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ABSTRACT

Despite the great importance of nucleic acid–protein
interactions in the cell, our understanding of their
physico-chemical basis remains incomplete. In or-
der to address this challenge, we have for the first
time determined potentials of mean force and the
associated absolute binding free energies between
all standard RNA/DNA nucleobases and amino-acid
sidechain analogs in high- and low-dielectric en-
vironments using molecular dynamics simulations
and umbrella sampling. A comparison against a lim-
ited set of available experimental values for analo-
gous systems attests to the quality of the compu-
tational approach and the force field used. Overall,
our analysis provides a microscopic picture behind
nucleobase/sidechain interaction preferences and
creates a unified framework for understanding and
sculpting nucleic acid–protein interactions in differ-
ent contexts. Here, we use this framework to demon-
strate a strong relationship between nucleobase den-
sity profiles of mRNAs and nucleobase affinity pro-
files of their cognate proteins and critically analyze
a recent hypothesis that the two may be capable of
direct, complementary interactions.

INTRODUCTION

From processing, transport and translation of mRNA to
transcription and modification of DNA, many different
processes in the cell critically depend on direct, specific in-
teractions between proteins and nucleic acids (1). Despite
the clear biological importance of such interactions, how-
ever, our understanding of the basic physico-chemical prin-
ciples that define them at the atomistic level remains incom-
plete. This in particular concerns the very foundation of nu-
cleic acid–protein interactions, that is, the intrinsic bind-
ing preferences of nucleobases and amino acids for each

other in different environments. When it comes to experi-
mental work, for example, only limited progress has been
made in this context. Akinrimisi et al. (2) and Thomas et al.
(3) have used spectroscopic methods to study the change in
water solubility of a subset of amino acids in the presence
of either purine molecules or different nucleosides, respec-
tively. Moreover, Thomas et al. have in this way also de-
termined association constants for several amino acid and
nucleoside pairs (3). In addition, Woese et al. have used
chromatographic methods to systematically study interac-
tion propensities of all 20 common amino acids and differ-
ent pyridine derivatives in water (4–6).

In addition, significant information on the type of in-
teractions, their strengths and preferred geometries at the
single-molecule, atomic-resolution level has been obtained
through computational analysis. The majority of previous
studies in this context belong to two main classes. First,
analysis of high-resolution 3D structures of protein–RNA
or protein–DNA complexes has produced valuable infor-
mation on the relative binding preferences of amino-acid
sidechains and nucleobases for each other together with a
geometric and energetic characterization of their interac-
tions (7–16). Second, quantum-mechanical ab initio calcu-
lations have been applied to study the physical aspects of
such binding, including nucleobase-amino acid �–� (17–
21) and cation–� interactions (22,23) and hydrogen bond-
ing (24). Moreover, there have also been reports on the
free energy maps for the binding of a smaller subset of
amino acids to DNA base pairs (25,26). In general, how-
ever, the great majority of both experimental and computa-
tional studies have focused on specific binding interactions
and typically covered a small subset of amino acid and nu-
cleobase types only. In particular, despite their fundamen-
tal importance, absolute free energies of binding between
all standard nucleobases and amino acids have never before
been determined in a systematic, self-consistent manner.

A particular context in which direct interactions between
nucleobases and amino acids may be important concerns
the origin of the universal genetic code, one of the most im-
portant foundational questions in molecular biology that
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are still open (5,27–35). More specifically, the stereochemi-
cal hypothesis (5,31,34,35) postulates that the code evolved
as a consequence of direct binding preferences of amino
acids for their cognate codons. Although highly suggestive
and biologically reasonable, evidence supporting the hy-
pothesis in its one-amino-acid/one-codon formulation has
nonetheless been obtained for a small subsection of the ge-
netic code only (31,34,35). Recently, we have presented ev-
idence in support of a generalization of the stereochemical
hypothesis and suggested that under some circumstances
cognate mRNA and protein sequences may, in fact, be mu-
tually physico-chemically complementary to each other and
bind (36–38). In this framework, binding specificity and
an appreciable level of interaction appear primarily at the
level of longer mRNA and protein stretches. In particular,
we have shown that pyrimidine-density profiles of typical,
present-day mRNA sequences exhibit strong correlation
with cognate proteins’ sequence profiles capturing their in-
teraction propensity with pyrimidine mimetics (36). More-
over, we have derived interaction preference scales for nu-
cleobases and amino-acid sidechains by analyzing binding
interfaces in a large set of 3D structures of RNA–protein
complexes (37). By comparing the nucleobase-content pro-
files of mRNA sequences with the nucleobase-preference-
weighted profiles of their cognate protein sequences, we
have found strong evidence for the complementarity hy-
pothesis, but also demonstrated exceptions from it in some
cases. For example, we found that purine density in mRNA
sequences correlates directly with guanine preference pro-
files of their cognate protein sequences, yet inversely with
the equivalent adenine preference profiles.

Here, we use Molecular Dynamics (MD) simulations and
umbrella sampling (US), in conjunction with a detailed
comparison against extant experimental data, to determine
for the first time potentials of mean force (PMFs) and abso-
lute binding free energies between all possible combinations
of standard RNA/DNA nucleobases and non-prolyl/non-
glycine amino-acid sidechain analogs. Sidechain analogs
have been widely used instead of complete amino acids for
testing the interaction specificity of amino-acid residues in
different contexts (20,26,39). There are several advantages
to such a choice. First, zwitterionic amino acids contain
charged groups which, apart from the N- and C-terminal
residues, are not present in proteins. Second, capping of
amino acids necessarily introduces groups that do not
represent the actual protein backbone. Finally, sidechain
analogs have been used to parameterize GROMOS 54a8,
arguably the most accurate classical force field when it
comes to capturing amino-acid hydrophobicity (40,41). As
nucleobase/amino acid interactions are strongly influenced
by the hydrophobic effect, a combination of the GROMOS
54a8 force field and sidechain analogs suggested itself as
a particularly suitable choice. On the other hand, a clear
disadvantage of using sidechain analogs is that glycine and
proline cannot be treated in the same way as other amino
acids. Moreover, it has been shown that the backbone con-
tribution to amino-acid solvation free energies does vary be-
tween different amino acids because of self-solvation effects
(42). However, as self-solvation arises primarily in the gas
phase (42), this becomes less relevant in our context.

In order to study the effect of the environment on the
binding preferences, our US simulations are performed
in both water and methanol. The latter is chosen based
on its lower dielectric constant, which is expected to cap-
ture the environment at nucleic acid-protein interfaces
more accurately than pure water (43,44). Overall, our
analysis opens up a microscopically detailed perspective
on nucleobase/sidechain interactions, and provides a self-
consistent platform for understanding and designing nu-
cleic acid-protein interactions in different settings. Here,
we apply the newly obtained binding preferences to study
the putative physico-chemical foundation of the universal
genetic code and critically examine the cognate mRNA–
protein complementarity hypothesis (36–38).

MATERIALS AND METHODS

MD simulations

All MD simulations were conducted using the GROMOS11
simulation package (45) in combination with the GROMOS
force field parameter set 54a8 (41). Bond lengths were con-
strained by applying the SHAKE algorithm (46) with a rel-
ative geometric accuracy of 10−4, allowing for a time step of
2 fs. RNA nucleobases were methylated at N1 (pyrimidines)
and N9 (purines) positions, whereas amino-acid sidechains
were capped by a hydrogen atom at C�, in order to focus
on specific interactions and to aid sampling. In this man-
ner, 18 out of the 20 natural occurring amino acids could
be studied (all except glycine and proline). The amino acids
arginine, aspartate, glutamate, lysine and histidine were rep-
resented in their charged forms at pH 7. In addition, histi-
dine was simulated in both neutral states (HISA, HISB) as
well. Each nucleobase/sidechain pair was placed at a large
distance from each other and subsequently solvated in a pe-
riodic cubic box with Simple Point Charge (SPC) (47) water
molecules. Further details concerning MD are given in Sup-
plementary Information.

Umbrella sampling

The reaction coordinate r for the potential of mean force
was defined as the distance between the center of geome-
try (cog) of the nucleobase and the cog of the amino-acid
sidechain analog. Sampling along this reaction coordinate
was enhanced by performing US, where harmonic distance
restraints with a force constant of 500 kJ mol−1 nm−2 were
used as biasing potentials. The restraining simulations were
performed sequentially, i.e. after a short equilibration time
of 100 ps, the production run of 10 ns at this distance was
started, followed by the equilibration at a smaller separa-
tion and so on. In this way, the molecules were slowly pulled
closer together. Further details concerning the calculation
of PMFs and free energy differences using US, comparison
of mRNA and protein sequences and the estimation of sta-
tistical significance are given in the Supplementary Infor-
mation.
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Figure 1. Sampling of binding modes for the pairs GUA–TYR (4 Å) and
URA–TRP (4 Å) in water as well as GUA–ASP (5 Å) and GUA–GLU (6
Å) in methanol at a restraining distance r0 corresponding to a PMF mini-
mum. Centers of the most populated cluster are shown in an opaque stick
representation, while snapshots of sidechain analogs output every 200 ps
are shown in a transparent stick representation. Percentages represent frac-
tion of time that stacking interactions (TYR or TRP) or hydrogen bonds
(ASP and GLU) are present.

RESULTS

PMFs and binding free energies

At each restraining distance used in US simulations, nucle-
obases and sidechain analogs explore different configura-
tions, with shorter distances expectedly resulting in more re-
stricted configurational diversity. In Figure 1, we illustrate
configurational ensembles of four nucleobase/sidechain
pairs for which the resulting binding free energies are the
lowest over all simulated conditions, as discussed below:
GUA–TYR and URA–TRP in water and GUA–ASP and
GUA–GLU in methanol. In particular, for each such nu-
cleobase and sidechain analog pair, we present the con-
figurational diversity at the restraining distance r0 corre-
sponding to the minimum in the respective PMF curve
(see below). In addition, we have clustered all of the struc-
tures sampled at this distance using root-mean-square de-
viation as the metric and determined the center of the
largest cluster. These structures are shown in opaque for
each nucleobase/sidechain pair in Figure 1 as a represen-
tation of the predominant geometric orientation. Overall,
there are two principal contributions stabilizing the most
favorable complexes as illustrated for select cases in Figure
1: in water simulations, these are typically stacking inter-
actions between aromatic groups (as illustrated in Figure 1
for GUA–TYR and URA–TRP pairs), while in methanol
simulations, these are strong H-bonding interactions (as il-
lustrated in Figure 1 for GUA–ASP and GUA–GLU).

A quantitative way of capturing the behavior of individ-
ual pairs of nucleobases and sidechain analogs is by analyz-
ing PMFs. In particular, PMFs give an overview of bind-
ing preferences corresponding to a given base or sidechain,
demonstrate differences in the optimal binding distance and

help identify energetic barriers along the binding reaction
coordinate. Given its peculiar behavior, the PMF curves for
GUA with each of the sidechain analogs simulated in wa-
ter and methanol are shown in Figure 2a and b, respec-
tively, with all other PMFs given in Supplementary Figure
S1. Overall, one can see that in water, all nucleobases ex-
hibit a pronounced preference for the aromatic TYR and
TRP, followed closely by PHE. Weaker interactions with
nucleobases are observed for other hydrophobic sidechains,
while the weakest binding is exhibited by charged and polar
sidechains (Figure 2a and Supplementary Figure S1). Alto-
gether, there appears to be significant qualitative similarity
in the way different nucleobases and sidechain analogs in-
teract in water: in addition to their preference for aromatic
sidechains, none of the PMF curves in water show any sig-
nificant energy barriers regardless of the base in question
(Figure 2a and Supplementary Figure S1).

On the other hand, the influence of the environment on
the binding preferences of sidechains and nucleobases, and
in particular GUA, becomes immediately clear if one com-
pares the PMFs in water (Figure 2a and Supplementary
Figure S1) with those in methanol (Figure 2b and Supple-
mentary Figure S1). There, contrary to its behavior in water,
GUA exhibits a strong preference for the negatively charged
GLU and ASP over aromatic sidechains (Figure 2b). On the
other hand, all other nucleobases in methanol show weak,
if any, preference for different sidechains (Supplementary
Figure S1). In addition, the minima of the PMF curves typ-
ically shift to larger distances in methanol (Figure 2 and
Supplementary Figure S1). Although this can be observed
for most sidechains, the largest shifts are seen for aromatics.
Since the distances in the PMFs are defined between cen-
troids of nucleobases and sidechains, the smallest distance
between a given nucleobase and an aromatic sidechain can
be obtained in �–� stacked geometry. The fact that inter-
molecular distances in methanol are typically larger than in
water suggests that stacking interactions are destabilized in
the former, especially for ADE, GUA and CYT. Analysis of
residence times in stacked configurations corroborates this
qualitative observation (Table 1). For example, while at the
optimal distance for binding in water, TRP and TYR spend
96 and 94% of time in stacked configurations with GUA,
these numbers drop to 7 and 18% of time in methanol.
Similarly, PHE spends 85% of the time in stacked config-
uration with CYT in water, a number which drops to 13%
in methanol. This phenomenon has already been observed
in experiment and other simulations and can be explained
by the inhibitory effect of the methyl group of the solvent
on the solute–solute dispersive interactions (48,49). On the
other hand, these differences are much less drastic for URA
and THY (Table 1). Finally, apart from the differences in
the apparent binding preferences, the PMF curves also dif-
fer when it comes to well-defined energetic barriers, which
although small, can be found in methanol simulations, but
not in water simulations (Figure 2 and Supplementary Fig-
ure S1).

While PMF curves are undeniably informative, the most
complete information concerning binding preferences of
bases and sidechain analogs and their dependence on the
environment can be obtained by examining absolute bind-
ing free energies derived from PMFs (Table 2). Overall, the
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Figure 2. Potentials of mean force for GUA with all sidechain analogs in water (a) and in methanol (b).

Table 1. Stacking interactions in water and methanol simulations

ADE CYT GUA URA THY

wat met wat met wat met wat met wat met

R0 % R0 % R0 % R0 % R0 % R0 % R0 % R0 % R0 % R0 %

HISA 4 56 5 13 3 79 5 6 4 62 5 11 3 84 5 12 3 87 3 79
HISB 4 45 5 9 3 71 5 7 3 73 5 9 3 80 5 10 3 84 6 1
HISH 3 88 3 83 4 52 5 12 3 84 6 4 4 1 6 1 4 1 6 0
PHE 5 24 5 10 3 85 5 13 3 88 5 13 3 91 3 83 2 98 3 89
TRP 5 35 6 5 3 91 5 21 3 96 6 7 4 88 3 93 2 99 2 99
TYR 3 91 5 16 3 90 5 14 3 94 5 18 3 93 3 87 4 85 3 90

Percentage of time that stacking interactions are present during simulation as shown for the window around the minimum of the PMF, as determined by the restraining distance
R0.

free energies in water are relatively low across the board,
with the most favorable values seen in the case of THY–TRP
(-6.1 kJ/mol, Table 2a). The strongest interactions for all
the nucleobases in water are in general those with aromatic
sidechains, with PHE exhibiting somewhat less favorable
binding free energies compared to TRP and TYR (Table
2a). Similarly, for all the nucleobases, interactions with non-
aromatic hydrophobic sidechains appear to be slightly fa-
vorable in water (ca. −3 to −1 kJ/mol). On the other hand,
the only significantly unfavorable interactions in water are
those between the nucleobases and the negatively charged
GLU and ASP, with the only outlier in this sense being a
slightly favorable interaction between GUA and GLU (−0.3
kJ/mol) (Table 2a). On the whole, different nucleobases ex-
hibit very similar preferences when it comes to interaction
with sidechains in water as best illustrated by Pearson corre-
lation coefficients R between different combinations of nu-
cleobase preference scales (columns in Table 2A), which all
give values close to or in excess of 0.9 (Supplementary Table
S1a).

Importantly, all scales in water exhibit pronounced cor-
relation with Woese’s experimental PR scale capturing the
interaction propensity of amino acids and nucleobase-like
2,6-dimethylpyridine (4–6) as shown in the inset of Fig-
ure 3a. For example, the URA scale in water, which is
particularly interesting given that uracil is sterically and
physico-chemically the most similar natural nucleobase to
2,6-dimethylpyridine, exhibits a Pearson R of 0.77 with the
experimental PR scale (Figure 3a). What is more, the GUA
scale in water exhibits strong agreement with the only ex-

tensive experimental scale available involving natural bases,
that of association constants between eight amino acids
(SER, THR, VAL, LEU, MET, LYS, PHE and TRP) and
guanosine as shown in Figure 3b. Here, after the reported
association constants (3) have been converted to binding
free energies, the Pearson R equals 0.87. Moreover, the re-
sults do not significantly change if one also includes in this
set all the experimentally available values (3) for adeno-
sine (LYS, PHE, TRP, VAL), cytosine (PHE, TRP) and uri-
dine (TRP), with the Pearson R against the equivalent com-
puted values of 0.75. Taking into account that substituted
pyridines and nucleosides are chemically still quite differ-
ent from nucleobases themselves, this level of agreement is
remarkable and it attests to the quality of our simulation
methodology and gives confidence as to its general applica-
bility. More specifically, these results support the possibility
that the absolute binding free energies and particularly their
relative ranking may be well captured for all other combi-
nations of nucleobases and amino-acid sidechains as well.

How does the above picture change if one examines the
binding free energies in methanol? In accordance with the
PMF analysis, the only significantly favorable interactions
in methanol are seen in the case of GUA and the nega-
tively charged GLU (−7.0 kJ/mol) and ASP (−6.4 kJ/mol),
with no other individual interactions being stronger than
−2 kJ/mol (Table 2b). In particular, unlike in water, there
are no significant interactions with aromatic sidechains for
any of the nucleobases in methanol (Table 2). On the other
hand, relatively pronounced unfavorable interactions are
seen only in the case of THY and ASP and GLU, but even
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Table 2. Absolute binding free energies between nucleobases and amino-acid sidechains in water (a) and methanol (b) in kJ/mol

A C G U T A C G U T

ALA 0.2 0.9 1.0 0.4 0.3 ALA 1.2 2.5 3.0 1.3 0.9

ARG -0.8 -1.1 -1.2 -0.5 0.3 ARG 2.8 0.8 -1.7 1.1 0.9

ASN -1.0 -0.7 -0.6 -0.7 -0.7 ASN 0.5 1.1 2.0 1.4 1.2

ASP 0.5 2.4 1.0 2.8 3.7 ASP 1.8 -1.9 -6.4 3.0 5.3

CYSH -1.2 -0.2 -0.9 -0.8 -0.6 CYSH 0.4 0.8 1.7 1.1 1.5

GLN -2.0 -0.5 -2.2 -1.5 -1.9 GLN 0.8 0.8 1.4 0.8 1.4

GLU 2.0 1.6 -0.3 2.2 3.7 GLU 2.3 -1.6 -7.0 3.2 4.7

HISA -1.8 -0.9 -1.8 -1.5 -1.9 HISA 0.2 0.2 -0.5 0.2 0.6

HISB -1.2 -0.2 -1.9 -0.6 -1.2 HISB 0.5 0.2 -0.2 0.0 0.1

HISH -0.7 0.0 -0.6 0.5 0.2 HISH 0.8 -1.7 -1.9 0.5 1.0

ILE -2.8 -1.9 -2.6 -1.5 -1.6 ILE 0.7 1.3 1.2 -0.3 0.0

LEU -2.0 -1.9 -2.6 -1.8 -1.7 LEU 0.1 0.2 1.7 0.8 0.1

LYSH 0.9 1.4 -0.5 0.6 0.9 LYSH 3.0 -0.1 -1.0 1.7 2.2

MET -2.5 -1.4 -2.2 -2.1 -2.3 MET -0.3 1.2 -1.0 -0.3 -0.9

PHE -3.3 -2.7 -3.6 -3.1 -3.9 PHE -0.7 0.8 -0.1 -0.6 1.8

SER 0.3 1.1 1.1 0.5 -0.4 SER 1.1 2.4 3.2 2.0 3.0

THR -0.5 0.6 0.2 -0.2 -0.7 THR 0.4 1.8 2.6 1.5 2.8

TRP -3.8 -3.6 -4.8 -4.8 -6.1 TRP -1.2 0.2 -0.6 0.1 -0.9

TYR -3.9 -3.3 -5.1 -3.3 -4.3 TYR 0.1 -0.3 -0.1 -0.7 -1.0

VAL -1.5 -1.2 -1.4 -1.0 -1.1 VAL 0.1 1.3 1.9 0.0 0.0

a water b methanol
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Figure 3. (a) Comparison of the computationally derived binding free energies for URA in water with the experimental polar requirement (PR) scale. Inset:
pearson R correlations between polar requirement and the binding free energy scales in water. (b) Correlation between the experimentally determined
binding free energies of guanosine with 8 amino acids (3) and the computationally derived binding free energies of guanine with the corresponding 8
amino-acid sidechains in water.

in those cases the binding free energies do not exceed 5.5
kJ/mol. The impact of the environment on the interactions
can best be quantified by calculating Pearson Rs between
binding free energy scales in water and in methanol. For the
two GUA scales, for example, R is close to zero (−0.1), in-
dicating no correlation between the binding free energies in
the two environments. A similar situation is seen for CYT
(R = −0.2), whereas for ADE, URA and THY strong cor-
relations can be found with R-values around 0.8 (Supple-
mentary Table S1b). In other words, binding preferences of
GUA and CYT change greatly upon the change from an
aqueous solvent to a more interface-like, lower dielectric en-
vironment, whereas binding preferences of ADE, URA and
THY remain largely indifferent to such a change. Finally,
strong correlations can be seen between URA and THY (R
= 0.87), CYT and GUA (R = 0.85) and ADE and URA (R
= 0.67) scales in methanol (Supplementary Table S1c). This
is particularly interesting considering the relatively low and
noisy values of binding free energies in most scales.

The pronounced dependence of binding preferences of
GUA and CYT on the properties of the environment orig-
inates predominantly from the contribution of negatively
charged sidechains, and to a smaller extent, from aromatic
ones (Table 2). The negatively charged ASP and GLU are
the strongest binders for both CYT and GUA in methanol,
with GUA being the preferred binding partner. This can
be explained by the presence of persistent hydrogen bonds
(Table 3) whose strength is amplified in the low-dielectric
environment. Both ASP and GLU form hydrogen bonds
to N1 and N2 of GUA that are present 80 to 90% of the
time, whereas the hydrogen bonds to CYT are only formed
to a single atom, N4. The predominant geometric orienta-
tions (Figure 1) show that the negatively charged carboxyl
groups of GLU and ASP form bidentate H-bonds to N1
and N2 of GUA, making this conformation particularly
energetically favorable. Similar results are found for CYT
with ASP and GLU (not shown), where bidentate hydrogen
bonds are formed with N4 of CYT. In water simulations,



Nucleic Acids Research, 2015, Vol. 43, No. 2 713

Table 3. Percentage of time that a hydrogen bond is present in water and methanol simulations at the window around the minimum of the PMF as
determined by the restraining distance R0

ARG LYSH THR SER TYR ASN GLN ASP GLU

wat met wat met wat met wat met wat met wat met wat met wat met wat met

GUA-N1 0 0 0 0 2 11 4 11 0 4 1 8 1 9 54 92 53 77
GUA-N2 0 0 0 0 3 9 4 10 0 4 3 11 2 11 32 79 33 88
GUA-O6 0 32 8 30 2 6 3 7 0 1 2 13 1 11 0 0 0 0
GUA-N7 0 28 7 24 2 4 2 3 0 1 3 10 2 4 0 0 0 0
CYT-O2 3 59 11 36 4 14 7 13 0 3 4 16 4 16 0 0 0 0
CYT-N3 2 35 5 17 3 6 3 1 0 1 5 17 3 17 0 0 0 0
CYT-N4 0 0 0 0 5 10 4 12 0 7 4 22 4 16 37 76 36 80
URA-N3 0 0 0 0 5 13 5 14 0 0 1 7 4 9 45 31 33 26
THY-N3 0 0 0 0 6 9 8 19 0 0 0 4 3 9 44 62 28 68

We only show hydrogen bonds that were present more than 20% of the time.

these hydrogen bond patterns persist for a shorter period
of time (Table 3), largely because the water molecules effi-
ciently screen electrostatic interactions between nucleobases
and sidechains.

Finally, as potentially more relevant for realistic nucleic
acid–protein complexes, we have also evaluated free energy
differences between unbound nucleobases and sidechain
analogs in water and their bound counterparts in methanol
as the sum of the binding free energy in methanol (as shown
in Table 1b) and the free energy of bringing the unbound
state from water to methanol, �GW−>M(unb). The latter
can be obtained through a procedure similar to the dou-
ble decoupling method to calculate hydration free energies,
where methanol simulations replace simulations in the gas
phase. For charged amino-acid sidechains, the net charge
of the system changes during the simulations and we apply
corrections (41,50,51) to compensate for the approximate
electrostatic treatment (see Supplementary Information for
details). Importantly, inclusion of �GW->M(unb) leads to
free energy differences which resemble the binding free en-
ergies in water significantly more than those in methanol
(Supplementary Figure S2).

Matching between mRNA composition and cognate proteins’
nucleobase affinity

The binding free energies described above can be used to in-
vestigate the possibility of direct interactions between com-
plete mRNA coding sequences and their cognate protein
sequences as put forth in the mRNA-complementarity hy-
pothesis (36–38) and to shed more light on the stereo-
chemical hypothesis of the genetic code’s origin (4–6). We
have first compared window-averaged nucleobase density
profiles of all annotated human mRNA coding sequences
with window-averaged binding-affinity profiles of their cog-
nate proteins by calculating Pearson Rs between them. In
Figure 4a, we summarize the results of this analysis for
methanol scales by giving median Pearson correlation co-
efficients (Rmedian) and the associated P-values over the en-
tire human proteome. The strongest correlations are seen at
the level of mRNA PUR density profiles and different pro-
tein preference profiles with Aprot versus PURmRNA leading
the way with Rmedian = 0.69 (P-value = 0.001). However,
statistically significant correlations or anti-correlations (P-
value < 0.05) are also seen for Aprot versus AmRNA (Rmedian
= 0.50), Cprot versus CmRNA (Rmedian = 0.49), Uprot versus
UmRNA (Rmedian = -0.50), Aprot versus UmRNA (Rmedian =
−0.62), Gprot versus CmRNA (Rmedian = 0.53), Gprot versus

Figure 4. Correlations between mRNA PUR sequence profiles and cog-
nate protein profiles of affinity for nucleobases in methanol. Median Pear-
son correlation coefficients with colors representing P-values obtained by
shuffling of the affinity scales (a) and example profiles for GUA (b) and
ADE (c) affinity are shown. The best and typical examples in (b) and (c)
are chosen from proteins with a representative length (300–400 residues).
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PURmRNA (Rmedian = −0.60) and Uprot versus PURmRNA
(Rmedian = 0.52). In Supplementary Figure S3 we show the
distributions of R-values for the mRNA PUR density and
all four RNA-nucleobase affinity profiles of their cognate
proteins over the entire human proteome as evaluated us-
ing the methanol scale. In particular, Gprot and Cprot show
a negative correlation with PUR density profiles (Rmedian =
−0.60 and −0.46, respectively), while in the same context
Aprot and Uprot exhibit a positive correlation (Rmedian = 0.69
and 0.52, respectively). In Figure 4b we show two exam-
ples of mRNA PUR-content and cognate protein G-affinity
profiles as an illustration: one with the strongest correla-
tion (top panel, ‘best’) and one with the correlation equal
to Rmedian (R = −0.60) (lower panel, ‘typical’). As is evi-
dent, in the case of the best matching profile (FAM170A
protein, R = −0.92) the mRNA PUR density can be pre-
dicted extremely well from the low-dielectric GUA affinity
profile of its cognate protein: the regions in the protein se-
quence that show strong affinity for GUA are encoded by re-
gions of codons that are rich in purines and vice versa. Fur-
thermore, agreement between the two profiles remains re-
markably good even for a typical, median protein in this re-
gard (tRNA pseudouridine synthase I, R = −0.60). Overall,
the strongest correlations can be found between methanol-
based ADE-affinity on the side of proteins and PUR density
on the side of mRNAs, as indicated in Supplementary Fig-
ure S3 by the narrowest peak and the largest Rmedian (0.69).
The best and typical matching profiles are again shown
(Figure 4c). The anti-correlation between the ADE affinity
of the protein and the purine content of its cognate mRNA
is strong even for a typical protein/mRNA pair: clearly, pro-
tein sequence stretches that show pronounced affinity for
ADE are encoded by purine-poor regions and vice versa.

In contrast to methanol-based scales, water-based scales
also exhibit strong levels of matching, but without any
significant difference in specificity between different bases
(Supplementary Figures S4 and Table S2). Concretely,
PUR-content on the side of mRNAs is positively and indis-
criminately correlated with affinity profiles for all four bases
on the side of their cognate proteins, with URA-content
mRNA profiles showing the strongest, yet still undifferen-
tiated signal among the four individual bases (Supplemen-
tary Table S2). Finally, Supplementary Table S3 shows the
Rmedian values for the pairwise combinations of nucleobase
content profiles of mRNAs and nucleobase affinity profiles
of their cognate proteins, where the nucleobase affinity is
now based on �GW,unb−>M,bound. As expected, these corre-
lations show similar trends to those obtained from binding
free energies in water (Supplementary Table S2).

Energetics of the complementarity hypothesis

In order to shed further light on the cognate mRNA–
protein complementarity hypothesis, we have estimated
the effective free energy of interaction for each cognate
mRNA/protein pair in the human proteome by sim-
ply adding up free energies of interaction between each
sidechain in a given protein sequence and the three nucle-
obases comprising its respective cognate codon, and then
summing up such values over the whole sequence (here,
glycine and proline contributions were set to zero on both

Figure 5. Cumulative probability distribution of P-values capturing for
each human protein the fraction of 106 randomized mRNAs with a lower
‘effective interaction energy’ with the protein sequence in question as com-
pared to its original cognate mRNA as defined by water (red) or methanol
(black) scales. Randomized mRNAs were generated either by shuffling
the codons within mRNA sequences (thick lines) or by randomly picking
codons from the genetic code table (thin lines). The median P-values over
all human proteins are indicated with arrows.

sides). We have also evaluated the significance of such ener-
gies by calculating P-values that were defined as the fraction
of 106 randomized mRNAs that exhibit lower interaction
free energies with a given protein than its cognate, native
mRNA (see ‘Materials and Methods’ for details). Our anal-
ysis shows that the methanol scale appears to be strongly
optimized for this with the median P-value of 0.003 over
all human proteins, which is to be contrasted with the me-
dian P-value of 0.236 obtained using the water scale (Fig-
ure 5). In other words, a typical protein can pick out its na-
tive, cognate mRNA from a randomized mRNA sequence
just based on their estimated energy of interaction in a low-
dielectric environment with an error rate of only 3 in 1000.
What is more, for ∼2300 proteins using the methanol scale
and 600 proteins using the water scale, not one of the 106

shuffled mRNAs exhibits lower interaction free energy than
the cognate mRNA. Additionally, we have also generated
randomized mRNA sequences by randomly picking codons
at each position from a uniform distribution with each of
the 53 non-stop, non-prolyl and non-glycine codons in the
genetic code appearing with a probability of 1/53. The re-
sults of this procedure were very similar, with the median
P-values of 0.004 for the methanol scale and 0.084 for the
water scale (Figure 5). Finally, we have also recoded the
mRNA sequences with the use of 103 randomized genetic
codes and for each protein determined interaction energies
with their recoded cognate mRNAs. We found that interac-
tion energies lower than those obtained using the original,
universal genetic code can be found with a median P-value
of 0.20 among the randomized genetic codes when using the
methanol scale or 0.33 for the water scale.

Binding free energies and the genetic code

How do the above results change if one focuses on individ-
ual codons and amino acids as suggested by the classical
formulations of the stereochemical hypothesis? In Supple-
mentary Table S4a (water scales) and 4b (methanol scales),
we show the Pearson correlation coefficients between the
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affinity of amino acids for individual nucleobases and the
average nucleobase content of their codons as present in
the human proteome (see Supplementary Information for
more details). In water, an appreciably strong relationship
of this sort is seen only in the case of Ucdn and Uscl (R =
−0.59, P-value = 0.01). However, negative Pearson corre-
lation coefficients are also obtained between Ucdn and all
three other nucleobase affinity scales (Supplementary Table
S4a). In methanol, on the other hand, Gcdn and Ucdn ex-
hibit weak to moderate anti-correlation with the respective
Gscl and Uscl scales, with R = −0.37 (P-value = 0.14) and R
= −0.63 (P-value = 0.005), respectively, while the opposite
trend is observed for ADE (R = 0.54, P-value = 0.02) and
CYT (R = 0.42, P-value = 0.08) in methanol (Supplemen-
tary Table S4b).

Finally, we have also analyzed the effective interaction
energy of the genetic code table as defined through the
sum of interaction energies between all codons in the ta-
ble (excluding stop, GLY and PRO codons) and their cog-
nate sidechains, whereby sidechain interaction energy with
a given codon was taken as the sum of the interaction en-
ergies of its constituent nucleobases. By generating 106 ran-
domized codes, determining their effective interaction ener-
gies and comparing them with the energy of the native, uni-
versal genetic code, we could determine the P-values cap-
turing the significance of optimization of the native code
when it comes to codon/sidechain interaction energies. Us-
ing the binding free energies obtained from the simula-
tions in methanol, the obtained P-value was equal to 0.14 if
weighting with codon frequencies in the human proteome
was used or 0.09 with no weighting. When using the bind-
ing free energies in water, P-values of 0.27 (with weighting)
or 0.60 (without weighting) were obtained.

DISCUSSION

Despite the fundamental importance of protein-nucleic acid
interactions in all known biological systems, this is to the
best of our knowledge the first time that the absolute bind-
ing free energies for all combinations of standard nucle-
obases and amino-acid sidechain analogs have been eval-
uated within a single self-consistent framework. While the
calculated binding free energies do strongly depend on the
chosen MD force field, we believe that the GROMOS force
field 54a8 is particularly suitable for such calculations as it
was explicitly parameterized to match the highly relevant
thermodynamic properties of amino-acid sidechain ana-
logues including hydration free energies (41). Although the
GROMOS nucleobase parameters are less accurate in this
regard (52), the favorable comparison between our bind-
ing free energies and the extant experimental data (Figure
3) suggests that this may be less critical. Overall, with wa-
ter as a solvent, all nucleobases bind preferentially to hy-
drophobic sidechains and in particular to the aromatic ones.
In low-dielectric methanol, on the other hand, GUA and
CYT bind most strongly to the negatively charged ASP
and GLU, while these sidechains are the least favorable
binders for THY and URA. The majority of the differences
in binding preferences in the two environments can be ex-
plained by: (i) the destabilizing effect of the low-dielectric
environment on stacking interactions and (ii) the fact that

in bulk water electrostatic interactions between nucleobases
and sidechains are significantly screened. We believe that
these two basic principles, which have also been described
in different guises before (48,49), constitute the foundation
for understanding specificity in nucleic acid–protein inter-
actions from the perspective of individual nucleobases and
amino-acid sidechains.

In addition to matching the experimental data available
for analogous systems as discussed above, the binding free
energies determined herein exhibit a good agreement with
structural and energetic analyses of nucleic-acid/protein
complexes and their binding interfaces. Multiple research
groups have analyzed interactions at protein–RNA/DNA
interfaces as seen in high-resolution 3D structures (7,9–
12,16,24). In protein–DNA complexes in particular, most
hydrogen bonds form with the Hoogsteen edge of nucle-
obases since the Watson–Crick edges are typically unavail-
able due to base pairing. More specifically, interactions with
at least two hydrogen bonds are found predominantly be-
tween GUA/ARG, LYSH and ADE/ASN, GLN (11,24).
The GUA/ARG interactions via the Hoogsteen edge fea-
ture prominently at protein–RNA interfaces as well, al-
though a significant presence of GUA/ASP,GLU pairs via
the Watson–Crick edge is also observed (7,53). In our sim-
ulations in methanol, we also find significant interactions
of ASP and GLU at the Watson–Crick edge of GUA, but
the preferences of ARG and LYSH for GUA are not as pro-
nounced (Tables 2 and 3). This is probably due to the fact
that in our simulations we do not include the negatively
charged phosphate backbone which is chiefly responsible
for attracting the positively charged amino-acid sidechains.
In a related analysis of 3D structures of nucleotide–protein
complexes, it was found that most interactions for ADE
and URA were with the protein backbone, whereas for
GUA this was ASP with hydrogen bonds at the Watson–
Crick edge (10). The latter again corresponds very well with
our simulations in methanol (Tables 2 and 3 and Figure
1). Finally, the present results qualitatively agree with the
knowledge-based potentials recently derived from a large
set of structures of RNA–protein complexes by us (37). In
particular, strong favorable interactions between GUA and
GLU were seen there as well.

Throughout this study, we have used amino-acid
sidechain analogs defined by replacing the C� atom by a
hydrogen atom. This approach is not applicable to glycine,
where one would be left with a hydrogen molecule and
proline, a secondary amine. While glycine remains outside
the reach of the present approach, proline sidechain can
be represented by cyclopentane (CPE). In this model, the
atomic charges are equal to zero and the bond, angle and
dihedral angle parameters are equal to the parameters
for the carbon atoms in the proline sidechain. We have
applied the same computational framework to CPE as to
other sidechain analogs, and have obtained the binding
free energies of −2.7, −1.9, −2.8, −1.8 and −2.5 kJ/mol in
water and −0.3, 2.1, 1.4, 0.0 and 2.7 kJ/mol in methanol
for ADE, CYT, GUA, URA and THY, respectively.
Importantly, including these values as proxies for proline
binding free energies in the comparison of mRNA/protein
composition profiles leads to only minor changes in the
median Pearson R-values, with most correlations and
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anti-correlations actually becoming stronger in absolute
value. For example, the median Pearson correlation coeffi-
cients between the mRNA PUR profiles and their cognate
proteins nucleobase-affinity profiles in methanol change
from 0.69 to 0.73 (ADE), −0.46 to −0.52 (CYT), −0.60 to
−0.61 (GUA) and 0.52 to 0.56 (URA), and similar effects
are seen in water. On the other hand, the effective free
energies of interaction between cognate mRNA/protein
pairs become less significant if the CPE results are included
(the P-value of cognate interactions as compared to those
with randomized mRNAs in methanol changes from 0.003
to 0.06). However, as CPE has two additional methyl
groups as compared to the bona fide proline sidechain, and
is therefore a fundamentally different kind of a sidechain
analog as compared to other groups in our study, both of
these results should be treated with caution.

Although fundamentally reductionist in nature, the de-
rived binding free energies have helped us demonstrate a
remarkable relationship between nucleobase density pro-
files of natural mRNA coding sequences and nucleobase
affinity profiles of their cognate protein sequences, in close
agreement with previous knowledge-based results and the
mRNA–protein complementarity hypothesis (37). Indeed,
one obtains stronger signatures of complementary bind-
ing if one examines complete mRNA and protein se-
quences rather than individual sidechains and their respec-
tive codons (36–38). Moreover, the low-dielectric scales of
the two purine bases act antagonistically in that protein
GUA-affinity profiles match mRNA PUR-density profiles,
while ADE-affinity profiles exhibit the opposite behavior.
Finally, protein URA-affinity profiles obtained using both
water and methanol scales as well as protein CYT-affinity
profiles obtained using the water scale match mRNA-PYR
density profiles, agreeing with our previous PR-scale based
results (36).

On the other hand, the behavior of the CYT low-
dielectric scale goes against what was seen with its
knowledge-based counterpart and is antithetical to both
stereochemical hypothesis and cognate mRNA–protein
complementarity hypothesis. In addition to potential force-
field inaccuracies, a part of the explanation may lie in the
fact that, unlike the absolute scales obtained herein, the
knowledge-based scales are intrinsically relative. If one, for
example, examines the relative GUA–CYT binding free en-
ergy scale, the qualitative agreement with the knowledge-
based results is recovered (results not shown). Alternatively,
it is possible that methanol’s dielectric constant may be too
low to accurately mimic realistic nucleic acid–protein inter-
faces when it comes to CYT-based interactions and that
in this case water-based free energies may be more appro-
priate. Uncertainties with CYT-scales notwithstanding, the
opposite behavior of GUA and ADE scales, which has now
been confirmed using multiple approaches, suggests that
the genetic code may have been shaped by positive bind-
ing interactions in some cases, but also their active avoid-
ance in other cases (38,54). Namely, a high ADE content
in a given mRNA may be there to weaken any putative
complementary binding with a cognate protein, providing
an important modification of the complementarity hypoth-
esis as was also discussed before (38). Still, primarily due
to the dominant contribution of GUA-based interactions,

the estimated total in-frame binding energy between mR-
NAs and their cognate proteins is significantly lower than
that obtained with randomized mRNA sequences, speak-
ing again in favor of the complementarity hypothesis. While
only future work can provide a definitive assessment of this
exciting possibility, we see its potential to affect all contexts
where nucleic acid/protein interactions are of relevance as
undeniable (38,55,56). Importantly, regarding the origin of
the coding relationship between proteins and mRNAs, the
present results support the possibility that certain mRNAs,
depending on their composition, could have served as di-
rect templates for the synthesis of proteins, but that the re-
verse may also be true. Of course, in this scenario, the coding
in both directions would have been fuzzy: the same mR-
NAs would have coded for multiple proteins with similar
nucleobase-binding propensity profiles, but also the same
protein would have coded for multiple mRNAs with simi-
lar nucleobase density profiles.

Going beyond just the mRNA/protein relationship, how-
ever, the absolute binding free energies between all standard
nucleobases and amino-acid sidechains presented herein
provide a comprehensive, quantitative alphabet for under-
standing the thermodynamics of nucleic acid/protein in-
teractions and it is our hope that they will find usage in
both fundamental studies of nucleic acid/protein biology
and various practical applications such as docking, inter-
face design and structure prediction.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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