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Concomitant DNA methylation 
and transcriptome signatures 
define epidermal responses 
to acute solar UV radiation
Nicholas Holzscheck  1,2*, Jörn Söhle  1, Torsten Schläger1, Cassandra Falckenhayn  1,  
Elke Grönniger  1, Ludger Kolbe  1, Horst Wenck  1, Lara Terstegen1, Lars Kaderali  2, 
Marc Winnefeld  1 & Katharina Gorges1*

The simultaneous analysis of different regulatory levels of biological phenomena by means of 
multi-omics data integration has proven an invaluable tool in modern precision medicine, yet many 
processes ultimately paving the way towards disease manifestation remain elusive and have not 
been studied in this regard. Here we investigated the early molecular events following repetitive UV 
irradiation of in vivo healthy human skin in depth on transcriptomic and epigenetic level. Our results 
provide first hints towards an immediate acquisition of epigenetic memories related to aging and 
cancer and demonstrate significantly correlated epigenetic and transcriptomic responses to irradiation 
stress. The data allowed the precise prediction of inter-individual UV sensitivity, and molecular 
subtyping on the integrated post-irradiation multi-omics data established the existence of three 
latent molecular phototypes. Importantly, further analysis suggested a form of melanin-independent 
DNA damage protection in subjects with higher innate UV resilience. This work establishes a high-
resolution molecular landscape of the acute epidermal UV response and demonstrates the potential of 
integrative analyses to untangle complex and heterogeneous biological responses.

Solar UV irradiation has complex and ambivalent effects on the human organism. Beneficial effects of sun expo-
sure are thought to be mainly mediated by vitamin D, which is synthesized in the skin through a photosynthetic 
reaction triggered by exposure to UVB. Vitamin D was primarily acknowledged for its importance in bone for-
mation, increasing evidence however points to its influence on the proper functioning of nearly every tissue in 
our bodies1. In contrast to this however, solar UV irradiation is also the most abundant risk factor for skin cancer 
and other extrinsically influenced skin disorders2,3. It is well established that UV irradiation both directly and 
indirectly induces DNA damage. Direct damage is mainly a result of UVB and to lesser extent UVA irradiation, 
causing dimerization of adjacent pyrimidine bases, a frequent cause of mutations during replication4. Indirect 
DNA damage results mainly from oxidative stress, caused by free radicals and cellular reactive oxygen species, 
which increase after UV irradiation5. Damaged DNA, if not properly repaired, interferes with many cellular 
mechanisms such as transcription, the cell cycle and replication and can give rise to mutations and epigenetic 
alterations, driving genomic instability and ultimately carcinogenesis.

Human skin has developed several defense systems to guard against the damaging effects of UV: Prominently 
these include structural changes to the tissue such as epidermal thickening and the synthesis of melanin, but they 
also comprise quick molecular adaptations like the suspension of cell cycle and gene transcription, as well as the 
activation of DNA repair pathways. The extent of protection afforded by these mechanisms however is character-
ized by high inter-individual variation6. The stratification of individual UV response is thus highly important for 
risk assessment in cancer prevention (UV-protection), therapeutic dose determination (PUVA therapy) and in 
the understanding of the biological processes leading to malignancies (e.g. squamous skin cancers). Fitzpatrick 
skin type categories7 have been widely used as an indicator and predictor of sun sensitivity in epidemiology 
and experimental photobiology. However, this categorization is hampered by subjectivity and is prone to recall 
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error8. In a study assessing the reliability of Fitzpatrick skin type classifications for instance, only ~ 60% of all 
study participants self‐identified as the same skin type after repeated questioning a few months later9. Several 
authors have investigated the relationship between Fitzpatrick skin type and minimal erythema dose (MED)10–13, 
a more objective measure of UV sensitivity frequently used in clinical or research settings, showing increasing 
MED with higher Fitzpatrick classification in general, but with considerable intergroup variation.

DNA methylation is a covalent epigenetic modification of cytosine to 5-methylcytosine, occurring within CpG 
dinucleotides14,15. Although methylations of adenine have been reported as well, these have so far received consid-
erably less attention. Methylation of CpG sites in the human genome is an important regulatory mechanism that 
can lead to the activation or repression of gene transcription. Modifications are established and maintained by a 
set of specific enzymes called DNA methyltransferases. DNA methylation is generally considered to represent a 
regulatory interface between environmental cues and the genome and might cause or allow long-lasting changes 
in gene transcriptional activity16. Our current knowledge about epigenetic changes associated with acute UV 
irradiation, its contribution to transcriptomic alterations and implication in skin photobiology, remains very 
limited. Previous studies have shown however, that chronic solar UV gives rise to large hypomethylated blocks 
of DNA in the healthy epidermis and that these blocks are conserved in cutaneous squamous skin carcinomas17, 
underlining the importance of studying DNA methylation in the context of solar irradiation. In addition, a 
multi-omics analysis of UV irradiated keratinocytes recently identified several new UV target genes including 
CYP24A1, GJA5, SLAMF7 and ETV118, demonstrating the value of multi-layered omics analyses in unraveling 
biological phenomena and enabling more reliable biomarker detection, as it has similarly been shown in cancer 
research, allowing molecular diagnosis and prognosis, often utilizing DNA methylation markers19,20.

Here we hypothesized that integrative analysis of UV induced epigenetic and transcriptomic alterations 
in vivo might help to decipher inter-individual responses to environmental challenges and give hints towards 
early pathogenesis. For this reason, we generated high-resolution multi-omics molecular profiles of the in vivo 
irradiated epidermis. Our results provide evidence that a UV induced epigenetic memory might be established 
already after short term repetitive UV irradiation. Integrative analyses of methylation and expression data reveal 
previously unnoted pathways involved in the acute epidermal UV response and allow the precise inter-individual 
prediction of MED without the need for prior UV irradiation. Finally, analysis of these molecular phototypes 
indicates the existence of a melanin-independent form of damage protection in individuals with higher innate 
resilience to UV irradiation.

Results
UV irradiated epidermis shows genome‑wide aberrant methylation patterns and substantial 
transcriptomic reprogramming.  Elucidating the complex molecular mechanisms underlying UV-gene 
interaction might offer new insights into how UV modulates skin homeostasis and disease pathogenesis to help 
improve the prevention of UV-induced skin aging and related pathologies. In order to obtain a comprehen-
sive picture of the molecular events regulating acute epidermal photobiology, 32 female Caucasian volunteers 
(Fitzpatrick phototypes 1–4) where irradiated with individually calibrated doses of 0.9 MED using a full spec-
trum solar simulator on three subsequent days on a sun-protected area on their lower backs. 24  h after the 
last irradiation, suction blister roofs were extracted from irradiated and control sites of each subject and gene 
expression profiling (Illumina RNA seq) and concomitant DNA methylation profiling (Illumina EPIC Arrays) 
were performed. Paired differential expression and methylation analyses between irradiated and control areas 
revealed that in total 20.5% (FDR < 0.05) of all interrogated CpGs and 32.4% (FDR < 0.05) of all detected gene 
transcripts were significantly altered in response to irradiation. These considerable changes were spread over 
the whole genome, with notable exceptions only occurring in the regions around the centromeres and in some 
constitutively heterochromatic regions e.g. on chromosome 13 (Fig. 1a). In general, a tendency towards hypo-
methylation was detected with 65.1% of all significant CpGs decreasing in methylation. Notably, the tendency 
towards hypomethylation increased from open sea regions to CpG-islands (Fig. S1 a).

Large blocks of the genome have previously been shown to be hypomethylated in chronically sun-exposed 
epidermal samples in comparison to protected skin17,21 and have also been associated with clinical measures 
of photoaging17. How quickly this epigenetic imprinting in response to UV exposure occurs however, is so far 
unknown. We thus investigated whether early indications of photoaging were already detectable after acute 
repetitive UV irradiation and analyzed the methylation status within the previously reported regions17 in our 
data. We found that in over a fifth of the originally described genomic blocks (49/224) the observed methylation 
changes after acute irradiation correlated very well with the reported patterns (Fig. 1b), differing mainly in mag-
nitude in comparison to chronically exposed skin. This delivers evidence that epigenetic alterations in response 
to extrinsic stimuli can manifest quickly after external stimulation and suggests that even few repetitive sunburns 
can be sufficient to impact epigenetic imprinting in genomic regions associated with extensive photoaging.

Considering the extent of alterations in methylation patterns in response to acute irradiation and the universal 
role of DNA methylation in cancer biology, we then also performed a comparison of pan-cancer methylation 
signatures22 to our data, to establish if any overlap in signatures could be observed. The analysis revealed a small 
number of genomic regions with methylation changes post-irradiation very much reminiscent of those found 
aberrantly methylated in cancerous tissue. Most of these showed extensive hypomethylation (Supplementary 
Fig. S2a,b). Whether these alterations are in fact linked to carcinogenesis or purely a product of stochasticity 
will remain to be determined, but the overlap and extent of correlation raises concern and might warrant further 
investigation.

Genome‑wide correlative analyses of gene expression and methylation reveal coordinated 
changes in known and novel players of the UV response.  Methylation can lead to long-lasting acti-
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Figure 1.   Epigenetic and transcriptomic changes of irradiated samples compared to non-irradiated controls: (a) Circos plot 
showing differential methylation (m, outer circle) and expression (e, inner circle) in response to irradiation to 0.9 MED in a 
genomic context (FDR < 0.05). Amplitude of points corresponds to log2 fold-change with the solid black line representing no 
change. Hypomethylated CpGs and downregulated genes are colored in blue, hypermethylated CpGs and upregulated genes in 
yellow. Colored bands in the karyogram mark centromeres (red) and heterochromatin status (grey to black). (b) Differential 
methylation of 49 genomic regions previously associated with chronic sun-exposure17 compared to differential methylation 
after acute repetitive irradiation. (c) Volcano plot of differential gene expression in response to irradiation. Differentially 
expressed genes with ≥ 3 differentially methylated CpGs are marked in red. (d) Genome-wide ratio of differentially up- and 
downregulated genes with concomitant change in methylation (≥ 3 CpGs). (e) Protein–protein-interaction network between 
the most interconnected differentially expressed and methylated genes. Points are scaled by the negative logarithmized FDR 
of differential expression and colored by log2 fold-changes. Edges are scaled by confidence of interaction. (f) Significantly 
correlated differential expression and enhancer methylation of CARD14, expression and TSS200 methylation of IRF8, 
expression and TSS200 methylation of CSNK2A2, and expression and TSS200 methylation of KRT17. Plots were generated 
using R v3.6.176 software.
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vation or repression of gene transcription and analysis of simultaneously regulated genes on methylation and 
transcription level have been shown to yield higher prognostic values in several pathophysiological states23,24. We 
thus mapped the most stably differentially expressed genes and CpGs by genomic position and observed a high 
proportion of genes with equally pronounced methylation changes. Analysis revealed that 29.3% of all upregu-
lated genes (FDR < 0.05 and log2FCabs > 0.5) harbored at least three differentially methylated CpGs (FDR < 0.05 
and log2FCabs > 0.2), whereas for downregulated genes this number increased significantly further to 34.3% 
(Fig. 1c,d), with a high number of genes exhibiting inverse correlations to their methylation state. Stratifying the 
significant CpGs within these genes by regulatory regions revealed they were most frequently located in enhanc-
ers and more seldom in exon regions (Supplementary Fig. S1d). Analyzing known protein–protein-interactions 
between these differentially regulated and methylated genes (DEMGs) using STRING25 revealed a network of 
highly interconnected proteins surrounding ESR1, the estrogen receptor α, which was found downregulated fol-
lowing repetitive irradiation (Fig. 1e). Estrogen receptor α expression has been shown to be reduced following 
UV irradiation in vitro before26, and its activity has been linked to photoimmune suppression in animal studies. 
In mice, estrogen receptor antagonists were found to exacerbate immune suppressive action in a dose-dependent 
manner with estradiol treatment exerting protective effects respectively27, and the estrogenic compound equol 
protecting against irradiation-induced carcinogenesis28. Notably, the core network also involved the similarly 
downregulated retinoic × receptor α, previously linked to a functional vitamin A deficiency in the skin following 
UV irradiation29 and thereby contributing to photoaging.

We next performed genome wide correlation analyses of all annotated genes and interrogated CpGs to identify 
significant linear correlations between gene expression and methylation in annotated functional gene regions. 
Modeling gene expression as a function of mean methylation for all CpGs in potentially regulatory gene regions 
(enhancers, 1,500 bp and 200 bp upstream of the TSS as well as exon regions) revealed 2,267 significant associa-
tions after multiple testing correction. Again, most of these associations were found with alterations in methyla-
tion patterns in enhancer regions. Among these highly correlated differentially expressed and methylated genes 
we identified several known and previously described actors in the UV response, such as CYP24A1, BRCA2, 
NOTCH2, FOXO3 and GATA3. Examples also included the observed hypomethylation and upregulation of 
CSNK2A2, a catalytic subunit of Casein kinase II, a ubiquitous serine/threonine protein kinase involved with 
a manifold of cellular processes, such as cell cycle control and apoptosis and the immune-modulatory keratin 
KRT17 (Fig. 1f), both of which have previously been associated with UV response and tumorigenesis. Remark-
ably some of the identified genes, e.g. CARD14 or IRF8 (Fig. 1f), have thus far not been associated with UV 
irradiation, possibly reflecting the variance between in in vivo and in vitro generated data. Interestingly however, 
CARD14 mutations have been observed previously in psoriasis patients. Gain-of-function CARD14 mutations 
in mice lead to spontaneous psoriasis-like skin inflammation by inducing activation of the IL-23-IL-17 axis in 
keratinocytes and thereby immune cell infiltration30. In contrast CARD14−/− mice displayed attenuated skin 
inflammation in murine psoriasis models31. Demethylation-driven CARD14 activation in irradiated cells of 
the human epidermis might thus present a hitherto undiscovered mechanism of epidermal UV response. The 
transcription factor IRF8 was found concomitantly significantly hypermethylated and downregulated, which 
is significant given its function as a tumor suppressor and its frequent downregulation in various cancer types 
through epigenetic silencing32–34. Recently IRF8 has further been implicated in cutaneous wound healing35, the 
methylation-driven downregulation of IRF8 might therefore constitute a novel mechanism contributing to the 
observed impairment of wound healing following irradiation. Notably, IRF8 is located within one of the genomic 
regions differentially methylated in photoaged skin17, it would therefore be interesting to investigate its functional 
role in photoaging, even more so considering the age-associated impairment of wound healing in the skin and 
the increased risk of developing skin cancer that is associated with both chronic sun-exposure and higher age.

Pathway analysis shows distinct functional enrichments for methylation‑associated tran-
scriptional alterations.  Since the dissection of DEMGs revealed several genes which had previously not 
been connected to epidermal UV responses, we performed pathway analyses by means of gene set enrichment. 
Multiple pathways were strongly enriched with DEMGs, including DNA repair, immune signaling and stress 
response, strengthening the notion that DEMGs are at the heart of known and key response mechanisms to UV 
irradiation (Fig. 2a,b). In addition, a high number of enriched pathways were involved in metabolic processes, 
including some that had previously not been assigned to the canonical UV response pathways. Prominently 
these were linked to lipid biosynthetic and cofactor metabolic processes (Fig. 2c). Lipid synthesis in the epi-
dermis is vital to skin permeability and barrier function, one of the skin’s most crucial functions. Outer epi-
dermal keratinocytes secrete lamellar bodies, which are unique to the epidermis36 and contain phospholipids, 
glycosyl-ceramides, sphingomyelin, as well as cholesterol and numerous enzymes, including lipid hydrolases, 
such as β-glucocerebrosidase, acidic sphingomyelinase, secretory phospholipase A2 (sPLA2), and acidic/neutral 
lipases37,38. When the permeability barrier is perturbed, both the secretion and synthesis of lamellar bodies is 
stimulated, which allows for the rapid repair and normalization of permeability barrier function39. So far only 
few studies have evaluated the effect of UV on the stratum corneum. They provide evidence for an increased 
epidermal lipid synthesis in response to UV radiation and alterations of lipid profiles40–42, however these studies 
gave no functional correlation to genes or mechanisms involved. In addition, atopic dermatitis and psoriasis 
patients display modified lipid profiles and both groups are known to benefit from UV therapy. Induced DEMGs 
related to lipid biosynthetic processes might therefore provide evidence of an understudied UV response mecha-
nism and potentially aid in identifying novel targets to help the regeneration of diseased skin. Differentially 
upregulated genes involved with other notably positively enriched pathways, such as TYMS and DHFR (Fig. 2c), 
are mainly involved in nucleotide synthesis and alterations to their increased expression may be part of impor-
tant cellular responses that ensure proper DNA repair through the replenishment of DNA precursor molecules. 
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The extent and magnitude of differential regulation in these pathways indicates high cellular priorities of these 
processes. These findings might warrant further investigation, as these pathways may be vital to maintaining 
genomic stability after UV irradiation.

Molecular data allow precise inter‑individual prediction of UV tolerance without experimental 
irradiation.  Prediction of UV response is an important tool for risk assessment and prognostication of sun 
tolerance, photoaging, skin cancer and phototherapy. As a proxy for UV sensitivity, the Fitzpatrick scale is often 
used7. The Fitzpatrick scale or Fitzpatrick phototypes are a subjective, semi-quantitative scale made up of six 
phototypes that describe skin color by basal complexion, melanin level, and subjective assessment of inflamma-
tory response to UV43. A more accurate way to measure UV tolerance is the experimental determination of the 
MED, which includes the acute irradiation of a test area with different UV dosages and a subsequent assessment 
of the minimal dose leading to erythema manifestation13,44. This method produces accurate and objective results, 
but is potentially harmful as it exposes the test subject to UV irradiation during the assessment. In the present 
study, subjects ranging from Fitzpatrick phototype 1 to 4 were analyzed and their MED assessed. As expected 
from previously published data8,9,11, stratification of donors using the Fitzpatrick classification was a relatively 
poor predictor of MED. For instance, the measured MED values for subjects of Fitzpatrick phototype 4 varied 
from 99.7 up to 210.4 mJ/cm2. We thus set out to explore if the assessment of individual UV sensitivity could 
be improved using molecular markers, forgoing the necessity to expose test subjects to harmful UV irradiation 
in the first place. We employed lasso regression models to attempt the prediction of individual UV sensitivity, 
as measured by MED, based on gene expression and DNA methylation data and a dataset combining expres-
sion and methylation features. The data included both irradiated and control samples, in order for the models 
to select features that would allow reliable estimation of UV tolerance irrespective of prior sun exposure of the 
tissue. The tenfold cross-validated predictions showed a high accuracy achieved by both expression- and meth-
ylation-based models (Fig. 3a,b), far outperforming the Fitzpatrick classifications with median absolute errors of 
13.35 mJ/cm2 (expression-based) and 5.08 mJ/cm2 (methylation-based). Models built using DNA methylation 
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features in particular were able to predict individual UV sensitivity to a remarkable degree, indicating a strong 
epigenetic component associated with UV tolerance. The combination of both expression and methylation data 
yielded the most accurate prediction model with a median absolute error  of  4.6  mJ/cm2, suggesting further 
complementarity in the two data levels (Fig. 3c). Model performance was similar on irradiated and control sam-
ples, demonstrating the utility of the method irrespective of exposure status (Supplementary Fig. S3a–c). To our 
knowledge this is the first attempt to derive an accurate estimation of UV sensitivity purely from molecular data, 
which provides a reliable tool to assess individual UV tolerance, which importantly does not necessitate putting 
patients at risk of prior irradiation of the skin, as is the case with regular MED assessment.

Multi‑omics integration allows the identification of latent subgroups among irradiated sam-
ples.  Considering the predictivity of the multi-omics data with regard to UV sensitivity, we decided to use 
an integrative approach to search for heterogeneity in the biological UV response. For this we integrated gene 
expression and methylation data from irradiated samples using similarity network fusion45. Similarity network 
fusion is a flexible network-based method for integrating different levels biological data, otherwise mostly 
employed in cancer research: First, a separate similarity network is created from each data level, with samples 
represented as nodes and similarities in profiles as edges. In a second step, the separate networks are then inte-
grated using an iterative algorithm that strengthens edges between individual samples present in several levels 
of data, and finally converges into a fused similarity network that incorporates information from all the different 
data levels. In our case, this lead to a fused network incorporating information from both gene expression and 
DNA methylation data of the irradiated samples (Fig. 3d). Spectral clustering on the fused network then identi-
fied three latent subgroups in the multi-omics data, indicating differences in the biological responses to UV by 
different test subjects, and allowing their classification into distinct subtypes. The identified subtypes showed 
very high association to the MED (Fig. 3e) and allowed a better stratification of subjects based on UV sensitivity 
than Fitzpatrick phototypes, especially in the higher MED range (Supplementary Fig. S4a,b). Molecular subtyp-
ing of the skin with regards to UV response using these molecular phototypes (MPs) could prove helpful in 
developing preventive interventions, stratifying patients for risk factors (e.g. skin cancer and disease) and yield-
ing deeper insights into molecular response mechanisms to irradiation.

Molecular phototypes reveal divergent biological responses to UV irradiation connected to 
cytokine response, programmed cell death and DNA damage sensing and repair.  To charac-
terize the biological processes underpinning the variability of UV responses exhibited by the identified MPs, 
we assessed the importance of all pathways in the GO term collection with regard to UV response. For this we 
employed pathway-based machine-learning classifiers that were based on support vector machines using radial 
basis function kernels, capable of learning non-linear patterns from high-dimensional data. These classifiers 
were trained to predict irradiation status of a sample using gene expression data from a given pathway, and 
each “pathway model” was subsequently scored for how well it enabled discrimination between the groups in a 
repeated cross-validation scheme. This yielded a predictivity score for every gene set, ranking all pathways on a 
common scale whilst also capturing non-linear gene regulation patterns. Predictivity was assessed for all path-
ways stratified by the three identified MPs, allowing the identification of biological processes predictive for the 
UV response for a given subtype and thus also revealing pathways whose regulation diverges between the three 
subgroups. This resulted in a mapping of the whole pathway landscape with regard to UV response relevance 
within the three subtypes (Supplementary Fig. S5).

The on average most predictive pathways were involved with DNA damage response mechanisms such as cell 
cycle transition, DNA replication and chromosome condensation in concordance with the top pathways obtained 
using gene set enrichment earlier. Further analysis of the involved pathways however revealed divergent patterns 
between the three molecular subtypes (Fig. 4a). MP 1 and 2 for instance exhibited stronger signals in pathways 
associated with inflammatory and immune signaling in comparison to MP 3. In case of MP 1, the subgroup with 
the lowest average MED, these related strongly to inflammasome activation and cytokine response, both gener-
ally well-described responses in regards to UV irradiation in human skin46–49. In comparison, MP 2 exhibited 
decreased inflammasome predictivity scores but on the other hand a stronger type I interferon response than 
either MP 1 or MP 3. MP 2 was further singled out by stronger signals detected in apoptotic and autophagy 
pathways compared to the other subgroups. This might be connected to a stronger regulation in p53 related 
signaling pathways, as signaling by p53 class mediators showed increased predictivity in this subtype accord-
ingly. Taken together this could indicate a higher efficiency in clearing cells with unrepairable DNA damage 
from the tissue. Both MP 2 and MP 3 further showed higher activities in pigment metabolic processes, which 
is in concordance with the stronger tanning responses observed in more UV tolerant skin50. MP 3 on the other 
hand, incorporating subjects with the highest recorded UV resilience in our cohort, was defined by the strongest 
pathway signals detected in cell cycle checkpoint and DNA synthesis pathways, as well as genes involved with 
chromosome condensation. These findings are indicative of a higher sensitivity of the DNA damage sensing 
machinery in MP 3 subjects in response to irradiation, which would provide a more tightly regulated cessation 
of DNA replication and thus more time for the repair of UV-induced DNA damage. This hypothesis led us to 
investigate the extent of DNA photodamage in the samples of study subjects from the different molecular pho-
totypes. We profiled the most common and important form of UV-induced damage to the DNA, the formation 
of cyclobutane pyrimidine dimers (CPDs), a frequent cause of mutation in the skin after UV irradiation, that 
directly links UV damage to carcinogenesis51. Analysis of the extent of CPDs detectable in the samples revealed 
lower abundances of CPD-alterations in the DNA of MP 3 subjects compared to the other molecular phototypes 
(Fig. 4b). This supports not only the model predictions but also the hypothesis of a pigmentation-independent 
UV protective mechanism in highly UV tolerant skin after repetitive irradiation. The identification of the direct 
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mechanics and the elucidation of key players involved with this response will be important directions for future 
studies, as they may have potential implications for skin cancer prevention.

Discussion
Epigenetic changes are considered to play a fundamental role in establishing gene expression patterns and 
providing a genomic response mechanism towards extrinsic influences. However, the experimental evidence 
describing the extent of this response still remains somewhat limited in many biological processes. We have gen-
erated comprehensive methylation and expression profiling data to enable a more comprehensive examination 
of the intricacies of epidermal UV responses. Our results provide first hints towards an immediate acquisition 
of aging and cancer related epigenetic patterns in response to UV irradiation. In accordance with these findings, 
epidemiological studies have previously established a causal role for short term UV exposure (e.g. blistering 
sunburns) during childhood and adolescence in the late epidermal cancer pathogenesis52,53. The spectrum of 
driver mutations related to skin cancer provides unequivocal genomic evidence for a direct mutagenic role of 
UV light in carcinogenesis54–56. Meanwhile, genomic sites of mutation in skin cancer frequently coincide with 
CpG-islands57,58, regions of high DNA methylation density, which has been attributed to the higher vulnerability 
of 5-methylcytosine bases to CPD-formation59,60. Apart from potential mutagenic effects, recent publications also 
revealed that actinic keratosis samples already bear the classical methylation features of cutaneous squamous 
cell carcinomas61. These reports are consistent with the notion that epigenetic imprinting might present another 
common mechanism of both photoaging and carcinogenesis.

In general, substantial inter-individual variation in UV tolerability and cancer risk can be observed among 
Caucasian subjects. Genetic factors like polymorphisms of the melanocortin 1 receptor (MC1R) gene correlate 
with fairness of skin, UV sensitivity and enhanced cancer risk, however do not fully explain the diversity of UV 
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Figure 4.   Molecular subtyping identifies heterogeneous biological responses to irradiation that correlate with 
innate UV sensitivity: (a) Heatmap showing the predictivity of the most defining pathways for each of the 
molecular phototypes to UV irradiation. The heatmap is scaled by pathway to enhance readability, average 
predictivity of a given pathway over all three molecular phototypes is shown to the left of the heatmap in 
original scale. (b) Extent of DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) measured in 
the molecular phototypes 24 h after the last irradiation. Statistical comparison was performed using unpaired 
two-sided t-tests. Plots were generated using R v3.6.176 software.
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responses, suggesting the possibility of epigenetic involvement in UV sensitivity and pathogenesis44. In support 
of this, the molecular data and methylation-based features in particular allowed the highly precise prediction of 
individual UV sensitivity without any prior irradiation, delivering new and strong evidence of an epigenetic com-
ponent to individual UV tolerance. Further molecular evidence of the heterogeneity in response to irradiation 
was delivered by the molecular subtyping analysis, where clustering on the integrated multi-omics data revealed 
three different molecular phototypes (MPs) among irradiated samples with distinct biological signatures. The 
MPs differed most prominently in their association with pathways regarding cellular stress response, apoptosis/
autophagy and DNA damage sensing and repair (MP 1–3, respectively). In an attempt to validate the predicted 
improved damage sensing and DNA repair of the most UV resilient MP 3, we analyzed the extent of cyclobu-
tane pyrimidine dimers (CPDs) at 24 h after the last irradiation, as readout of UV-induced DNA damage and 
mutagenic potential. Significantly, this data indeed revealed a decreased amount of CPDs after UV irradiation 
in MP 3 compared to lower MPs. This is in line with some previous studies which showed lower CPD counts 
in irradiated samples derived from higher phototypes62,63, although no molecular mechanisms could so far be 
elucidated. Interestingly, studies of this type often suffered from substantial biological variation within each 
phototype as well, once more highlighting the need for better stratification and potentially explaining why the 
mechanisms leading to these observations could so far not be elucidated in ex vivo tissue. Notably, our study 
setup differed slightly from most of the previous by making use of a repetitive irradiation scheme, potentially 
widening the window for detecting inter-individual differences in response mechanisms.

The most intensely explored UV-protection mechanism of the human skin is melanin pigmentation. Mela-
nin serves as a physical barrier that scatters UVR and as an absorbent filter that reduces the penetration of 
UV through the epidermis64. The efficacy of melanin as a sunscreen in darker skin is two- to four-fold higher 
compared to Caucasians65. However individuals with highly pigmented skin have been found 16–500 times less 
likely to present with skin cancer compared to individuals with fair skin53,66–68. The type of melanin produced 
also plays an important role in skin cancer risk determination. The photoprotective effects of melanin are mainly 
attributed to eumelanin. Pheomelanin on the other hand has only weak photoprotective properties and has even 
been found to contribute to carcinogenesis by a mechanism of oxidative damage69. Still, even less deeply pig-
mented ethnicities such as Asians present far lower skin cancer rates compared to Caucasians53, hinting towards 
the existence of additional cancer protective mechanisms apart from melanin. One possible explanation involves 
MC1R variants, which have been shown to confer an increased risk of melanoma and non-melanoma skin can-
cers, independently of skin pigment (including red hair phenotype)70. The increased expression of transcripts 
which are associated with nucleotide metabolism and DNA repair in our dataset might present another previ-
ously uncharacterized mechanism leading to higher cancer protection afforded by skin with high UV tolerance. 
The detailed characterization of these biological pathways and the analysis of their clinical significance will be 
important aspects for future studies.

Taken together, our analyses demonstrate the benefit of using multi-omics integration for elucidating complex 
and diverse responses by disentangling inter-individual variation caused by insufficiently precise subject group-
ings, such as Fitzpatrick phototypes. The presented data illuminates the diverse and interconnected impacts of 
repetitive UV irradiation on both transcriptomic and epigenetic patterning in the human skin and provides new 
insights on protective mechanisms of subjects with high innate UV resilience, that might have further-reaching 
implications for UV-induced carcinogenesis.

Material and methods
Recruiting.  32 healthy female Caucasian subjects belonging to Fitzpatrick phototypes 1–4 were recruited, 
with twelve subjects belonging to phototype 1 + 2, ten to phototype 3 and ten to phototype 4. Subjects were 
aged between 30 and 65 years, with homogenous age distributions in each phototype group. Similar to previous 
studies71, exclusion criteria included tattoos or scars in the test area, pigmentation disorders, pregnancy and 
medication such as anti-histamines or anti-inflammatory drugs within two weeks prior to study start. A detailed 
listing of exclusion criteria can be found in the Supplementary information.

Minimal erythema dose determination.  Minimal erythema dose (MED) estimation is a quantitative 
method to report the amount of UV (particularly UVB) needed to induce sunburn in the skin 24–48 h after 
exposure, by determining erythema (redness) and edema (swelling) as endpoints. Individual MED was deter-
mined for every subject on the first day of the study following the protocols described in DIN EN ISO 2444413.

Repetitive irradiation of test sites and sampling.  The study sites were located in a sun-protected area 
on the subjects’ lower backs and were randomly split into control and test areas. On the second day of the study, 
the first irradiation of the test sites was performed using a SOL 500 full spectrum solar simulator (Hönle UV 
Technology). Intensities were chosen individually to reach 0.9 MED for all subjects or in other words 90% of 
the required minimal dose causing erythema in a given test subject. Irradiation to 0.9 MED was repeated in the 
same manner on the third day and once again on the fourth day of the study, leading to a cumulative irradiation 
of all test sites three times. On the fifth day of the study and 24 h after the last irradiation session of each subject, 
epidermal samples were taken using the suction blister method, as previously described72. For each subject, two 
suction blister roofs of 7 mm diameter were extracted from both control and test sites, one of each to be used to 
extract RNA for sequencing, the other to extract DNA for the DNA methylation analysis. This amounted to four 
suction blister roofs extracted per subject and a total of 128 samples.
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Nucleic acid extraction.  Nucleic acid extraction was performed as previously described71. Tissue samples 
were suspended in the respective lysis buffers for DNA or RNA extraction and homogenized using an MM 301 
bead mill (Retsch). DNA was then extracted using the QIAamp DNA Investigator Kit (Qiagen) according to 
manufacturer’s instructions. RNA was extracted using the RNeasy Fibrous Tissue Mini Kit (Qiagen) according 
to manufacturer’s instructions.

Transcriptome sequencing.  Transcriptome libraries were prepared using TruSeq Library Prep Kit (Illu-
mina) and sequencing was performed at 1 × 50 bp on Illumina’s HiSeq system to a final sequencing depth of 
approximately 100 million reads per sample. Sequencing data was processed using a pipeline including Fastqc 
v0.11.773 for quality control, Trimmomatic v0.3674 for quality based read trimming and Salmon v0.8.175 for 
read mapping and quantification of transcript expression in the form of read counts and transcripts per million 
(TPM).

Differential expression analysis.  Differential gene expression analysis was performed based on the quan-
tified read counts in R v3.6.176 using DESeq277. Linear models were fitted using a paired design matrix to account 
for inter-individual variation unrelated to the irradiation treatment. Genes were considered significantly dif-
ferentially regulated with FDR < 0.05 after multiple testing adjustment by the Benjamini–Hochberg procedure.

Array based methylation profiling.  Methylation profiling was performed using Infinium Methylatio-
nEPIC arrays (Illumina)76. Methylation data was processed using the minfi package78 in R. Normalization was 
carried out using the functional normalization method79, which makes use of internal control probes present 
on the array to infer and correct for technical variation between arrays. Subsequent analyses used M values to 
describe CpG methylation levels, as their approximate homoscedasticity renders them superior for statistical 
testing compared to Beta values80.

Differential methylation analysis.  Differential CpG methylation analysis was performed in R using 
limma81. Linear models were fitted using a paired design matrix to account for inter-individual variation unre-
lated to the irradiation treatment. CpGs were considered significantly differentially methylated with FDR < 0.05 
after multiple testing adjustment by the Benjamini–Hochberg procedure. To compare DNA methylation pat-
terns with those previously described in chronically sun-exposed skin and cancer, we used lists of the respec-
tive genomic regions and their methylation status in photoaged skin17 and different types of cancer22, which 
were available from the Supplementary information. The originally reported methylation changes within these 
regions were then compared to the average difference in methylation of all significantly differentially methylated 
CpGs (FDR < 0.05) annotated to the respective genomic regions in our data, allowing for a region-wise compari-
son of differential methylation.

Gene expression and methylation overlap and correlation analysis.  For the calculation of overlap 
between genes and CpGs, only differentially expressed genes with absolute log2 fold-changes above 0.5 with at 
least three differentially methylated CpGs with absolute log2 fold-changes above 0.2 were considered, in order 
to uncover the most reliably differentially expressed and methylated genes. Pearson’s correlation coefficients of 
gene-CpG pairs were calculated as the sum of all gene transcripts for a given gene correlated with the mean of all 
CpGs belonging to a functionally annotated group (i.e. all enhancer CpGs) annotated to a given gene. Annota-
tions such enhancer status, location in transcription start sites or within exons were extracted from the official 
manifest files for the Infinium MethylationEPIC array provided by Illumina via their website. Significance was 
assessed using linear models in R, with p-values being adjusted for multiple testing using the Benjamini–Hoch-
berg procedure.

Protein–protein‑interaction analysis.  Information on protein–protein-interactions (PPI) retrieved 
from the STRING25 database, accessed through the STRINGdb package25 in R. PPI information was retrieved 
for all differentially expressed genes (FDR < 0.05) with absolute log2 fold-changes above 0.7 with at least three 
differentially methylated CpGs (FDR < 0.05) with absolute log2 fold-changes above 0.5. The interaction query 
was performed using the standard combined interaction score threshold of 400. The resulting network was 
refined using in R using igraph82 by retaining only the top 20% of the most reliable edges based on the combined 
interaction score, with nodes disconnected from the core network being trimmed in the process. The resulting 
PPI-network was then visualized using igraph82.

GO term enrichment analysis.  Enrichment analyses were performed using the z-score method83 as 
implemented in the GSVA R package84, applied to the log2 transformed TPMs. GO term gene sets85 were down-
loaded originated from the Molecular Signatures Database v6.286 and included all three sub-ontologies: biologi-
cal processes (BP), molecular functions (MF) and cellular compartments (CC).

MED regression models.  Lasso regression models87 for the prediction of MED were built in R using the 
implementation provided in the glmnet package88 and interfaced using the machine learning framework mlr89. 
As lasso regression models perform automatic feature weighting by regularizing the absolute magnitude of coef-
ficients, the models were trained on the full datasets, forgoing the necessity of prior feature selection. Further-
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more, data from both control and irradiated samples was included in the training process, in order to allow accu-
rate predictions irrespective of previous UV or sun exposure of a given sample. Model predictions and accuracy 
scores were extracted from tenfold cross-validation to avoid overfitting and derive unbiased predictions and 
estimates for the quality of model fit. Metrics used for judging model performance were median absolute error 
(MAE), as well as the Pearson correlation coefficient (r) and the coefficient of determination (R2).

Similarity network fusion and clustering.  After a filtering step, removing features which showed little 
correlation to MED and reducing feature matrices to 10% of their original size, gene expression (log2 trans-
formed TPMs) and CpG methylation data (M values) from irradiated samples were integrated via similarity net-
work fusion as previously described45 using parameter settings of k = 10(number of neighbors), t = 20 (number 
of iterations) and alpha = 0.5 (hyperparameter). Clustering on the fused network was then performed via spec-
tral clustering as previously described45. Measures used for the selection of cluster numbers were the eigen-gap 
statistic and rotation cost as proposed in the original method description45.

Pathway predictivity analysis.  Pathway predictivity analysis was performed using GO term gene sets85 
downloaded from the Molecular Signatures Database v6.286. The pathway models were based on the support 
vector machine (SVM) implementation from the e1071 R package90, interfaced via the mlr89 machine learn-
ing framework. The models were trained by restricting the expression data (log2 transformed TPMs) to that of 
genes annotated within a given pathway and trained to predict sample irradiation status (control or irradiated to 
0.9 MED) stratified by molecular phototype. The SVMs used the radial basis function kernel with hyperparam-
eters set to gamma =

1

sizeofgeneset and C = 1 . Accuracy of prediction was derived from 5 × 5-fold repeated cross-
validation for each pathway model, giving insight on how well genes within the gene set allow a discrimination 
between UV irradiated and control samples while controlling for overfitting, and used as a measure of predictiv-
ity of the respective pathway to irradiation status.

Profiling of cyclobutane pyrimidine dimers (CPDs).  CPD concentrations were determined using the 
OxiSelect UV-Induced DNA Damage ELISA Kit (Cell Biolabs) according to the manufacturer’s instructions.

General data analysis and visualization.  Data analysis in R further included the usage of the package 
data.table91 and dplyr92 for diverse data handling tasks, as well as the packages ggplot293, ggpubr94, circlize95, and 
pheatmap96 for visualization. Mapping and annotation of gene identifiers was performed using the biomaRt97 
and org.Hs.eg.db98 packages, utilizing the GRCh37 (hg19) human genome build.

Ethics.  The study was performed in agreement with the recommendations of the Declaration of Helsinki and 
all test subjects provided written, informed consent. Approval of the study protocol was granted by the Ethics 
Committee of the University of Freiburg (study code 016/1672).

Data availability
Data generated within this study has been deposited online at ArrayExpress, under the accessions E-MTAB-9251 
and E-MTAB-9249.
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