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Objective: To investigate the role of IL-18 in the regulation of osteogenic differentiation in
human bone marrow mesenchymal stem cells (hBMSCs).

Methods: To assess whether IL-18 affects the osteogenic differentiation of hBMSCs
through the c-MYC/SLC7A5 axis, IL-18 dose-response and time-course experiments
were performed to evaluate its impact on osteogenic differentiation. To confirm osteogenic
differentiation, alizarin red staining calcium measurement were performed. RT-qPCR and
western blotting were used to determine the expression levels of bone-specific markers
ALP, RUNX2, and BMP2, as well as those of SLC7A5 and c-MYC. Furthermore, SLC7A5
and c-MYC expression was evaluated via immunofluorescence. To elucidate the roles of
SLC7A5 and c-MYC in osteoblast differentiation, cells were transfected with SLC7A5 or
c-MYC siRNAs, or treated with the SLC7A5-specific inhibitor JPH203 and c-MYC-specific
inhibitor 10058-F4, and the expression of SLC7A5, c-MYC, and bone-specific markers
ALP, RUNX2, and BMP2 was assessed.

Results: Our results demonstrated that IL-18 increased calcium deposition in hBMSCs,
and upregulated the expression of SLC7A5, c-MYC, ALP, RUNX2, and BMP2. Silencing of
SLC7A5 or c-MYC using siRNA reduced the expression of ALP, RUNX2, and BMP2, while
IL-18 treatment partially reversed the inhibitory effect of siRNA. Similar results were
obtained by treating hBMSCs with SLC7A5 and c-MYC specific inhibitors, leading to
significant reduction of the osteogenesis effect of IL-18 on hBMSCs.

Conclusion: In conclusion, our results indicate that IL-18 promotes the osteogenic
differentiation of hBMSCs via the SLC7A5/c-MYC pathway and, therefore, may play an
important role in fracture healing. These findings will provide new treatment strategies for
delayed fracture healing after splenectomy.
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INTRODUCTION

In a preliminary clinical study, we previously demonstrated that
fracture healing was significantly delayed in patients undergoing
splenectomy, while inflammatory factors were significantly
reduced during the acute phase (Xiao et al., 2017; Xiao et al.,
2018). These results indicated that during certain stages of bone
healing, the inflammatory immune response at the fracture site is
indispensable (Claes et al., 2012). However, the specific role of
pro-inflammatory factors during fracture healing is still not clear.

Early inflammatory response is a key aspect of fracture repair.
The administration of anti-inflammatory drugs, such as steroids,
at the early stage of fracture healing is not advantageous based on
reported outcomes (Chan et al., 2015). In response to a fracture,
the inflammatory microenvironment formed around the edges of
the fracture recruits bone marrow mesenchymal stem cells
(BMSCs) to the site to participate in fracture repair (Reich
et al., 2020). In this microenvironment, BMSCs express
numerous cytokines and induce the release of a series of
cytokines, leading to the activation of autocrine and paracrine
pathways, BMSC homing, and osteoblast differentiation, which is
beneficial to fracture repair (Zhao et al., 2020). As inflammation
subsides, mesenchymal stem cells (MSCs) and other progenitor
cells proliferate and form granulation tissue, which is eventually
converted to a cartilaginous callus to stabilize the fracture site.

Interleukin 18 (IL-18), a pro-inflammatory cytokine, has been
shown to enhance the activity of natural killer (NK) cells, T cells,
B cells, and macrophages in the spleen to produce interferon-γ
(INF-γ), and plays an important role in inflammation and
immune responses (Apalset et al., 2014). Monocytes,
macrophages, osteoblasts, BMSCs, and other cells can also
express IL-18 (Vecchié et al., 2021). Furthermore, it has been
reported that IL-18 can inhibit collagen synthesis and regulate
osteoblast differentiation and function. IL-18 expression has been
detected in several organs and tissues, such as liver, kidney,
spleen, pancreas, lungs, and skeletal muscles. IL-18 plays an
important role in fracture repair by coordinating the homing
of BMSCs, as well as the differentiation of osteoblasts and
osteoclasts; however, the exact mechanism is still unclear
(Gibon et al., 2016; Lima Leite et al., 2020).

Amino acids play an important role in the maintenance of
cellular homeostasis and various physiological and biochemical
processes in cells. Solute carrier family 7, member 5 (SLC7A5) is a
Na+ and pH-independent large neutral amino acid transporter
involved in the uptake of essential amino acids, such as leucine,
phenylalanine, and valine. The gene is located on human
chromosome 16, contains 39,477 nucleotides and 10 exons,
and encodes a 507 amino acid 12-pass transmembrane protein
with a molecular mass of 55 kDa (Singh and Ecker, 2018).
SLC7A5 is highly expressed in the spleen, bone marrow, and
placenta, as well as by monocytes and macrophages. SLC7A5 can
act as a cellular nutrient signal receptor by regulating the
transport of amino acids and providing key components for
numerous cellular processes, such as cell proliferation and
differentiation (Kandasamy et al., 2018). It has been recently
reported that IL-18 can upregulate the expression of SLC7A5 in
NK cells, and that amino acid transport mediated by SLC7A5 has

an impact on the expression levels of c-MYC. When SLC7A5 is
inhibited, c-MYC protein levels drop rapidly, leading to a
significant reduction in NK cell metabolism (Liu et al., 2017;
Almutairi et al., 2019). Furthermore, research shows that c-MYC
expression in T cells is affected by the intracellular amino acid
levels (Loftus et al., 2018). Studies have shown that SLC7A5 and
c-MYC are highly expressed in stem cells and play roles in most
tissues and cells where terminal differentiation occurs (Melnik
et al., 2019; Poncet et al., 2020). However, the roles of SLC7A5
and c-MYC in the osteogenic differentiation of human BMSCs
(hBMSCs) has not been reported.

Based on these findings, we hypothesized that IL-18 regulates
the osteogenic differentiation of hBMSCs via the SLC7A5/c-MYC
axis. In this study, we investigated the potential roles of IL-18,
SLC7A5, and c-MYC during osteogenic differentiation.

MATERIALS AND METHODS

Cell Culture
hBMSCs were provided by the Liaoning Qifu Stem Cell
Biotechnology Co, Ltd, China. Cells were cultured in DMEM/
F12 (Heyclone, United States) medium supplemented with 15%
FBS (Excell Bio, China) and 1% penicillin/streptomycin (Sigma,
United States), and passage 3 cells were used for all experiments.
To induce osteogenic differentiation, hBMSCs were plated at a
density of 10×104 cells in 6-well plates and cultured in the
classical osteogenic differentiation medium (DMEM/F12
containing 15% FBS and 1% penicillin/streptomycin and
supplemented with 100 nM dexamethasone (Sigma,
United States), 10 mM β-glycerophosphate (Sigma,
United States), and 50 μM ascorbic acid (Sigma,
United States)). Cells were cultured in a 37°C, 5% CO2

incubator, and the medium was changed every 2 days. The
cells were seeded in a six-well plate for osteogenic
differentiation at 150,000 per well. To evaluate the effect of
recombinant human IL-18 (R&D, United States) on osteogenic
differentiation, the cells were treated with different
concentrations of IL-18 (0 ng/ml as control, 1, 10, 50, 100 ng/
ml) for 12 h. In another set of experiments, cells were treated with
100 ng/ml IL-18 and incubated for 0 (control), 3, 6, 12, and 24 h.
Based on the results of these dose-response and time-course
experiments, we selected 100 ng/ml as the IL-18 concentration
for all subsequent experiments. To investigate the involvement of
the SLC7A5/c-MYC axis, hBMSCs were pretreated with SLC7A5
specific inhibitor JPH203 (5 μM) (MCE, United States) and
c-MYC specific inhibitor 10058-F4 (5 μM) (APExBIO,
United States) for 48 or 72 h, and then cultured with IL-18
(100 ng/ml) for 12 h. JPH203, and 10058-F4 were dissolved in
DMSO (final concentration of DMSO<0.01%)

Alizarin Red Staining and Calcium
Measurement
To confirm the formation of calcium deposits, hBMSCs were
cultured in osteogenic medium for 7 days. Next, the cells were
fixed with 4% paraformaldehyde for 20 min, washed 3 times with
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PBS, stained with Alizarin Red (Sigma, United States) for 20 min
at room temperature, washed 3 times with PBS, and then
observed under the microscope. Then use the Calcium
Colorimetric Assay Kit (Beyotime, China) for calcium
measurement. Follow the instructions. In short, wash and
dilute the cells and extracellular matrix in a buffer solution,
and add the active solution to each well. After 15 min of
incubation in the dark at room temperature, the calcium
concentration is measured at 575 nm wavelength.

RNA Extraction and Reverse Transcription
Quantitative Real-Time Polymerase Chain
Reaction
Total RNA was extracted from BMSCs cultured in osteogenic
medium using RNAiso Plus reagent (9108, Takara, Japan).
Samples with optical density (OD) 260/280 nm between 1.8
and 2.0 were used for cDNA synthesis. Reverse transcription
was conducted using a PrimeScript RT Reagent Kit (RR037A,
Takara). Quantitative PCR was performed on an ABI 7500fast
System (Life Technologies, United States) using TB Green™
Premix Ex Taq ™II (RR820A, Takara) according to the
manufacturer’s instructions. conditions of real-time PCR were
as follows: denaturation at 95°C for 30 s, 40 cycles at 95°C for 3 s
and 60°C for 30 s, The dissociation stage was added to the end of
the amplification procedure. The following primers (Takara)
were used:

SLC7A5 forward: 5′-GCATCGGCTTCACCATCATC-3′,
reverse: 5′-ACCACCTGCATGAGCTTCTGAC-3′;
c-MYC forward: 5′-GGAGGCTATTCTGCCCATTTG-3′,
reverse: 5′-CGAGGTCATAGTTCCTGTTGGTG-3′;
ALP forward: 5′-CAAATGCCTGGATCCTGTTGAC-3′,
reverse: 5′-TGCACTGGCCATCCATCTC-3′;
RUNX2 forward: 5′-CACTGGCGCTGCAACAAGA-3′,
reverse: 5′-CATTCCGGAGCTCAGCAGAATAA-3’;
BMP2 forward: 5′-AACACTGTGCGCAGCTTCC-3′
reverse: 5′-CCTAAAGCATCTTGCATCTGTTCTC-3’;
β-actin forward: 5′-TGGCACCCAGCACAATGAA-3′
reverse: 5′-CTAAGTCATAGTCCGCCTAGAAGCA-3’.
Gene expression analyses were calculated using the 2−ΔΔCt

method.

siRNA and Transfection
Small interfering RNAs (siRNAs) targeting SLC7A5 (5′-GCG
UCAUGUCCUGGAUCAUTTAUGAUCCAGGACAUGACG
CTT-3′), c-MYC (5′-CACCUAUGAACUUGUUUCATTUGA
AACAAGUUCAUAGGUGTT-3′), and the negative control
(NC, 5′-UUCUCCGAACGUGUCACGUTT-3′) were
purchased from Genepharma (Suzhou, China). Cells were
transfected with 75 nmol/L of either SLC7A5 siRNA, c-MYC
siRNA, or NC siRNA using Lipofectamine™ 3000 Transfection
Reagent (Thermo Scientific, United States) according to the
manufacturer’s guidelines. The cells were collected for RNA or
protein isolation 24–72 h post-transfection to evaluate the effects
of the treatment on osteogenic differentiation.

Western Blotting
Cells were cultured as described above, washed with PBS, and
scraped off the culture plates, and the total cell protein was
extracted with radioimmunoprecipitation assay buffer containing
protease and phosphatase inhibitors according to the
instructions. The protein concentration was determined using
the bicinchoninic acid protein assay (Biyotime, China). Equal
amounts of protein/sample (20 μg) were separated using sodium
dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and then transferred to a polyvinylidene difluoride membrane
(Millipore, United States). The membranes were blocked in 5%
skim milk in tris-buffered saline with Tween 20 (TBST) and then
incubated with primary antibodies at 4°C overnight. The
following primary antibodies were used: GAPDH (60004-1-Ig,
Proteintech, United States), SLC7A5 (13752-1-AP, Proteintech),
c-MYC (10828-1-AP, Proteintech), ALP (11187-1-AP,
Proteintech), BMP2 (18933-1-AP, Proteintech), RUNX2
(AF5186, Affinity, United States). All primary antibodies were
diluted according to the manufacturers’ instructions. Next, the
membranes were washed 3 × 15 min with TBST and then
incubated with a secondary antibody goat anti-rabbit IgG
(HRP-6004, Proteintech) at room temperature for 2 h. Finally,
the target bands were visualized using the enhanced
chemiluminescence reagent (Biosharp, China) and a Plus
Western Blotting Detection System (GE680, United States).

Immunofluorescence Staining
In a 24-well plate, the slides that have climbed up cells were
washed 3 × 3 min in PBS, fixed with 4% paraformaldehyde for
15 min, permeabilized with 0.5% Triton X-100 in PBS
preparation at room temperature 20 min, and then blocked
with normal goat serum for 30 min at room temperature. The
blocking solution was removed using the absorbent paper and a
sufficient amount of diluted anti-SLC7A5 or anti-c-MYC primary
antibody was added to each slide. Slides were incubated overnight
at 4°C in a humidified container. Next, the cells were incubated
with CoraLite488-conjugated secondary antibody (1:100,
SA00013-2, Proteintech) or CoraLite594-conjugated secondary
antibody (1:100, SA00013-4, Proteintech) for 2 h at room
temperature. 4′,6-Diamidino-2-phenylindole was added
dropwise, and the cells were incubated for 5 min in the dark
to stain the nuclei. The slides were mounted using an anti-
quenching mounting solution, and the cells were observed
under an inverted phase contrast microscope and image
acquisition system for observing and acquiring images (Eclipse
NI, Nikon).

Statistical Analysis
Statistical analyses were conducted using the SPSS software
version 16.0 (SPSS Inc, United States). All quantitative data
are expressed as the mean ± standard deviation (SD) of three
independent experiments. Differences between groups were
analyzed using One-way ANOVA with a subsequent
Bonferroni post-hoc test. p < 0.05 was considered statistically
significant.
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FIGURE 1 | IL-18 promotes the osteogenic differentiation of hBMSCs. hBMSCs were treated with different concentrations of IL-18 for 7 days and calcium
deposition was evaluated using Alizarin Red staining (A) and quantitative calcium assay is used to measure calcium concentration (B). Data are expressed as the mean ±
standard deviation (SD). Concentration groups vs. the control (0 ng) group. Experiments were repeated three times. Scale bars: 200 μm for A, pp < 0.05, ppp < 0.01.

FIGURE 2 | IL-18 induced the expression of osteoblast-specific markers in a dose- and time-dependent manner. hBMSCs were treated with different culture
concentrations (0, 1, 10, 50, 100 ng) of IL-18, western blot and qPCR were used to evaluate the protein and mRNA (A, B) expression levels of ALP, BMP2, RUNX2,
GAPDH. hBMSCs were treated with 100 ng/ml IL-18 for 0, 3, 6, 12 and 24 h, and Western Blotting and qPCR were used to evaluate the protein expression of
osteoblast-specific markers ALP, BMP2, RUNX2, GAPDH and their mRNA expression (C, D). GAPDH was used as an internal control. Data are expressed as the
mean ± standard deviation (SD). Concentration groups vs. the control (0 ng) group; time-point groups vs. the control (0 h) group, *p < 0.05, **p < 0.01, ***p < 0.001.
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RESULTS

IL-18 Enhances Calcium Deposition
To investigate the effect of IL-18 on osteogenesis in hBMSCs in vitro,
Alizarin Red staining was performed. Mineralization is commonly
used as a late marker of osteogenesis; therefore, the cells were
evaluated on day 7 after osteogenic induction by Alizarin red

staining. Alizarin red staining showed that the number of
mineralized nodules also increased significantly at higher IL-18
concentrations, with the highest staining intensity being observed
at 100 ng/ml IL-18 (Figure 1A). According to the quantitative
analysis of calcium, Compared with 0ng group hBMSCs cultured
in osteogenic induction medium showed that the amount of calcium
deposition increased with the concentration (Figure 1B).

FIGURE 3 | IL-18 induced the expression of SLC7A5 and –MYC in a dose- and time-dependent manner. hBMSCs were treated with different culture
concentrations (0, 1, 10, 50, 100 ng) of IL-18, western blot and qPCR were used to evaluate the protein and mRNA (A, B) expression levels of SLC7A5, c-MYC, and
GAPDH. hBMSCs were treated with 100 ng/ml IL-18 for 0, 3, 6, 12, and 24 h, and Western Blotting and qPCR were used to evaluate the protein expression of
SLC7A5,c-MYC and GAPDH (as internal control) and their mRNA expression (C, D). Data are expressed as the mean ± standard deviation (SD). Concentration
groups vs. the control (0 ng) group; time-point groups vs. the control (0 h) group, Experiments were repeated three times. *p < 0.05, **p < 0.01, ***p < 0.001.
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IL-18 Promotes the Differentiation of
hBMSCs Into Osteoblasts in a Time- and
Dose-dependent Manner
Real-time PCR (qPCR) andWBwere used to evaluate the effect of
IL-18 on the expression of osteoblast-specific markers. IL-18
increased the mRNA expression of ALP, BMP2, and RUNX2
in a dose-dependent manner, with the highest expression levels
being observed at the 100 ng/ml IL-18 dose. Similar results were
observed inWB experiments (Figures 2A,B). Next, we performed
time-course experiments (3–24 h) to assess the effect of IL-18
(100 ng/ml dose) on the expression of ALP, BMP2, and RUNX2
in hBMSCs. Our results demonstrated that BMP2 expression
started to increase at the 6 h time-point, while ALP and RUNX2
expression started to increase at the 3 h time-point. The
expression levels of all markers were the highest at 12 h and
decreased by 24 h (Figures 2C,D).

IL-18 Promotes the Increase of c-MYC
Expression via SLC7A5 in a Time- and
Dose-dependent Manner
Next, we evaluated the effect of IL-18 on the expression of
SLC7A5 and c-MYC using qPCR and western blot. qPCR
results showed that IL-18 affected SLC7A5 and c-MYC
expression in a dose-dependent manner; SLC7A5 expression
started to increase at 10 ng/ml, while c-MYC expression was
induced at 1 ng/ml, and the expression of both genes reached
maximum levels at 100 ng/ml (Figures 3A,B). Time-course
experiments demonstrated that SLC7A5 expression was
initiated at the 6-h time point, while c-MYC expression was
induced at the 3 h time point, and the expression of both genes
reached their highest levels by 12 h. Western blot results
confirmed these findings; the protein expression levels of
SLC7A5 and c-MYC were the highest at 100 ng/ml dose, while

FIGURE 4 | RT-qPCR evaluation of SLC7A5 (A, B) and c-MYC (C, D) gene expression. hBMSCs were cultured in the osteogenesis induction medium and then
treated 10058-F4 and JPH203 with different concentrations (0, 1, 5, 10, 20 μM) and for different time periods (0, 24, 48, 72, 96 h). GAPDH was used as an internal
control. Data are presented as the mean ± SEM, Concentration groups vs. the control group; time-point groups vs. the control group. Experiments were repeated three
times. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 5 | Inhibition of SLC7A5 reduces the bone-forming ability of hBMSCs induced by IL-18. The cells were treated with JPH203 (5 μM) for 48 h, and then with
100 ng/ml IL-18 for 12 h western blotting and q-PCR experiments were conducted to evaluate the expression of osteoblast-specific markers, as well as SLC7A5 and
c-MYC mRNA; GAPDH was used as an internal control (A, B). Cells were transfected for 48 h and then treated with 100 ng/ml IL-18 for 12 h, mRNA levels of SLC7A5,
c-MYC and osteoblast-specific factors were quantied by qRT-PCR ,Cells were transfected for 72 h and then treated with 100 ng/ml IL-18 for 12 h and then
western blotting experiments were conducted to evaluate the expression of osteoblast-specific factors, as well as SLC7A5 and c-MYC; GAPDH was used as an internal
control (C, D).Cells were treated with JPH203 (5 μM) and IL-18 (100 ng/ml) for 48 h, and the protein levels of SLC7A5 were assessed by immunofluorescence (E). Data
expressed as the mean ± standard deviation (SD). Experiments were repeated three times. Scale bars: 200 μm for F, G. *p < 0.05, **p < 0.01, ***p < 0.001 (multiple
comparisons use one-way ANOVA with a subsequent Bonferroni post-hoc test).
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FIGURE 6 | Inhibition of c-MYC can reduce the bone-forming ability of HBMSC induced by IL-18. The cells were treated with 10058-F4 (5 μM) for 72 h, and then
with 100 ng/ml IL-18 for 12 h western blotting and q-PCR experiments were conducted to detect osteogenic factors and the protein and mRNA expression of c-MYC
and SLC7A5, ALP, BMP2, RUNX2; GAPDHwas used as an internal control (A, B). Cells were transfected for 48 h and then treated with 100 ng/ml IL-18 for 12 h, mRNA
levels of SLC7A5, c-MYC and osteoblast-specific factors were quantied by qRT-PCR, Cells were transfected for 72 h and then treated with 100 ng/ml IL-18 for
12 h and then western blotting experiments were conducted to evaluate the expression of osteoblast-specific factors, as well as c-MYC and SLC7A5; GAPDHwas used
as an internal control (C, D). After treatment with 10058-F4 (5 μM) for 72 h and 100 ng/ml IL-18 for 12 h, immunofluorescence staining was used to observe c-MYC
protein levels (E). Data expressed as the mean ± standard deviation (SD). Experiments were repeated three times.*p < 0.05, **p < 0.01, ***p < 0.001 (multiple
comparisons use one-way ANOVA with a subsequent Bonferroni post-hoc test).
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time-course experiments showed that the protein expression
levels of SLC7A5 and c-MYC were upregulated at 3 h, reached
the maximum levels at 12 h, and decreased by 24 h
(Figures 3C,D).

Determination of Optimal Concentrations
for SLC7A5 and c-MYC Inhibitors
To evaluate the involvement of SLC7A5 and c-MYC in osteoblast
differentiation, first, we determined the optimal concentration of
JPH203 (a specific SLC7A5 inhibitor) and 10058-F4 (a specific
c-MYC inhibitor) using real-time PCR. The cells were treated
with different concentrations of JPH203 for 48 h and 10058-F4
(5 μM) for 72 h. SLC7A5 and c-MYC mRNA expression
decreased significantly (Figures 4A,B).

Osteogenic Differentiation Ability of
hBMSCsis Reduced by SLC7A5 Inhibition
and Enhanced by IL-18
To investigate whether SLC7A5 is involved in the IL-18-induced
osteogenic differentiation of hBMSCs, we transfected cells with
siSLC7A5 to specifically downregulate the expression of
SLC7A5. In another set of experiments, we used JPH203, a
SLC7A5 specific inhibitor, to evaluate the role of SLC7A5 in the
osteogenic differentiation of hBMSCs. Our results
demonstrated that, compared to the control group, the
expression levels of SLC7A5 and c-MYC in the siSLC7A5
and JPH203 treatment groups were significantly reduced, and
the expression levels of osteogenic markers ALP, BMP2, and
RUNX2 were also decreased (Figures 5A–D). Furthermore, our
results showed that IL-18-induced SLC7A5 expression could be
reversed either by JPH203 treatment or siSLC7A5. As to the
immunofluorescent staining results, compared with the IL-18 +
JPH203 group, the IL-18 group showed the highest expression
levels, and the JPH203 group showed the lowest expression
levels (Figure 5E).

Osteogenic Differentiation Ability of
hBMSCs That Inhibit the Decrease of
c-MYC Expression can Be Enhanced by
IL-18
To further investigate whether the inhibition of c-MYC can
reverse the IL-18-induced osteogenic differentiation of
hBMSCs, cells were treated with c-MYC antagonists 10058-
F4 and sic-MYC to inhibit c-MYC expression. Compared to
the control group, 10058-F4 and sic-MYC significantly
reduced the expression of c-MYC at the mRNA and protein
levels, with expression of c-MYC reduced, it’s also reduced the
expression of SLC7A5,ALP,BMP2 and RUNX2; however, IL-
18 treatment partially restored the bone formation ability in
10058-F4 and sic-MYC groups (Figures 6A–D).
Immunofluorescent staining also showed that IL-18
promoted the nuclear expression of c-MYC, while 10058-F4
significantly reduced the nuclear expression of c-MYC that was
induced by IL-18 (Figure 6E).

DISCUSSION

Currently, an increasing number of studies are involved in the
investigation of the role of immune response mechanisms during
fracture healing. It has been reported that, within 24 h of an
injury, the expression of cytokines is increased in the fracture
hematoma; however, the role of cytokines in these hematomas
has not been fully understood. Here we showed that IL-18
induced the mineralization and osteogenic differentiation of
hBMSCs at a biologically relevant concentration, which is
crucial for the investigation of its molecular mechanism
in vitro. Our results also indicated that 100 ng/ml of IL-18
induced the strongest osteogenic effect. We also tested 120 ng/
ml concentration of IL-18 in the cells; however, this
concentration was found to be toxic to the cells, and cells died
and floated within a few minutes. Therefore, 100 ng/ml was
considered to be the optimal concentration. Our results
demonstrated that SLC7A5 and c-MYC played an important
role in the IL-18-induced expression of osteogenic markers in
hBMSCs; IL-18 upregulated the expression of SLC7A5 and
c-MYC at the early stage of hBMSC osteogenic differentiation,
and SLC7A5 and c-MYC inhibition blocked the osteogenic
differentiation that was induced by IL-18. To the best of our
knowledge, this is the first report demonstrating that SLC7A5 is
involved in the activation of c-MYC in hBMSCs (Figure 3,
Figure 5).

Previous studies have shown that the levels of IL-18 in the
blood are significantly increased after a fracture, while the levels
of IL-18 return to normal levels after the fracture is repaired (Ko
et al., 2018; Li and Wang, 2018). We previously demonstrated
that the levels of proinflammatory factors in hematoma and
peripheral blood are significantly increased after a fracture.
Other studies have shown that IL-18 induces the expression of
osteoprotegerin (OPG) in mouse osteoblasts to inhibit the
formation of osteoclasts (Makiishi-Shimobayashi et al., 2001).
The bone density of elderly patients with osteoporosis increases
significantly after anti-osteoporosis treatment. This may be
related to the ability of IL-18 to inhibit osteoclast activity,
induce the proliferation and differentiation of bone marrow-
derived lymphoid progenitor cells, and promote NK cell
proliferation and cytotoxicity (Maugeri et al., 2005;
Gandhapudi et al., 2015; Choi et al., 2019). These findings
suggest that IL-18 has some beneficial impacts; however, it has
a negative effect on rheumatoid arthritis (RA) and osteoarthritis
(OA). For example, IL-18 induces inflammatory responses in
synovial cells and chondrocytes (Fu et al., 2012); however, the
upregulation of splenic suppressors of cytokine signaling (SOCS)
can reduce the release of pro-inflammatory cytokine IL-18 and
relieve the symptoms of RA. It is possible that, in these two
chronic diseases, the continued release of IL-18 leads to abnormal
bone formation (Nozaki et al., 2019), while during bone fracture,
an acute condition with an early phase lasting approximately
3 days, pro-inflammatory factors and immune cells in the
fractured hematoma tissue promote hBMSC migration and
fracture healing (Pountos et al., 2019). However, the effect of
IL-18 on other bone-related factors in hBMSCs is still unclear.
Here, in this study, we observed that IL-18 can induce the
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expression of osteogenic factors, such as ALP, BMP2, and
RUNX2, in a dose-dependent manner. At the same time, IL-
18 (100 ng/ml) can promote mineralization, confirming the
osteogenic differentiation of hBMSCs (Figure 1). Runx2 is a
transcription factor that regulates the expression of early
osteoblast-specific genes, while BMP-2 is a growth factor
known to induce osteoblast differentiation and the expression
of osteogenic genes, and therefore plays an important role in bone
repair (Salazar et al., 2016). ALP is another osteoblast-specific
factor involved in the regulation of bone morphogenesis by
generating the phosphoric acid necessary for the deposition of
hydroxyapatite during mineralization. The higher the ALP
activity, the stronger the osteogenic differentiation ability
(Wang et al., 2018). Therefore, our results confirm that the
regulation of cell surface molecules by pro-inflammatory
cytokines after fracture plays an important role in the
activation of BMSCs. Accurately increasing the levels of IL-18
at the fracture site after fracture, in combination with
splenectomy, may provide a new treatment strategy for
fracture healing in the early stage of fracture.

Amino acids can affect the proliferation, differentiation, and
mineralization of BMSCs through intracellular oxidative stress
and the tricarboxylic acid cycle (TCA) cycle (Dirckx et al., 2019;
Zhou et al., 2019). Furthermore, a low essential amino acid diet in
mice can lead to bone loss and osteoporosis. SLC7A5 is an
essential amino acid transporter that plays a key role in cell
metabolism and growth. The importance of SLC7A5 was
demonstrated using an animal global knockout model, with
the embryos not surviving past the second trimester.
Furthermore, BMSCs grown in a medium with low amino
acid levels have significantly reduced proliferation and
differentiation ability. At the same time, the abnormal
expression of SLC7A5 can cause diseases, such as tumors,
Parkinson’s, neurodevelopmental abnormalities, and autism,
confirming that SLC7A5 plays a crucial role in physiological
processes (Tărlungeanu et al., 2016; Ding et al., 2018; Scalise et al.,
2018). The expression of SLC7A5 in osteoclasts of a mouse
osteoporosis model was reportedly significantly reduced. By
regulating nuclear factor of activated T cells, cytoplasmic 1
(NFATc1) in osteoclasts, it plays a key role in bone resorption
and bone homeostasis. It was shown that SLC7A5 knockout mice
developed osteoporosis. The femur bone density was significantly
reduced, while the levels of osteoclast markers in the blood were
significantly increased (Ozaki et al., 2019), confirming that
SLC7A5 plays an important role in bone homeostasis.
However, the specific role of SLC7A5 in BMSCs is not clear.
Several studies have shown that stem cells express a variety of
amino acid transporters, while high expression levels of SLC7A5
and energy metabolism are essential for the osteogenic
differentiation of hBMSCs (Moravcikova et al., 2018). Our
results, using hBMSCs, showed that in response to IL-18
treatment, SLC7A5 expression increased in a concentration-
dependent manner, while the expression levels of SLC7A5
were significantly decreased by SLC7A5 inhibitors and siRNA.

SLC7A5 is necessary for the growth of T cells. T cells lacking
SLC7A5 do not undergo metabolic reprogramming, expansion,
and differentiation in response to antigen stimulation.

Furthermore, SLC7A5 knockout mouse embryos have serious
nerve and limb growth defects (Sinclair et al., 2013; Poncet et al.,
2020). Another study demonstrated that in tumor cells SLC7A5
can regulate the expression of c-MYC, forming a mechanism that
connects essential amino acid transport and tumorigenesis. The
positive feedback loop mechanism is probably due to the fact that
tumor cells have higher energy and nutrient demands to maintain
cell survival and proliferation (Yue et al., 2017). Here, in our
study, we used SLC7A5 inhibitor JPH203 and siSLC7A5 to
investigate whether IL-18 promoted the osteogenic
differentiation of hBMSCs via SLC7A5. We found that
JPH203 and siSLC7A5 significantly inhibited the expression of
IL-18-induced osteogenic markers, such as Runx2, ALP, and
BMP2, and significantly reduced the expression of c-MYC.
These results suggested that IL-18 induced the osteogenic
differentiation of hBMSCs via SLC7A5 (Figure 5). These
findings are consistent with previous studies demonstrating
osteoporosis in SLC7A5 knockout mice. JPH203 is a selective
inhibitor of SLC7A5 which can effectively block the amino acid
transport mediated by SLC7A5 (Enomoto et al., 2019; Ozaki et al.,
2019).

Recent studies have shown that c-MYC is a downstream target
gene of multiple signaling pathways and plays key roles in
numerous physiological processes, such as embryonic
development, self-renewal of stem cells, and tissue
regeneration, as well as cellular differentiation (Liu et al.,
2017). Under normal physiological conditions, the expression
of c-MYC is strictly regulated and increases in response to
extracellular growth factors; in response to these growth
factors, c-MYC is quickly activated (Meyer and Penn, 2008).
The expression of c-MYC in osteoblast culture medium is
significantly increased. c-MYC is widely regarded as a marker
of pluripotent stem cells such as ESCs and iPSCs and is highly
expressed in stem cells, and regulates the pluripotency of mouse
ESCs, neural stem cells (NSC), and hematopoietic stem cells
(HSC). The key role of sex and self-renewal ability is known (Nair
et al., 2014; Foroutan, 2016), but research on the specific
mechanism of action is limited. Studies have found that
β-catenin signaling can upregulate the expression of OSX in
human pre-osteoblasts and bone marrow stromal cells through
c-MYC to promote osteogenesis. These findings suggest that
c-MYC plays an important role in osteogenesis (Liu et al.,
2015). The c-MYC pathway also plays a key role in the
maintenance of T cell function and metabolic reprogramming
and is independent of the mTOR pathway. The physiological
condition, in terms of the transcription levels of c-MYC, reflects
tissue and cell growth status; tissues with high proliferation rates
have high c-MYC transcription levels (Lu et al., 2020). Several
studies have demonstrated that many types of tumors are
characterized by high c-MYC expression levels; however, in
the absence of other mutations, c-MYC overexpression alone
is not sufficient for tumorigenic transformation. These findings
suggest that c-MYC plays a pivotal role in physiological and
pathological conditions (Wolfer and Ramaswamy, 2011; Cascón
and Robledo, 2012; Sinclair et al., 2013).

Whole genome analysis of rat fibroblasts showed that SLC7A5
is the direct action site of c-MYC. The increase of c-MYC activity
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upregulates the expression of several glutamine transporters, and
in c-MYC knockout mice resulted in embryonic death and
significantly reduced SLC7A5 levels (Zhao et al., 2019).
Previous studies have shown that c-MYC enhances the
expression of SLC7A5 by binding to specific promoters (Gao
et al., 2009; Hayashi et al., 2012). Other studies have also found
that c-MYC in cells can be activated by directly binding to specific
E-box sequences to initiate SLC7A5 transcription, while SLC7A5-
mediated uptake of essential amino acids stimulates c-MYC
protein synthesis and downstream target gene transcription,
leading to reprogramming of the entire metabolic process,
including glycolysis, glutamine breakdown, and lipogenesis
(Yue et al., 2017). In tumor cells, the expression of c-MYC has
been shown to significantly decrease after the JPH203-mediated
inhibition of SLC7A5, thereby affecting the metabolic function
controlled by c-MYC (Rosilio et al., 2015). It has also been shown
that high expression levels of c-MYC appear to be essential for the
maintenance of MSC proliferation and differentiation potential.
However, low c-MYC expression or loss of function leads to the
inhibition of MSC proliferation and differentiation. It was
recently demonstrated that c-MYC overexpression increases
type X collagen one (COL10A1) expression, suggesting that
c-MYC plays an important role in cartilage formation (Wang
et al., 2017; Melnik et al., 2019). These findings indicate that
c-MYC is an important regulatory factor in stem cells and are
consistent with our results. Here we showed that the use of siRNA
and c-MYC inhibitor 10058-F4 resulted in the downregulation of
SLC7A5 expression, as well as of osteogenic markers, indicating
that c-MYC inhibition can decrease the osteogenic differentiation
ability of hBMSCs in vitro. Moreover, IL-18 reversed the
downregulation of c-MYC and osteogenic markers induced by
siRNA and the c-MYC specific inhibitor 10058-F4, indicating
that IL-18 plays a role via c-MYC regulation (Figure 6). Our
study determined the close relationship between the SLC7A5 and
c-MYC signaling pathway and the expression of Runx2, BMP2,
and ALP, as well as the close relationship between SLC7A5 and
c-MYC. The results indicate that IL-18 promotes the osteogenic
differentiation of hBMSCs through the SLC7A5/c-MYC
regulatory axis. Therefore, activating the SLC7A5/c-MYC axis
can promote fracture healing after splenectomy.

Our results show that IL-18 promotes bone formation in vitro.
It activates SLC7A5 to enhance the osteogenic differentiation of

hBMSCs mainly through the c-MYC pathway. Blocking SLC7A5/
c-MYC reduces the osteogenic differentiation of hBMSCs,
indicating that the SLC7A5/c-MYC axis plays an important
role in the osteogenic differentiation of hBMSCs, suggesting
that the spleen plays an important role in the fracture healing
process. Therefore, when fractures with splenic injury require
surgical treatment, the spleen should be preserved as much as
possible during the operation to ensure stability of the patient’s
immune function after surgery. These findings will provide new
treatment strategies for delayed fracture healing after
splenectomy.
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