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OBJECTIVE—An increase in the rate of gluconeogenesis is
largely responsible for the hyperglycemia in individuals with type
2 diabetes, with the antidiabetes action of metformin being
thought to be achieved at least in part through suppression of
gluconeogenesis.

RESEARCH DESIGN AND METHODS—We investigated
whether the transcription factor KLF15 has a role in the regula-
tion of gluconeogenesis and whether KLF15 participates in the
antidiabetes effect of metformin.

RESULTS—Here we show that KLF15 regulates the expression
of genes for gluconeogenic or amino acid–degrading enzymes in
coordination with the transcriptional coactivator peroxisome
proliferator–activated receptor � coactivator 1�. Liver-specific
ablation of KLF15 in diabetic mice resulted in downregulation of
the expression of genes for gluconeogenic or amino acid cata-
bolic enzymes and in amelioration of hyperglycemia. Exposure
of cultured hepatocytes to metformin reduced the abundance of
KLF15 through acceleration of its degradation and downregula-
tion of its mRNA. Metformin suppressed the expression of genes
for gluconeogenic or amino acid–degrading enzymes in cultured
hepatocytes, and these effects of metformin were attenuated by
restoration of KLF15 expression. Administration of metformin to
mice inhibited both the expression of KLF15 and glucose pro-
duction in the liver, the latter effect also being attenuated by
restoration of hepatic KLF15 expression.

CONCLUSIONS—KLF15 plays an important role in regulation
of the expression of genes for gluconeogenic and amino acid–
degrading enzymes and that the inhibitory effect of metformin on
gluconeogenesis is mediated at least in part by downregulation of
KLF15 and consequent attenuation of the expression of such
genes. Diabetes 59:1608–1615, 2010

A
n increase in the rate of gluconeogenesis is one
of the most important pathological disorders in
individuals with diabetes. Regulation of glu-
coneogenesis in the liver is thought to be

achieved through control of the expression of genes for
gluconeogenic enzymes such as phosphoenolpyruvate car-
boxykinase (PEPCK) and glucose-6-phosphatase (G6Pase)
(1). A variety of transcription factors, including cAMP-
responsive element-binding protein (CREB), forkhead fac-
tor O1, and signal transducer and activator of transcription
3, as well as transcriptional coactivators such as CREB-
binding protein (CBP), CREB-regulated transcription co-
activator 2 (CRTC2, previously known as transducer of
regulated CREB activity 2), and peroxisome proliferator–
activated receptor � coactivator 1� (PGC1�) have been
shown to participate in the hormonal regulation of genes
for gluconeogenic enzymes in the liver (2–8).

We have previously shown that the hepatic abundance
of Krüppel-like factor 15 (KLF15), a transcription factor
that is highly expressed in the liver, is upregulated in
fasted or diabetic mice and that forced expression of
KLF15 in cultured hepatocytes increased the expression of
the PEPCK gene (9), suggesting that KLF15 contributes to
the regulation of gluconeogenesis in the liver. Mice defi-
cient in KLF15 were subsequently found to manifest lower
blood glucose levels in the fasted state as well as a smaller
increase in blood glucose concentration when challenged
by gluconeogenic substrates compared with control ani-
mals (10), confirming the notion that KLF15 plays an
important role in gluconeogenesis. KLF15-deficient mice
also manifested a decrease in the expression of genes for
enzymes that mediate amino acid degradation, including
those for alanine aminotransferase 1 (ALT1), 4-hydroxy-
phenylpyruvate dioxygenase (HPD), proline dehydroge-
nase (ProDH), and tryptophan 2,3-dioxygenase (TDO2)
(10). Given that amino acids are major precursors for
gluconeogenesis and must be catabolized before they can
be used in gluconeogenic reactions, the suppression of the
expression of genes for amino acid–degrading enzymes
probably contributes to the downregulation of gluconeo-
genesis in KLF15-deficient mice.

We have now further investigated the role of KLF15 in
the regulation of gluconeogenesis. We also examined
whether KLF15 might participate in the antidiabetes action
of metformin, a drug that suppresses hepatic glucose
production through inhibition of gluconeogenesis (11). We
found both that KLF15 regulates the hepatic expression of
genes for amino acid–degrading and gluconeogenic en-
zymes in coordination with the transcriptional coactivator
PGC1� and that KLF15 plays an important role in the
suppression of hepatic glucose production by metformin.
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RESEARCH DESIGN AND METHODS

Recombinant adenoviruses. The nucleotide sequence corresponding to
nucleotides 1,105–1,123 of mouse KLF15 mRNA (NM_023184) was synthe-
sized as complementary antiparallel oligomers with a loop sequence (ACGT
GTGCTGTCCGT): 5�-gtttGCGGTAAGATGTACATCAAACGTGTGCTGTCCGT
TTGGTGTACATCTTGCTGCTTTTT-3� (forward) and 5�-atgcAAAAAGCAG
CAAGATGTACACCAAACGGACAGCACACGTTTGATGTACATCTTACCGC-3�
(reverse). The forward and reverse oligonucleotides were annealed and then
ligated into pcPURmU6icassette (Takara Bio, Ohtsu, Japan), which contains
the mouse U6 gene promoter. For production of adenoviral vectors encod-
ing the KLF15 short hairpin RNA (shRNA) or containing the U6 promoter
alone, the DNA sequence corresponding either to the shRNA construct
together with the U6 promoter or to the U6 promoter alone was excised from
the pcPURmU6icassette vector and ligated into the pAxcwit cosmid
cassette (Takara Bio). Adenoviruses encoding KLF15 shRNA (AxshKLF15)
or containing the U6 promoter alone (AxU6, control) were then generated
with the use of an Adenovirus Expression Vector Kit (Takara Bio, Shiga,
Japan) as described (12). For production of an adenoviral vector encoding
Flag-tagged KLF15, mouse KLF15 cDNA was generated by PCR and ligated
into pCMV-tag2A (Stratagene, La Jolla, CA), which contains the DNA sequence
for the Flag tag. The DNA sequence for Flag-KLF15 was then excised from the
pCMV-tag2A vector, and an adenovirus encoding the tagged protein was
generated with the use of an Adenovirus Expression Vector Kit as described
previously (12). Adenoviral vectors for mouse PGC1� and for �-galactosidase
were as described previously (5,9).
Gene expression analysis. The expression of different genes was analyzed
by RT and real-time PCR analysis with the use of a Sequence Detector (model
7900; Applied Biosystems, Carlsbad, CA) and with 36B4 mRNA as the invariant
control, as described previously (5). The primers for mouse and rat G6Pase,
PEPCK, and PGC1� as well as for mouse Glut2, glucokinase, and pyruvate
kinase were as described previously (5,9,13,14), and those for mouse and rat
KLF15, mouse and rat HPD, mouse ALT1, mouse ProDH, mouse TDO2, rat
CREB, and rat CRTC2 are described in the supplementary Methods (available
in an online appendix at http://diabetes.diabetesjournals.org/cgi/content/full/
db09-1679/DC1).
Immunoblot and ubiquitination analyses. Polyclonal antibodies to KLF15
were generated as described previously (9). All other antibodies were from
commercial sources, with details available on request. Nuclear extracts of
mouse liver were prepared as described previously (15).
Cells and liver-specific depletion of KLF15 in mice. Rat hepatocytes
(HL1c) (16) were provided by D.K. Granner, and primary cultured rat
hepatocytes were prepared as described previously (9). HL1c cells or primary
rat hepatocytes were exposed to the permeable cAMP analog 8-(4-chlorophe-
nylthio)-cAMP (8-CPT-cAMP) or dexamethasone, as indicated, to induce
KLF15 expression. All animal experiments were approved by the animal
experimentation committee of Kobe University Graduate School of Medicine.
Eight-week-old male C57BL/6 or db/db mice were injected via the tail vein with
AxshKLF15 or AxU6 (1.0 � 109 plaque-forming units [pfu]) and were subjected
to experiments at the indicated times thereafter. For pyruvate challenge,
pyruvate (0.5 g/kg body mass) was injected as described previously (17).
Clamp analysis. An intravenous catheter was implanted into the cervical vein
of 8-week-old male C57BL/6 mice, 4 days after which the mice were infected
with an adenoviral vector encoding Flag-KLF15 or �-galactosidase via the tail
vein at a dose of 2.4 � 108 pfu. Four days after virus injection, the mice were
deprived of food for 16 h and then subjected to clamp analysis. The animals
were primed with [3-3H]glucose (0.05 �Ci/min) for 90 min, and the euglycemic
clamp was initiated by intravenous infusion of metformin (5 mg � kg–1 � min–1),
somatostatin (3 �g � kg–1 � min–1), and sufficient glucose to maintain the blood
glucose concentration at 80–110 mg/dl. The clamp was maintained for 4 h, and
hepatic glucose production (HGP) during the clamp was determined as
described (18,19). To calculate the percent change in HGP, we subtracted the
value at the end of the clamp from the value before the infusion of metformin
and then divided the difference by the value before the infusion of metformin.
Statistical analysis. Data are presented as means � SEM and were com-
pared between or among groups by a two-tailed unpaired Student t test or by
one-way ANOVA followed by a Fisher least significant difference test. P � 0.05
was considered statistically significant.

RESULTS

Role of KLF15 in regulation of gluconeogenic genes.
We have previously shown that forced expression of
KLF15 in cultured hepatocytes increased both the expres-
sion of the PEPCK gene and the activity of the PEPCK
gene promoter (9). The KLF class of transcription factors
bind to a DNA region that conforms to CACCC (20). With

the use of a chromatic immunoprecipitation assay, we
have now shown that KLF15 binds to a region of the
PEPCK gene that contains this consensus binding motif
(supplementary Fig. 1, available in the online appendix).
Furthermore, KLF15 did not increase the activity of a
modified form of the PEPCK gene promoter harboring
mutations in this motif (supplementary Fig. 1), suggesting
that KLF15 directly binds to and regulates the gene for
PEPCK. We next examined the effect of KLF15 depletion
by RNA interference (RNAi) on the expression of PEPCK
and G6Pase genes in cultured hepatocytes. Infection of the
cells with an adenoviral vector encoding a shRNA specific
for KLF15 mRNA (AxshKLF15) resulted in a decrease in
the abundance of KLF15 mRNA (Fig. 1A). Although the
amounts of mRNAs for the amino acid–degrading enzymes
ALT1 and ProDH in these cells were too small for quanti-
tative evaluation (data not shown), that of HPD mRNA
was decreased by depletion of KLF15. Infection with
AxshKLF15 also reduced the abundance of PEPCK and
G6Pase mRNAs without affecting that of CREB, PGC1�, or
CRTC2 mRNAs (Fig. 1A), the products of all of which
contribute to the regulation of gluconeogenic genes
(2,3,7).

Given that PGC1� is thought to play an important role in
the regulation of gluconeogenesis in the liver, we next
examined whether this transcriptional coactivator contrib-
utes to the regulation of gluconeogenic genes by KLF15.
Consistent with previous observations (9,10), forced ex-
pression of KLF15 in cultured hepatocytes resulted in an
increase in the abundance of HPD and PEPCK mRNAs
(Fig. 1B). Forced expression of PGC1� together with
KLF15 increased the abundance of PEPCK and HPD
mRNAs in a synergistic manner. Coimmunoprecipitation
analysis revealed that ectopically expressed or endoge-
nous KLF15 and PGC1� form a complex in cultured
hepatocytes (supplementary Fig. 2). These results thus
suggested that KLF15 regulates the expression of genes for
gluconeogenic or amino acid–degrading enzymes in coor-
dination with PGC1�. Forced expression of PGC1� alone
increased the abundance of PEPCK, G6Pase, and HPD
mRNAs, and depletion of KLF15 by RNAi attenuated these
effects (Fig. 1C), indicating the importance of KLF15 in
PGC1�-dependent expression of the genes for gluconeo-
genic or amino acid–degrading enzymes. However, the
effects of KLF15 on the expression of these genes appear
not to be totally dependent on PGC1�, given that forced
expression of KLF15 alone increased the abundance of
PEPCK and HPD mRNAs in HL1c cells (Fig. 1B), which
do not express endogenous PGC1� (Fig. 1C).
Effects of acute depletion of KLF15 in mouse liver.
We next investigated the effects of acute depletion of
KLF15 in the liver of living animals. Systemic infusion of
adenoviral vectors encoding shRNAs results in specific
ablation of target proteins in the liver (3,7,21). Injection of
C57BL/6 mice with AxshKLF15 resulted in a reduction in
the hepatic abundance of KLF15 mRNA as well as in that
of PEPCK and G6Pase mRNAs, whereas the amounts of
mRNAs for PGC1�, GLUT2, glucokinase, and pyruvate
kinase, all of which contribute to hepatic glucose metabo-
lism, were not affected (Fig. 2A). Infection with AxshKLF15
also significantly reduced the hepatic abundance of ALT1
and TDO2 mRNAs and tended to reduce the amounts of
HPD and ProDH mRNAs. Insulin-induced phosphorylation
of the insulin receptor, Akt, and forkhead factor O1 as well
as the abundance and phosphorylation of CREB in the
liver were not affected by infection with AxshKLF15
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(supplementary Fig. 3, available in an online appendix).
Blood glucose and plasma insulin levels were not altered
in mice injected with AxshKLF15 in the fasted state (Fig.
2B), suggesting that gluconeogenesis was not significantly
reduced in the fasted state. However, plasma insulin
concentration in the fed state was reduced in these
animals, possibly reflecting suppression of gluconeogene-
sis in the fed state. Pyruvate is a substrate for gluconeo-
genesis, and the increase in blood glucose level induced by
pyruvate challenge is dependent on the activity of glu-
coneogenic enzymes (17). The increase in the blood glu-
cose level during a pyruvate challenge was attenuated in

mice injected with AxshKLF15 (Fig. 2C). These results
thus suggested that acute depletion of KLF15 in the liver of
mice results in the suppression both of hepatic gluconeo-
genesis and of the expression of genes for gluconeogenic
and amino acid–degrading enzymes.

We have previously shown that the hepatic abundance
of KLF15 is increased in db/db mice (9), which lack
functional leptin receptors and develop obesity and diabe-
tes. We next tested the effects of acute depletion of hepatic
KLF15 in db/db mice. Downregulation of the hepatic
abundance of KLF15 by infection with AxshKLF15 re-
duced hepatic expression of both the genes for the glu-
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FIG. 1. Regulation by KLF15 of genes related to gluconeogenesis or amino acid degradation. A: Rat primary cultured hepatocytes that had been
infected with an adenovirus encoding KLF15 shRNA (shKLF15) or with a control virus containing the U6 gene promoter alone (Cont) at a
multiplicity of infection (MOI) of 10 pfu per cell were incubated for 6 h in the presence of the cell-permeable cAMP analog 8-CPT-cAMP at 100
�mol/l. The abundance of the indicated mRNAs was then determined by RT and real-time PCR analysis. B: HL1c rat hepatocytes that had been
infected with adenoviruses encoding KLF15, PGC1�, or LacZ at the indicated MOIs (plaque-forming units per cells) were subjected to
immunoblot (IB) analysis of PGC1� and KLF15 (left panel) or to RT and real-time PCR analysis of PEPCK and HPD mRNAs (middle and right

panels). C: HL1c cells that had been infected (or not) with adenoviruses either encoding KLF15 shRNA, containing the U6 promoter alone (Cont),
or encoding PGC1� (each at an MOI of 10 pfu/cell) were subjected to RT and real-time PCR analysis of the indicated mRNAs. All quantitative data
are means � SEM from three independent experiments. *P < 0.05, **P < 0.01.
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coneogenic enzymes PEPCK and G6Pase and those for the
amino acid–degrading enzymes ALT1, HPD, and ProDH in
db/db mice (Fig. 2D). The abundance of PGC1�, GLUT2,

glucokinase, and pyruvate kinase mRNAs was not af-
fected. The insulin-induced phosphorylation and the abun-
dance of different signaling molecules in the liver of db/db
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mice were again not affected by infection with AxshKLF15
(supplementary Fig. 3). Blood glucose concentrations ei-
ther during pyruvate challenge (Fig. 2E) or in the ran-
domly fed state (Fig. 2F) were decreased in db/db mice
injected with AxshKLF15 compared with those in animals
injected with a control virus. Neither food consumption
nor body mass differed between db/db mice injected with
AxshKLF15 and those injected with the control virus (data
not shown). These results thus suggested that KLF15 is a
physiological regulator of gluconeogenesis and is a poten-
tial therapeutic target in diabetes. Blood glucose level in
the randomly fed state was not decreased in C57BL/6 mice
infected with AxshKLF15 (Fig. 2B) despite the similar
reduction of KLF15 and gluconeogenic mRNAs (Fig. 2A
and D). It is possible that hepatic gluconeogenesis is
enhanced in db/db mice and, therefore, the glucose-lower-
ing effects of AxshKLF15 were greater in these mice than
in C57BL/6 mice.
Role of KLF15 in metformin action. The antidiabetes
drug metformin inhibits hepatic glucose production
through suppression of gluconeogenesis (11). We there-
fore investigated whether KLF15 contributes to the action
of metformin. Metformin inhibited expression of the

PEPCK and G6Pase genes in cultured hepatocytes (Fig.
3A), consistent with previous results (22). It also inhibited
the expression of endogenous KLF15 at the mRNA and
protein levels as well as that of HPD at the mRNA level.
Furthermore, metformin downregulates the abundance of
ectopic KLF15 protein and increased the amount of ec-
topic KLF15 mRNA in cultured hepatocytes (supplemen-
tary Fig. 4). Treatment of the cells with cycloheximide, an
inhibitor of protein synthesis, resulted in a reduction in the
amount of KLF15 protein, and this effect was accelerated
by metformin (supplementary Fig. 4). The metformin-
induced loss of KLF15 protein was prevented by the
proteasome inhibitor MG132, and metformin promoted the
ubiquitination of KLF15 in cultured cells (supplementary
Fig. 4), suggesting that metformin induces the proteasomal
degradation of KLF15 by promoting its ubiquitination.

To evaluate the relevance of KLF15 to metformin action,
we restored the expression of KLF15 in metformin-treated
cells. Forced expression of KLF15 inhibited the downregu-
lation of HPD and PEPCK mRNAs by metformin (Fig. 3B
and C). Indeed, restoration of the abundance of KLF15 to
a level similar to that of cells not treated with metformin
virtually abolished the effects of the drug on the amounts
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of HPD and PEPCK mRNAs, indicating that downregula-
tion of KLF15 is necessary for the inhibitory effects of
metformin on the expression of genes for gluconeogenic
and amino acid–degrading enzymes.

Feeding of db/db mice with chow containing metformin
reduced blood glucose concentration (Fig. 4A) as well as
hepatic expression of the genes for KLF15, PEPCK, ALT1,
HPD, and ProDH (Fig. 4B), supporting the notion that
KLF15 contributes to metformin action in living animals.
To validate this notion, we evaluated the effects of met-
formin in mice by euglycemic clamp analysis in which
metformin was continuously infused. Metformin infusion
reduced the abundance of KLF15 in the liver (Fig. 4C) and
suppressed HGP (Fig. 4D). Restoration of KLF15 expres-
sion in the liver by adenoviral infection attenuated the

metformin-induced suppression of HGP (Fig. 4C and D).
Metformin infusion also stimulated the rate of glucose
disappearance, which reflects glucose disposal by peripheral
organs, but the restoration of KLF15 expression did not affect
metformin-induced glucose disappearance (8.03 � 0.467,
11.20 � 0.41, and 11.27 � 0.59 mg � kg–1 � min–1 for
�-galactosidase (LacZ)	vehicle, LacZ	metformin, and
KLF15	metformin, respectively; means � SEM), indicating
that restoration of KLF15 expression did not influence glu-
cose disposal by peripheral organs.

Finally, we found that the hepatic abundance of PEPCK,
G6Pase, ALT1, HPD, and ProDH mRNAs was decreased by
metformin in a manner sensitive to restoration of KLF15
expression in the liver (Fig. 4E). These results thus sug-
gested that the downregulation of KLF15 by metformin
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contributes to the regulation of HGP and of the expression
of genes related to this process by this drug. Given that the
attenuation of the effects of metformin on HGP and gene
expression in the liver by restoration of KLF15 expression
was only partial, molecules in addition to KLF15 probably
also contribute to metformin action.

DISCUSSION

We have shown that depletion of KLF15 by RNAi resulted
in downregulation of the expression of genes for gluconeo-
genic enzymes such as PEPCK and G6Pase in cultured
hepatocytes. Our results suggest that KLF15 binds directly
to the promoter region of the PEPCK gene and regulates
the expression of this gene in coordination with the
transcriptional coactivator PGC1�. Moreover, the acute
ablation of KLF15 specifically in the liver resulted in
suppression of gluconeogenic gene expression in mice.
These results thus indicate that KLF15 contributes to the
regulation of genes for gluconeogenic enzymes. Mice with
genetic KLF15 deficiency, however, were previously found
to exhibit reduced hepatic expression of genes for amino
acid catabolic enzymes but not of those for PEPCK and
G6Pase (10). This apparent discrepancy with our present
results might be attributable to a secondary effect of
inborn deficiency of KLF15 in the entire body that leads to
compensation for the lack of the transcription factor. In this
regard, phenotypes associated with acute downregulation or
genetic disruption of certain genes have previously been
found to differ (7,23,24). Given that pharmacological inter-
ventions rarely lead to the complete loss of function of a
target molecule, it is important to investigate the effects of
partial downregulation, as opposed to complete defi-
ciency, of specific gene products to evaluate their rele-
vance as therapeutic targets. We have shown that an 
60%
decrease in the abundance of KLF15 mRNA in the liver of
db/db mice ameliorated their hyperglycemia. Given that
the hepatic expression of KLF15 is increased in db/db mice
(9), KLF15 is not only a potential therapeutic target for
diabetes but also contributes to the disease pathogenesis
in this animal model.

We found that exposure of cultured hepatocytes to
metformin resulted in downregulation of the expression of
genes not only for PEPCK and G6Pase but also for the
amino acid–degrading enzyme HPD. Administration of
metformin to mice, either orally or intravenously, attenu-
ated the hepatic expression of genes for amino acid
catabolic enzymes including ALT1, HPD, and ProDH,
which are implicated in the regulation of gluconeogenesis
through control of the availability of gluconeogenic sub-
strate (10). It is thus possible that the effect of metformin
on HGP is mediated at least in part through the downregu-
lation of this class of enzymes. The relevance of KLF15 to
metformin-induced downregulation of the genes for glu-
coneogenic and amino acid–degrading enzymes was un-
derscored by the suppression of this action by forced
restoration of KLF15 expression. However, this suppres-
sion of metformin action in mouse liver by restoration of
KLF15 was only partial, suggesting that molecules in
addition to KLF15 probably also contribute to the effect of
metformin on gluconeogenesis. Transcriptional regulators
including CRTC2, small heterodimer partner, and CBP
have been implicated in metformin action (6,8,22). The
residual activity of metformin apparent after restoration of
hepatic KLF15 expression might thus be mediated by one
or more of these molecules.

Metformin suppressed the expression of endogenous
KLF15 at the mRNA level. The abundance of KLF15 mRNA
in cultured hepatocytes is increased by cAMP (9). It is thus
possible that CREB, together with its coactivators CBP or
CRTC2, participates in the regulation of KLF15 gene
expression. Given that the activities of both CBP and
CRTC2 are suppressed by metformin (6,8), these proteins
might contribute to the metformin-induced downregula-
tion of KLF15 mRNA. We also showed that metformin
accelerates the degradation of KLF15 protein, probably
through the promotion of its ubiquitination. Although the
mechanism by which metformin stimulates the ubiquitina-
tion of KLF15 remains to be elucidated, this drug effi-
ciently downregulates the abundance of KLF15 in cells by
both suppression of its mRNA and degradation of its
protein.

Overall, our present results suggest that KLF15 is an
important target of metformin in the glucose-lowering
effect of the drug and that the downregulation not only of
gluconeogenic enzymes but also of amino acid catabolic
enzymes in the liver contributes to the suppression of HGP
by metformin. Further investigation of the mechanisms by
which KLF15 is regulated in cells might provide additional
insight into metformin action as well as a basis for the
development of new antidiabetes drugs.
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