.

Previous studies have investigated the value of CT-based radiomics in distinguishing low from high Fuhr-
man grade RCC 7–9. Texture features can quantify tumor heterogeneity and were found to be correlated with 
Fuhrman  grade24,25. Shu et al. selected CT radiomics features from corticomedullary (CMP) and nephrographic 
(NP) phase using least absolute shrinkage and selection operator (LASSO) and constructed logistic regression 

GLM LDA KNN DT BY SVM BAG Nnet RF BST
CHSQ 0.52 0.52 0.53 0.47 0.57 0.5 0.59 0.54 0.52 0.53
ANOVA 0.6 0.58 0.46 0.44 0.61 0.51 0.5 0.6 0.49 0.58
TSCR 0.58 0.57 0.5 0.51 0.63 0.5 0.55 0.59 0.49 0.5
FSCR 0.6 0.58 0.46 0.44 0.61 0.51 0.55 0.6 0.6 0.58
RELF 0.51 0.49 0.5 0.43 0.62 0.5 0.51 0.53 0.47 0.6
WLCX 0.5 0.58 0.43 0.55 0.58 0.51 0.6 0.5 0.5 0.64
MIFS 0.54 0.56 0.51 0.45 0.63 0.49 0.53 0.58 0.52 0.5
MRMR 0.55 0.61 0.51 0.43 0.64 0.49 0.48 0.48 0.48 0.43
CIFE 0.52 0.55 0.54 0.5 0.48 0.49 0.57 0.59 0.5 0.45
JMI 0.59 0.57 0.56 0.52 0.61 0.49 0.52 0.55 0.55 0.49

CMIM 0.51 0.59 0.55 0.47 0.58 0.49 0.53 0.62 0.5 0.55
ICAP 0.51 0.59 0.55 0.54 0.58 0.49 0.53 0.4 0.46 0.55
DISR 0.54 0.48 0.55 0.69 0.54 0.49 0.59 0.55 0.54 0.54

Figure 1.  Heatmap of ROC-AUCs on internal validation set of classifier and feature selection combinations for 
50 selected features.

Figure 2.  ROC curve plotted for the hand-optimized radiomics pipeline and the TPOT pipeline on the external 
test set.
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model to discriminate between high and low grades. The model combining the features from both CMP and NP 
achieved the highest accuracy of 0.78 and ROC of 0.828. Ding et al. used similar method to build a CT-radiomics 
based predictive model identifying 145 high-grade RCC from 61 low-grade RCCs with an AUC of 0.88 in train-
ing cohort and 0.77 in testing  cohort7. Bektas et al. combined 5 machine learning classifiers with wrapper-based 
feature selection on texture features to differentiate 31 low-grade from 23 high-grade RCCs. The best model 
created using support vector machine achieved an accuracy of 0.85 and ROC of 0.869. The referenced studies 
proved CT radiomics was useful and promising for non-invasive prediction of Fuhrman grade, but due to only 
having a cohort from a single institution, these predictive models were not validated externally in an independent 
cohort, which makes generalization questionable. However, since we do not have the datasets or code of these 
referenced studies, we cannot make a direct comparison on performance. Overall, our study rigorously evaluated 
a variety of machine learning approaches and included external validation to assess for expected performance 
on deployment. Additionally, there are a few quantitative differences in the methodologies used in our study 
and those used in the studies above. Compared to our external test set of 43 patients, these studies predicted 
Fuhrman grade on a greater number of patients i.e. 92, 260, and 54. Additionally, these studies utilized more 
targeted feature selection methodology, computing interclass correlation coefficients (ICC) between feature types, 
resulting in a significantly fewer number of selected features i.e. 13, 35, and 4. The hand-optimized pipeline in 
our study selected 50 features through a holistic statistical approach on all feature types, thus streamlining the 
process, reducing feature bias, but potentially affecting the performance.

Compared with previous radiomics studies, our study has several differences. First, we chose MRI instead of 
CT. MRI provides multi-parametric sequence, which theoretically provide more information than simple attenu-
ation differences measured in Hounsfield units on CT. Second, we have investigated and compared a large group 
of feature selection methods and classifiers for radiomics-based Fuhrman grade prediction, and the model with 
highest performance was then compared with an automated optimized machine learning pipeline computed by 
TPOT. Third, our cohort come from five institutions, one of which was separated as an independent test set to 
implement external validation strategy, which none of the previous studies have attempted.

In this study, we investigated 13 different filter-based feature selection methods and 10 machine-learning clas-
sification methods belonging to 10 different classifier families. We only used filter-based approaches because they 
are computationally more efficient and less prone to overfitting than the wrapper and embedded  methods26,27. 
Furthermore, filter methods are classifier independent, which allow separation of the feature selection and mod-
eling and could increase the generalizability of each component and hence the overall  analysis12. Our results show 
that the Bayesian classifier yields the highest predictive performance among the 10 classifiers. Bayesian classifier 
is fast and simple to train and good at dealing with small data, but have difficulties with complex datasets and 
shows inferior performance on large  datasets28,29. The best TPOT-exported pipeline was created using random 
forest. Random forests have become particularly popular, due to several advantages that include fast training 
times, the ability to use high dimensional data (where number of features are significantly larger than the number 
of patients) and high generalizability, but it has been observed to have a problem with  overfitting12,30. The best 
TPOT-exported pipeline performed similarly to the top manually optimized pipeline on the internal test set. On 
the external test set, both pipelines experienced a slight dip in performance, but TPOT slightly outperformed 
the manually optimized pipeline. The TPOT performance on the external test set is a strength of our study, sug-
gesting that the performance of autoML may be more generalizable.

Limitations of this study include the retrospective selection of only patients with available Fuhrman grade, 
which may have resulted in selection bias. Second, Fuhrman grade was determined as recorded in the pathol-
ogy report of the original pathologist. Review by additional pathologists was not feasible due to missing slides 
and limited resources. Third, segmentation was performed by a single radiologist with 5 years of experience. 
Automatic renal tumor segmentation will be incorporated in future work. Fourth, the performance was still 
suboptimal for real-time clinical use. However, the main goal of our paper was to compare the performance of 
autoML with that manual expert optimized pipeline on external testing.

In this study, TPOT was shown to differentiate low from high histological grade RCC with performance 
metrics that are slightly better than expert manual pipeline optimization on an external validation set. These 
results suggest that autoML-based radiomics based on MRI, without the requirement of a machine learning 
expert, may be a valid strategy to predict RCC characteristics.
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