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Persistent inflammatory state after 
photoreceptor loss in an animal 
model of retinal degeneration
Agustina Noailles1, Victoria Maneu2, Laura Campello1, Violeta Gómez-Vicente2, Pedro Lax1 & 
Nicolás Cuenca1

Microglia act as the resident immune cells of the central nervous system, including the retina. In 
response to damaging stimuli microglia adopt an activated state, which can progress into a phagocytic 
phenotype and play a potentially harmful role by eliciting the expression and release of pro-
inflammatory cytokines. The aim of the present study was to assess longitudinal changes in microglia 
during retinal degeneration in the homozygous P23H rat, a model of dominant retinitis pigmentosa. 
Microglial phenotypes, morphology and density were analyzed by immunohistochemistry, flow 
cytometry, and cytokine antibody array. In addition, we performed electroretinograms to evaluate 
the retinal response. In the P23H retina, sclera, choroid and ciliary body, inflammatory cells increased 
in number compared with the control at all ages analyzed. As the rats became older, a higher number 
of amoeboid MHC-II+ cells were observed in the P23H retina, which correlated with an increase in 
the expression of pro-inflammatory cytokines. These findings suggest that, in the P23H model, 
retinal neuroinflammation persists throughout the rat’s life span even after photoreceptor depletion. 
Therefore, the inclusion of anti-inflammatory drugs at advanced stages of the neurodegenerative 
process may provide better retinal fitness so the remaining cells could still be used as targets of cellular 
or gene therapies.

Retinitis pigmentosa (RP) is, from a clinical and genetic point of view, a highly heterogeneous retinal dystrophy 
characterized by primary degeneration of rod photoreceptors. As RP evolves, only foveal cone photoreceptors 
remain functional; this is responsible for the characteristic tunnel vision. Cone degeneration, which follows that 
of the rods, leads to the loss of the central visual field and, eventually, to complete blindness1. Over 100 different 
mutations in the gene encoding rhodopsin (RHO) are associated with 30 to 40% of autosomal dominant cases of 
RP2. One of the mutations is the Pro-23-His substitution, which causes misfolding and retention of rhodopsin in 
the endoplasmic reticulum1,3–5. The P23H rat model of RP closely resembles the human disease and has long been 
considered a valuable tool for the study of retinal dystrophies3,6–8.

To date, there are no effective treatments for RP, and therapeutic approaches are aimed at halting or slowing 
down the progression of the disease. Nevertheless, numerous investigations are focused on the development of 
novel cell and gene therapies, the ultimate goal of which is the functional recovery of the retina. Although in some 
retinal dystrophies, such as Leber’s congenital amaurosis, gene therapy has initially improved visual acuity, over 
the long term it has been unable to stop the continuing loss of photoreceptors9. This suggests that perhaps other 
factors, such as the inflammatory state of the tissue, might be involved in the progression of retinal degenerations 
and should be taken into account for the appropriate design of combined therapies. In this regard, it has been 
shown that neuroinflammation and reactive gliosis go hand in hand with photoreceptor degeneration in animal 
models of RP (reviewed in ref. 10). In fact, recent studies place the focus on microglia, demonstrating that these 
glial cells directly contribute to non-cell-autonomous neuronal loss, as they are responsible for the phagocytosis 
of living neurons in the stressed brain and retina11,12.

Microglia represent the resident immune population of the retina and are involved in the maintenance of tis-
sue integrity under physiological conditions, participating in axonal growth, synaptic remodeling and neuronal 
survival13–15. In the absence of a negative stimulus, retinal microglia exhibit a surveillance state, morphologically 
characterized by numerous branched processes arising from a small, round soma. In response to harmful stimuli, 
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retinal microglia develop an amoeboid reactive form lacking cellular processes and exhibiting macrophage 
behavior. Active microglia can proliferate, migrate towards the damaged sites and secrete molecules that initi-
ate tissue repair mechanisms, favoring neuroprotection16,17. However, if activation is excessive or prolonged, the 
constant secretion of nitric oxide and pro-inflammatory cytokines (e.g. IL-1α​, IL-1β​, TNF-α​, IFN-γ​, IL-6) may 
lead to chronic inflammation and potential pathological side effects, including neuronal apoptosis18–20. Active 
microglia have been described in RP8,12,21–24 and other retinal neurodegenerative diseases, such as age-related 
macular degeneration14,25 or glaucoma14,26–30. In addition to retinal degenerations, some neurodegenerative dis-
orders, such as Parkinson’s or Alzheimer’s disease, have also been linked to microglia activation and high levels of 
pro-inflammatory molecules31–33. These data suggest that it is a common phenomenon in the pathophysiology of 
neurodegenerations and may influence their progression.

Because the inflammatory response seems to be a critical factor for neuronal survival11,12, the success of retinal 
cell or gene therapies might rely, to some degree, upon the favorable conditions of the target tissue, in terms of 
neuroinflammation. In this context, we have found few studies that investigate how microglia evolve over time 
in a chronic retinal disease34. Therefore, our objective was to determine the onset of microglia activation in an 
animal model of RP and to characterize the inflammatory profile of the retina, choroid and sclera at early, inter-
mediate and advanced stages of the disease, with the purpose of clarifying whether retinal neuroinflammation 
persists once the majority of photoreceptors have died. We hope this knowledge will help in the design of more 
effective therapeutic approaches.

Results
The decay of retinal function in the P23H rat correlates with alterations in Iba1-positive cell 
morphology and surface marker expression.  Scotopic electroretinographic (ERG) responses were 
recorded from 1-, 4- and 12-month-old Sprague-Dawley (SD; control) and P23H rats, three time points that rep-
resent early, intermediate and advanced stages of the disease. As shown in Fig. 1, retinal functionality was main-
tained over time in SD rats, although it was slightly reduced at 12 months of age. However, a premature drop in 
the ERG response was observed in 1-month-old P23H rats, where the maximum a- and b-wave amplitudes were 
diminished by 84% and 45%, respectively, as compared to age-matched SD rats. In a similar manner, 4-month-old 
P23H animals showed a decrease in the maximum a- and b-wave amplitudes of 97% and 86% respectively, and at 
12 months, the decline had already reached levels of 100%.

In P23H rats, the age-dependent loss of retinal responsiveness is associated with a gradual thinning of the pho-
toreceptor cell layer6,7,35 and comes often accompanied by an increase in microglia numbers and changes in their 
morphology and/or surface marker expression8. To look for possible signs of microglia activation, retinal sections 
from 1-, 4- and 12-month-old SD and P23H rats were immunostained with antibodies against Iba1, constitutively 
expressed by microglia36, and MHC-II, the upregulation of which is a hallmark of reactive microglia37 (Fig. 2). 
In SD rat retinas, Iba1+ cells exhibited a ramified morphology, with a tiny soma, little perinuclear cytoplasm and 
a large number of fine branching processes. This characteristic morphology remained unchanged from 1 to 12 
months of age, and the cells displayed little or no immunoreactivity against MHC-II antibodies (Fig. 2A–C). In 
contrast, changes in Iba1+ cells were evident in the P23H retina, starting at 1 month of age. Although some Iba1+ 
cells were observed in 1-month-old retinas with a morphology that was almost normal (Fig. 2D), as the animals 
aged, their somas became gradually enlarged, presenting a few short, thick primary and terminal processes, and 
became immunopositive for MHC-II, all of which are characteristic of reactive microglia (Fig. 2E,F). The typ-
ical morphological features of resting and reactive microglia can be better appreciated in representative higher 
magnification images of 4-month-old SD (Fig. 2G–I) and P23H (Fig. 2J–L) retinas. These results evidenced that 
the decay of retinal function in the P23H rat correlated with changes in Iba1+ cell morphology and expression of 
MHC-II.

Iba1-positive cell numbers and distribution across retinal layers are altered in the P23H rat 
from early stages of the disease on.  Due to the fact that Iba1+ cells in the P23H retina displayed the 
phenotype of reactive microglia, as confirmed by morphological changes and MHC-II expression, we decided to 
analyze the effect of RP progression on Iba1+ cell numbers and distribution. The total number of cells expressing 
Iba1, MHC-II or both markers was determined in retinal sections. Immunopositive cells were significantly higher 
in P23H retinas at all time points, as compared to age-matched SD retinas (140% at 1 month, 184% at 4 months, 
194% at 6 months and 185% at 12 months of age) (Fig. 3A). Importantly, while Iba1+ cells were barely found in 
the outer retina of SD rats (Fig. 2A–C), we could observe abundant immunoreactive cells in the outer nuclear 
layer (ONL) of P23H animals (Fig. 2D,E). Thus, we decided to confirm changes in distribution by quantifying 
their relative numbers in each retinal layer (Fig. 3B). In SD retinas, we observed slight variations in Iba1+ cell 
numbers that may be attributed to normal aging. Significant differences were detected in the ganglion cell layer 
(GCL), whereIba1+cell density progressively diminished as the animals aged. In the outer plexiform layer (OPL), 
the percentage of these cells was similar at 1 and 4 months of age, but a significant increase was observed at 12 
months (Fig. 3B). In contrast, a profound reorganization of immunoreactive cells took place in P23H retinas. 
Specifically, the percentage of these cells in the ONL significantly increased between 1 and 4 months of age, but 
it was not possible to quantify them in 12-month-old retinas because of the complete degeneration of the ONL 
at these advanced stages of the disease. Also, we noticed a significant increase between 4 and 12 months of age in 
the INL, which could be attributed, at least in part, to relocation from the degenerated outer retina. In addition, 
P23H rats exhibited a constant population of Iba1+ cells in the subretinal space (SS) at all time points, while these 
cells were absent in SD animals.

Finally, we performed a phenotypic classification of the cells on the basis of their surface marker expression 
(Fig. 3C–E). The number of MHCII+ cells (either positive or negative for Iba1) was higher in P23H retinas at all 
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time points (Fig. 3D,E). Differences between SD and P23H retinas in the number of Iba1+/MHCII− cells were 
only significant at 6 and 12 months of age (Fig. 3C).

One potential explanation for the increase in Iba1+ cells observed in P23H retinas would be the proliferation 
of resident microglia. Although under physiological conditions, microglia turnover in the murine retina does 
not seem to be due to proliferation38, the presence of dividing Iba1+ cells has been reported in injured retinas39.  
In order to assess this possibility, we performed double immunohistochemical staining with anti-Iba1 and 
anti-Ki-67 antibodies in 1-month-old whole-mount retinas. Several proliferating Iba1+ cells were found in the 
GCL and OPL of P23H retinas, mainly in the periphery (Fig. 4C,D). We could not observe any double-labeled 
cells in SD retinas (Fig. 4A,B).

Another possible reason for the increase in the retinal Iba1+ population may be attributed to changes in the 
number of dendritic cells, an inflammatory cell type that also expresses this marker. To assess this, we performed 

Figure 1.  Retinal responsiveness. (A) Scotopic ERG waveforms of 1-, 4- and 12-month-old SD and P23H rats. 
Units on the left of the panel indicate input flash intensities in log cd s/m2; (B) Luminance-response curves of 1-, 
4- and 12-month-old SD (blue/circles) and P23H (orange/squares) rats. Data are represented as mean ±​ SEM, n =​ 6.
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double immunohistochemical staining with anti-Iba1 and anti-integrin alpha E2 (CD103, clone OX-62) antibod-
ies in 1-, 4- and 12-month-old retinal sections. Dendritic cells were found in the choroid and ciliary body of P23H 
rats at these ages. However, although a few dendritic cells were found in the P23H peripheral retina, close to the 
ora serrata, we did not find dendritic cells in the rest of the P23H retina (Fig. 4E–H).

Altogether, these results demonstrate that in this model of retinal degeneration, Iba1+ cells are activated from 
early to advanced stages of the disease. The increase in Iba1+ cells observed during long-term degeneration in 
P23H retinas seems to be due, at least in part, to the proliferation of resident microglia.

A flow cytometric analysis of retinal inflammatory cells further confirms increased numbers 
in the degenerative retinas of P23H rats.  Although immunofluorescence is the technique of choice to 
visualize changes in inflammatory cell morphology and spatial distribution, we sought to analyze retinal inflam-
matory cells from both a qualitative and quantitative perspective, using an alternative method. Retinal CD11b+ 
cells were identified by flow cytometry (Fig. 5A) and their degree of activation was evaluated by measuring 
MHC-II (Fig. 5B) and CD45 (not shown) expression. In P23H retinas, the CD11b+ population was greater than 
in age-matched SD rats from 1 to 12 months of age (Fig. 5C), corroborating our immunofluorescence results, i.e. 
that retinal neuroinflammation begins at early stages of the disease and is amplified at advanced stages, even when 
no photoreceptors remain in the ONL. A small CD11b+/MHC-II+ population was observed in the retinas of SD 
rats up to 6 months of age (Fig. 5D). However, a significantly higher CD11b+/MHC-II+ population was found in 

Figure 2.  Microglia morphology and surface marker expression. Representative images from vertical 
sections of 1-, 4- and 12-month-old SD (A–C) and P23H (D–F) retinas, stained with Iba1 (green) and MHC-II 
RT1B (red) antibodies. Nuclei were counterstained with TO-PRO-3 iodide (blue). Higher magnification images 
of 4-month-old SD (G–I) and P23H (J–L) retinas. All images were acquired in the central retina. GCL, ganglion 
cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear 
layer. Scale bars 40 μ​m (A–F) and 20 μ​m (G–L).
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age-matched P23H retinas, which was even greater in 12-month-old animals (Fig. 5D). Double immunostaining 
against CD11b and CD45 markers evidenced upregulation of CD45 in P23H retinal inflammatory cells, reach-
ing significant levels at 1, 6 and 12 months of age, as compared to age-matched SD retinas (1 month =​ 1.42-fold 
increase; 6 months =​ 1.47-fold increase; 12 months =​ 2.03-fold increase; data not shown). These results confirmed 
an activated state of CD11b+ cells and increased numbers in P23H retinas.

Inflammatory cell numbers are increased in the sclera, choroid and ciliary body in P23H rats.  
Previous studies have shown that when a retinal damage occurs, various cell types expressing microglia/mac-
rophage markers reach the site of injury through the choroid and optic nerve40,41. For that reason, we analyzed 
changes in the Iba1+/MHCII+ cell population of the structures surrounding the retina: the sclera, choroid and 
ciliary body. To study changes in density or activation of these cells in the sclera and choroid, we obtained mosaics 
of complete retinal sections and analyzed the fluorescence area in pixels in four representative regions of interest. 
As we previously demonstrated, retinal degeneration in the P23H rat is not uniform, since the temporal area 
degenerates at a faster rate than the nasal area6,7. Therefore, we performed analyses of the choroid and sclera along 
the nasal temporal axis to know whether there was a correlation between retinal degeneration rate and inflamma-
tory cell density in these areas.

Our results showed that both the sclera and choroid layers had greater immunoreactivity to Iba1 and MHC-II 
in 1-month-old P23H rats (Fig. 6D,H) than in age-matched SD rats (Fig. 6A,G). Moreover, immunoreactivity to 
Iba1 and MHC-II further increased in P23H rats (Fig. 6E) as compared to SD rats (Fig. 6B) at 4 months of age. 

Figure 3.  Quantification and spatial distribution of Iba1 and/or MHC-II immunoreactive cells in retinal 
sections. (A) Average number of Iba1+ and/or MHC-II+ cells per mm of retina; (B) Distribution of Iba1+ and/or 
MHC-II+ cells across retinal layers. Bars represent the percentage of Iba1+ and/or MHC-II+ cells in each layer 
with respect to the total (100%) in the same retinal section. GCL, ganglion cell layer; IPL, inner plexiform layer; 
INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; SS, subretinal space;  
(C–E) Average number of cells expressing Iba1+/MHC-II− (C), Iba1−/MHC-II+ (D) or Iba1+/MHC-II+  
(E) markers. All data are plotted as mean ± SEM, n =​ 4, ANOVA, Bonferroni post-hoc. Different letters indicate 
statistical significance.
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At 12 months, we could not establish clear differences in Iba1 and MHC-II immunoreactivity between P23H 
(Fig. 6F) and SD (Fig. 6C) groups in the sclera or the choroid.

Quantification of the fluorescent area generated by Iba1 and MHC-II markers in the sclera and choroid in 
each entire retinal section showed that P23H rats had statistically significant higher values than those observed 
in SD rats at 1 and 4 months of age (Fig. 7A). The differences in the fluorescent area between SD and P23H rats 
at 4 months of age remain statistically significant in all the regions tested, except in the nasal peripheral region 
(Fig. 7B), which coincides the retinal area with the lower degeneration rate.

In the ciliary body of SD and P23H rats, Iba1- and/or MHC-II-immunoreactive cells were observed at all ages 
tested (Fig. 8). At all ages tested, P23H rats showed a greater density of immunopositive cells than that observed 
in the ciliary body of SD rats at the same age (1.5, 1.3 and 1.4 fold-increase for 1, 4 and 12 months respectively, 
Fig. 9A). Moreover, MHCII+ populations (both Iba1+ and Iba1−) were higher in P23H than in age-matched SD 
rats at all ages tested (Fig. 9B), while Iba1+/MHCII− populations were higher in SD rats (reaching significance at 

Figure 4.  Immunohistochemical detection of proliferative Iba1+ and dendritic cells. (A–D) Representative 
images from retinal whole-mounts of 1-month-old SD (A,B) and P23H (C,D) rats, stained with Ki-67 (green) 
and Iba1 (red) antibodies. Arrowheads point to Ki-67 immunopositive cells. (E–H) Retinal sections of SD (E,F) 
and P23H (G,H) rats, immunostained for Iba1 (red) and the dendritic marker Ox-62 (green). Arrowheads 
indicate immunopositive dendritic cells. OPL, outer plexiform layer; GCL, ganglion cell layer. (A–D) Scale bar: 
10 μ​m; (E–H) Scale bar: 20 μ​m.
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1 month of age). In both SD and P23H rats, we observed a significantly decreasing number of Iba1+/MHC-II− 
cells from 1 to 12 months of age. With respect to the Iba1+/MHC-II+ populations, the number of cells showed a 
significantly greater peak value at 4 months of age in both animal strains. Regarding the Iba1−/MHC-II+ cell pop-
ulation, it did not experience any significant changes with age in SD rats, while in P23H rats the number increased 
as the rat became older, with significant differences between 4 and 12-month-old animals.

Taken altogether, these data suggest that the number of inflammatory cells increases in the sclera, choroid and 
ciliary body during the first stage of retinal degeneration, and that this increase is uniform over the entire surface 
of the retina and is therefore independent of the degeneration plaguing the retina in different zones.

Inflammatory markers persist in advanced stages of retinal degeneration.  To assess whether the 
evolution of microglial cells in normal and diseased retinas correlated with the inflammatory state of the retinal 
tissue, we analyzed the expression of pro- and anti- inflammatory molecules in the retinas of 2- and 12-month-old 
SD and P23H rats, using a cytokine antibody array (Fig. 10). At 2 months of age, P23H retinas showed a signif-
icant up-regulation of the chemokine fractalkine (receptor for CX3C chemokine ligand 1; CX3CL1), vascular 
endothelial growth factor (VEGF) and ciliary neurotrophic factor (CNTF), as compared to age-matched SD ret-
inas (Fig. 10A). At 12 months, P23H rats exhibited a higher concentration of the chemokines: cytokine-induced 
neutrophil chemoattractant-2 (CINC2), cytokine-induced neutrophil chemoattractant-3 (CINC3), fractalkine 
(CX3CL1), granulocyte macrophage colony-stimulating factor (GM-CSF), monocyte chemoattractant protein-1 
(MCP-1) and macrophage inflammatory protein-3 alpha (MIP-3α​). We also found significantly higher values 
of the pro-inflammatory cytokines: tumor necrosis factor alpha (TNF-α​), interleukin-1 beta (IL-1β​), interferon 

Figure 5.  Flow cytometric analysis of retinal inflammatory cells. Disaggregated single retinas were labeled 
with a cocktail of PE-conjugated anti-CD11b, APC-conjugated anti-MHC class II and FITC-conjugated 
anti-CD45 antibodies, and analyzed by flow cytometry. (A) Representative forward scatter (FSC) vs. CD11b dot 
plot, where CD11b+ cells are gated. (B) FSC vs. CD11b+ dot plots, where negative (green) or positive (orange) 
MHC-II cells are shown. Images correspond to a single experiment representative of at least 3 replicates. 106 
events were acquired per sample and 500,000 events are shown. The percentage of MHC-II+ cells within the 
CD11b+ population is indicated. (C) Percentage of CD11b+ cells in the entire retina and (D) percentage of 
MHC-II+ cells within the CD11b+ population, for SD (diamonds, blue) or P23H (squares, orange) rats at 
different ages. Data are plotted as mean ±​ standard deviation. Asterisks indicate significant differences between 
SD and P23H groups; *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001, Student’s t-test.
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gamma (IFN-γ​), interleukin-6 (IL-6) and leptin, and the anti-inflammatory cytokine interleukin-10 (IL-10). In 
addition, at this age, we detected significantly increased levels of growth factors in P23H: nerve growth factor beta 
(β​-NGF), metallopeptidase inhibitor 1 (TIMP-1) and CNTF (Fig. 10B). These results point to a general persistent 
inflammatory state of the tissue at advanced stages of retinal degeneration, even once the photoreceptors have 
completely disappeared.

Discussion
The present study demonstrates the existence of a persistent long-term inflammatory state in the retinal lay-
ers, sclera, choroid and ciliary body of a rat model of retinal degeneration. Previous studies have demonstrated 
the relationship between microglia activation and neurodegenerative diseases, including RP8,42. However, to our 
knowledge, there is no previous evidence demonstrating inflammatory conditions at later stages of the degen-
erative process, which in RP animal models is characterized by the loss of most of the photoreceptors and a 
profound remodeling of the inner retina. The demonstration of inflammatory conditions in advanced phases of 
an eye-related neurodegenerative disease could be useful to improve the therapeutic approaches for these pathol-
ogies, as well as for other neurodegenerative diseases coursing with neuroinflammation.

In this work, inflammatory cells were identified by their immunoreactivity against two markers expressed by 
microglia, macrophages and dendritic cells: Iba1 protein36 and CD11b integrin43. Activation of inflammatory 
cells was assessed by morphological changes and the expression of MHC class II antigens37 and leukocyte com-
mon antigen CD4544,45. We have demonstrated that, while the total number of immunopositive cells for one or 
more specific markers (Iba1, CD11b and MHC-II) remains fairly constant over time in SD rat retinas, the total 
number of these cells significantly increases with age in the retina of P23H rats. In these animals, the progressive 
increase in the number of Iba1+/MHC-II+ cells was particularly significant, which indicates that activation of 
inflammatory cells is a retinal tissue response sustained over time. Previous works have shown that microglial 
cells exposed to pro-inflammatory cytokines derived from Th1 cells, such as IFN-γ​, TNF-α​ and GM-CSF, among 
others, are stimulated to express MHC-II46, which could explain the peak in the expression of MHC-II observed 
in 12-month-old P23H rats.

We have also identified that the distribution of Iba1 and/or MHC-II positive cells across the retinal layers 
in P23H rat retinas was different as compared to that in the control rats. In SD rats, immunoreactive cells were 
located in the inner part of the retinal tissue (GCL and IPL), whereas these cells appeared towards the outer layers 

Figure 6.  Presence of inflammatory cells in the sclera and choroid. Vertical cryosections of 1-, 4- and 
12-month-old SD (A–C) and P23H (D–F) eyecups, stained with Iba1 (green) and MHC-II RT1B (red). Nuclei 
were counterstained with TO-PRO-3 iodide (blue). Higher magnification images of 1-month-old SD (G) 
and P23H (H) sections. All images were acquired in retinal sections that contained the optic nerve. OS, outer 
segments; IS, inner segments; ONL, outer nuclear layer. Scale bar 50 μ​m.
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of the retinal tissue (OPL and ONL) in P23H rats. This result agrees with previous studies showing the migration 
of microglial cells through the retina in retinal organotypic cultures47, and in animal models of retinal degenera-
tion, such as rd mouse24 or RCS rats48.

Another relevant finding reported here is that P23H rat retinas showed a population of Iba1−/MHC-II+ cells that 
increased in number with the progression of the disease. In this regard, recent work by our research group evidenced 
the presence of a small group of MHC-II+ cells that were not labeled by anti-Iba1 antibody in P23H rat retinas8, 
which is noteworthy since the Iba1 protein is expressed by microglia, macrophages and dendritic cells. Moreover, it is 
one of the most important molecules in the motile properties of these cells, due to its participation in the membrane 
ruffling processes49,50. The existence of these Iba1−/MHC-II+ cells can be explained if we consider that the expres-
sion pattern of each cell may vary depending on its origin. It may be that these Iba1−/MHC-II+ cells are migrating 
cells that travel to the retinal tissue in response to negative stimuli. It should also be considered that Iba1−/MHC-II+  
cells may be down-regulating the expression of Iba1, as a consequence of the nature or duration of the activating 
signals. Thus, this novel expression pattern may correspond to an intermediate activation state between resting and 

Figure 7.  Quantification of inflammatory cells in the sclera and choroid. (A) Total fluorescent area (in pixels) 
of the sclera and choroid in vertical sections of 1-, 4- and 12-month-old SD and P23H retinas. (B) Fluorescent 
area (in pixels) of the sclera and choroid at four different regions of interest (nasal peripheral, nasal central, 
temporal central and temporal peripheral) of 1-, 4- and 12-month-old SD and P23H retinas. Data are plotted as 
mean ±​ standard deviation, n =​ 4. Asterisks indicate statistical significant differences; **P <​ 0.01, ***P <​ 0.001, 
ANOVA, Bonferroni post-hoc.
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reactive microglial states. Whatever the answer, the presence of this microglial population characteristically occurs 
in the P23H rat, and it presumably plays a specific role in the course of the disease.

This work provides conclusive evidence that the number of Iba1 and MHC-II positive cells progressively 
increases in P23H rat retinas. This effect can be attributed to a recruitment of immune cells (macrophages or 
dendritic cells) to the retina. A previous work on light-induced retinal damage showed that blood-borne mac-
rophages enter the retina via the optic nerve and ciliary body and migrate to the injured retinal area41. These 
studies also found that in dark control retinas, microglial cells and macrophages were mainly located within 
choroidal and conjunctival blood vessels, and in connective tissue around the optic nerve. In this work, we have 
shown that the sclera and choroid of SD rats is immunoreactive to Iba1 and MHC-II, but at levels lower than that 
observed in the age-matched P23H rat retinas prior to 4 months of age. This could be due to the arrival of circu-
lating monocytes/macrophages to the retina during the early stages of the degenerative process. At later stages 
of retinal degeneration (12 months of age), we did not observe any significant differences in immunoreactivity 
to Iba1 and MHC-II markers in choroid and sclera between SD and P23H rats. These results are in agreement 
with previous studies which showed that, in RP, photoreceptor cell loss is correlated with subsequent deteriora-
tion of the retinal capillary network51 and lower levels of retinal blood flow52. P23H rats exhibit a poor capillary 
network, with clear signs of degeneration at 4 months of age6. Accordingly, the degenerative process may reduce 
the affluence of macrophage-like cells to the retina via the choroid during later stages of the disease. Also, in the 

Figure 8.  Presence of inflammatory cells in the ciliary body. Representative images from the ciliary body of 
1-, 4- and 12-month-old SD (A,C,E) and P23H (B,D,F) retinas, stained with Iba1 (green) and MHC-II RT1B 
(red) antibodies. Higher magnification images of 12-month-old SD (G) and P23H (H) ciliary body. Arrowheads 
indicatenon-specific immunostaining of blood vessels with the secondary antibody. Scale bar 50 μ​m.
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Figure 9.  Quantification of inflammatory cells in the ciliary body. (A) Density of cells (cells/mm2) 
immunopositive for Iba1 and/or MHC-II markers in the ciliary body of 1-, 4- and 12-month-old SD and P23H 
rats. (B) Number of cells showing the phenotypes Iba1+/MHC-II−, Iba1+/MHC-II+ and Iba1−/MHC-II+ in the 
ciliary body of 1-, 4- and 12-month-old SD and P23H rats. Data are plotted as mean ± SEM, n =​ 4, ANOVA, 
Bonferroni post-hoc. Different letters indicate significant differences.

Figure 10.  Cytokine-expression profile analysis. Average normalized fluorescence intensity for each pair 
of cytokine spots in 2 (A) and 12 (B) month of age SD and P23H retinal extracts. Data are plotted as the 
mean ±​ standard deviation, n =​ 4. Asterisks indicate statistical significant differences; *P <​ 0.05, Student’s t-test.
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ciliary body, we appreciated a greater total number of immunopositive cells in P23H rats at all ages tested, with a 
significant increase in the amount of Iba1−/MHC-II+ cells. The ciliary body is one of the main pathways through 
which inflammatory cells can reach the retina41, and it is assumed that the macrophage-like cells which cannot 
do it through the choroid at 12 months of age (because of its great deterioration), do reach the retina directly 
via the ciliary body and optic nerve. It is therefore likely that these inflammatory cells which colonize the ciliary 
body are ready to enter the retina and sustain the inflammatory conditions. In order to detect the possible arrival 
of dendritic cells to the damaged retina, we have assessed the presence of dendritic cells in the retina through 
immunolabeling with the anti-integrin alpha E2 (clone OX62) antibody. We found barely any dendritic cells in 
the retina of P23H rats, although a scarce amount of cells was observed close to the ora serrata. However, they 
were found abundantly in the choroid and ciliary body. These results lead us to conclude that the majority of the 
retinal immunopositive Iba1+/MHC-II+ cells in the P23H rats are not dendritic cells.

Age-related increases in Iba1 and MHC-II immunopositive cells in P23H rat retinas could also be caused by 
the proliferation of resident microglia. To elucidate this hypothesis, we used double immunolabeling with Ki67 
and Iba1 antibodies. We detected proliferative Iba1+ in P23H rat retinas, but not in the healthy control rats, which 
suggests that the Iba1 immunopositive cell population in P23H rats increases, at least in part, due to the resident 
microglia proliferation. All these results considered together lead us to conclude that there are at least two mecha-
nisms that underlie age-related increases in Iba1+ cells in P23H rat retinas: the recruitment of immune cells to the 
retina and the proliferation of resident microglia. We suggest that the increase in the Iba1-positive cells observed 
in the inner layers of the retina is primarily due to proliferative mechanisms, while the increase in the Iba1+ cells 
detected in the outer retinal layers is mainly due to the arrival of immune cells.

Retinal degeneration in P23H rats was associated with changes in the expression of pro- and anti- inflamma-
tory molecules. In the early stages of the degenerative process (2 months of age), we observed significant increases 
in the expression levels of fractalkine, VEGF and CNTF in P23H rat retinas. We suggest that these three cytokines 
may mediate the initial response to the photoreceptor cell death and promote the ensuing massive affluence of 
pro-inflammatory cells and molecules. Prior studies in fractalkine knockout mice showed that this cytokine is 
able to control microglia migration in the retina53. In this sense, the soluble form of fractalkine released from pho-
toreceptors may function as a chemotactic factor, triggering the activation and migration of retinal microglia54.  
In the retinal tissue, various cell types have been described as producing VEGF, among them, the retinal pigment 
epithelium, Müller cells, pericytes and astrocytes55. VEGF is a proangiogenic molecule that promotes vascular 
permeability55. Previous investigations on a model of traumatic brain injury suggest that it is implicated in the 
recruitment and activation of microglial cells56. In animal models of retinal laser injury, an accumulation of 
microglial cells was observed at the site of damage, accompanied by a subsequent increase in various growth fac-
tors and cytokines, such as VEGF, TNF-α​ and IL-6, among others57. CNTF is one of the most frequently studied 
neurotrophic factors in retinal degenerative diseases, and it has been hypothesized that this molecule is released 
from damaged cells under pathological condition58, as well as from glial cells59.

During the late stages of the degenerative process, at 12 months of age, the inflammatory profile in P23H rat 
retinas was dramatically increased. At this point, we observed increased expression levels of pro-inflammatory 
molecules, such as TNF-α​, IFN-γ​, IL-1β​ and IL-657,60,61 and chemoattractant molecules, such as CINC-2, CINC-3 
and MCP-1. Under these conditions, certain factors, such as CNTF62, and β​-NGF63 were also up-regulated. These 
neuroprotective factors can also act as chemoattractant signals for microglial/macrophage cells64,65, demonstrat-
ing that one factor could be intrinsically neuroprotective, although its indirect actions could trigger inflammation 
responses. At the same time, we were also able to detect an increased expression of the neuroprotective factors 
GM-CSF66 and IL-1067. This is not surprising, as in a scenario of advanced tissue degeneration, we expect to find 
a high level of cell death and a mixed pool of pro- and anti-inflammatory cytokines. Any inflammatory process 
involves an imbalance between pro- and anti- inflammatory cytokines in favor of the former group, with little or 
no chance of success for the latter. Previous works have shown this to occur in this context and also in the context 
of neurodegenerative diseases, such as Alzheimer’s disease10,68,69.

All these results are consistent with the existence of a persistent inflammatory state in the P23H rat retina. It 
is interesting to note that in RP, despite the loss of a large proportion of photoreceptor cells, the retinal tissue con-
tinues to present a strong inflammatory condition. Our findings are in accordance with many preceding works in 
animal models of RP, such as rd10 mice and RCS rats, which showed increased pro-inflammatory cytokines and 
microglia activation in the early stages of retinal degeneration48,70. Here, we provide new information about how 
the retinal tissue inflammatory response evolves with age in RP. In this way, we demonstrate that (1) in an early 
phase of retinal degeneration, the activating microglial signal consisted mainly of VEGF, CNTF and fractalkine; 
(2) with age, Iba1+ cells of P23H rats exhibited an intense variation, not only in the phenotypes expressed, but 
also in their distribution and numbers through the retinal layers; (3) in late stages of the disease, the amount of 
pro-inflammatory cytokines notably increased in comparison to healthy retinas; (4) the inflammatory response 
was also present in the choroid and ciliary body, which may act as a source of pro-inflammatory cells and mole-
cules; and (5) the peak of pro-inflammatory cells in the choroid and ciliary body of P23H rats was observed at a 
mid-stage of the degenerative process (4 months).

In conclusion, here we provide a new global view of the retinal microglial inflammatory response that is 
important to take into account for future therapies. The microglia shift to a permanently activated state can 
trigger a long-term response to the disease that may determine the success or failure of a potential therapy. The 
maintenance of a healthier condition in the retinal tissue would be important for all the cells in the retina, espe-
cially for cones in advanced stages of degeneration, as they survive longer than rods. In this sense, the use of 
anti-inflammatory drugs, even in late stages of the neurodegenerative process, could preserve the retina in better 
condition for stem cell transplantation, gene therapy or artificial vision. Likewise, these results maybe important 
in terms of gaining a better understanding of the mechanisms involved in other neurodegenerative diseases, such 
as Parkinson’s or Alzheimer’s disease, where similar long-term inflammatory responses can take place.
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Methods
Animals.  Homozygous P23H line 3 rats, kindly provided by Matthew LaVail (UCSF School of Medicine; 
www.ucsfeye.net/mlavailRDratmodels.shtml), and Sprague-Dawley (SD) rats (Harlan Laboratories, Barcelona, 
Spain) were used in this study. Animals were housed under controlled photoperiod (12 h light/12 h dark), tem-
perature (23 °C ±​ 1 °C) and humidity (55–60%) conditions. Food and water were available ad libitum. Procedures 
were carried out under the project license UA-2013-07-22, approved by the Ethics Committee for Animal 
Experimentation at the University of Alicante. Animals were handled in accordance with current regulations for 
the use of laboratory animals (NIH, ARVO and European Directive 2010/63/UE), in order to comply with the 3Rs.

Immunohistochemistry.  Histological studies were performed at 1, 4, 6 and 12 months of age. Animals were 
sacrificed in the morning by a lethal dose of pentobarbital (100 mg/kg, i.p.). After marking the dorsal margin of 
the sclerocorneal limbus with a suture, the right eyes were enucleated and fixed in 4% (w/v) paraformaldehyde 
for 1 h at room temperature. Next, they were washed with 0.1 M phosphate buffer with a pH of 7.4 (PB) and 
sequentially cryoprotected in 15, 20 and 30% (w/v) sucrose. The cornea, lens and vitreous body were removed, 
the eyecups were embedded in Tissue-Tek OCT (Sakura Finetek, Zoeterwouden, Netherlands) and they were 
then frozen in liquid N2. Sixteen-micrometer-thick sections were obtained on the nasal temporal axis using a 
Leica CM 1900 cryostat (Leica Microsystems, Wetzlar, Germany). Sections were mounted on slides (Superfrost 
Plus; Menzel GmbH and Co. KG, Braunschweig, Germany) and washed several times prior to incubation with 
blocking solution (PB containing 10% (v/v) donkey normal serum and 0.5% (v/v) triton X-100) for 1 h. Then, 
sections were incubated overnight with the primary antibodies: polyclonal rabbit anti-ionized calcium binding 
adapter molecule 1 (Iba1, 1:1000; Wako Chemicals, Richmond, VA, USA) and monoclonal mouse anti-major his-
tocompatibility complex (MHC) class II RT1B (clone OX-6, 1:200; AbD Serotec, Kidlington, UK) or monoclonal 
mouse anti-integrin alpha E2 (CD103 clone OX-62, 1:50; Abcam, Cambridge UK). To assess the presence of pro-
liferative microglia, 1-month-old SD and P23H eyes (n =​ 4) were fixed as mentioned above. The retinas were then 
whole-mounted and double-labeled with monoclonal mouse anti-Ki-67 (clone B56, 1:10; BD Biosciences, San 
Diego, CA, USA) and anti-Iba1. The secondary antibodies were Alexa Fluor®​ 555/488 anti-mouse or anti-rabbit 
IgG (1:100; Molecular Probes, Eugene, OR, USA). Photographs were obtained under a Leica TCS SP2 confocal 
laser-scanning microscope (Leica Microsystems). Images from SD and P23H sections were processed in parallel, 
using Adobe Photoshop 10 software (Adobe Systems Inc., San Jose, CA, USA).

Cell counting.  To quantify positively immunostained cells, three non-consecutive retinal sections per animal 
and four animals per age and genotype were examined. Only retinal sections containing the optic nerve were 
used for quantification, to ensure that the same location was examined in each animal. The total number of cells 
expressing one or both markers (Iba1+/MHC-II−, Iba1−/MHC-II+ and Iba1+/MHC-II+) was scored using a 
Leica DMR fluorescent microscope (Leica Microsystems) under 63X magnification. Data were expressed with 
reference to the length of each section (in mm), as measured with ImageJ software71. In parallel, the percentage 
of microglia located in each retinal layer (as referred to total microglia (100%) in the same section) was analyzed 
under 40X magnification.

Additionally, we studied changes in inflammatory cell density and activation in the sclera, choroid and ciliary 
body in confocal images acquired under 20X magnification. Images of the sclera and choroid were taken at four 
representative retinal regions: two in the periphery (0.45 mm from the ciliary body on both the nasal and tem-
poral sides) and two in the center (0.45 mm from the optic disc, on both sides). In each image, we established a 
rectangular region (0.227 mm2) for the subsequent measurement of the fluorescence area (in pixels) with ImageJ 
software.

Statistical analyses were performed using SPSS 20.0 software (IBM, Armonk, NY, USA). A one-way ANOVA 
was used to compare the mean number of total microglia, and a two-way ANOVA to compare the number of cells 
corresponding to each phenotype (Iba1+/MHC-II−, Iba1−/MHC-II+ and Iba1+/MHC-II+). When a 0.05 level of 
significance was found, post-hoc pairwise comparisons using Bonferroni’s test were performed. Normal distribu-
tions and homogeneity of variance were found for all analyzed categories. Values of P <​ 0.05 were considered to 
be statistically significant. Data are plotted as the mean ±​ standard error of the mean (SEM).

Flow Cytometry.  The left eyes from 1- (SD n =​ 3; P23H n =​ 4), 2- (SD n =​ 4; P23H n =​ 6), 3- (SD n =​ 4; 
P23H n =​ 6), 4- (SD n =​ 7; P23H n =​ 5), 6- (SD n =​ 4; P23H n =​ 6) and 12-month-old (SD n =​ 2; P23H n =​ 7) 
rats were enucleated. The retinas were then dissected out, placed in 1 ml of phosphate-buffered saline (PBS) with 
a pH of 7.4, and disaggregated by gently pipetting up and down through a wide bore pipette tip. This cell sus-
pension was filtered through a 30-μ​m strainer (BD Biosciences, San Diego, CA, USA) to prevent cell clumps 
and was triple-stained with a cocktail of antibodies: PE-conjugated anti-rat CD11b/c (clone OX42, eBiosci-
ence, San Diego, CA, USA), APC-conjugated anti-rat MHC class II (clone M5/114.15.2; Milteny Biotec, Bergish 
Gladbach, Germany) and FITC-conjugated anti-rat CD45 (eBioscience). Each retina was examined separately in 
an LSRFortessa cytometer (BD Biosciences), and a total 106 events were acquired per retina. Data were analyzed 
with FACSDiva software (BD Biosciences).

A Student’s t-test was performed to compare values between SD and P23H retinas. Results are expressed as the 
mean ±​ standard deviation and values of P <​ 0.05 were considered to be statistically significant.

Cytokine Array.  To determine the expression of inflammatory markers, a commercial rat cytokine antibody 
array was used (RayBio®​ rat cytokine antibody array G-series 1; Cat#AAR-CYT-G1-8; RayBiotech, Norcross, 
GA, USA). Four animals per age and genotype were used and the analysis was performed twice. Protein extracts 
were obtained by homogenization of 2- and 12-month-old retinas in lysis buffer. Protein concentration was deter-
mined in the lysates with the Bio-Rad protein assay (Bio-Rad, Hercules, CA, USA), using bovine serum albumin 

http://www.ucsfeye.net/mlavailRDratmodels.shtml
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as a standard. The sample concentration was then adjusted to 1 μ​g/μ​l with blocking buffer and 100 μ​l were loaded 
per well. Samples were incubated on the microarray chip overnight at 4 °C, with gentle agitation. After washing, 
the slide was processed strictly following the manufacturer’s protocol and finally scanned at 532 nm. Cytokine 
expression levels were obtained by measuring the fluorescence intensity of each spot on the microarray chip with 
GenePix®​ Pro 6.0 software (Axon Instruments Inc., Union City, CA, USA) and subtracting the background. The 
values were then normalized to the positive controls included on the chip. For a single protein, any ≥​1.5-fold 
increase or ≤​0.65-fold decrease in intensity between groups was considered a significant difference in expression, 
provided that both sets of signals were well above the background.

A Student’s t-test was used to detect statistical differences between SD and P23H retinas. Values of P <​ 0.05 
were considered to be statistically significant. Results are represented as the mean ±​ standard deviation.

Electroretinograms.  Scotopic electroretinograms were performed at 1, 4 and 12 months of age. Six animals 
per age and genotype were registered. Following overnight dark adaptation, animals were anesthetized by an 
intraperitoneal injection of ketamine (100 mg/kg) and xylazine (4 mg/kg) and maintained on a heating pad at 
38 °C. Pupils were dilated by topical administration of 1% tropicamide (Alcon Cusí, Barcelona, Spain). A drop 
of Viscotears 0.2% polyacrylic acid carbomer (Novartis, Barcelona, Spain) was infused on the cornea to prevent 
dehydration and to allow electrical contact with the recording electrodes (DTL fiber with an X-Static silver-coated 
nylon conductive strand; Sauquoit Industries, Scranton, PA, USA). A 25-gauge platinum needle, inserted under 
the scalp between the eyes, was used as the reference electrode. A gold electrode was placed in the mouth and 
acted as ground. Animals were placed in a Faraday cage and recordings were performed in absolute darkness. 
Scotopic flash-induced ERG responses were recorded from both eyes in response to light stimuli produced by a 
Ganzfeld stimulator. Light stimuli were presented for 10 ms at 11 different and increasing luminances, ranging 
from −​5.2 to 0 log cd s/m2. Three to ten consecutive recordings were averaged for each light presentation. The 
interval between stimuli was 10 s for dim flashes (−​5.2 to −​1.4 log cd s/m2) and up to 20 s for the highest lumi-
nances (−​0.8 to 0 log cd s/m2). ERG signals were amplified and band-pass filtered (1–1000 Hz, without notch 
filtering) using a DAM50 data acquisition board (World Precision Instruments, Aston, UK). Stimuli presentation 
and data acquisition (4 kHz) were performed using a PowerLab system (AD Instruments, Oxfordshire, UK). 
Recordings were analyzed off-line. The amplitude of the a-wave was measured from the baseline. The amplitude 
of the b-wave was determined from the trough of the a-wave to the peak of the b-wave.

Statistical analysis was performed with SPSS 20.0 software (IBM). A MANOVA was used to evaluate the 
effects of age progression on ERG responses. When a 0.05 level of significance was observed, post-hoc pairwise 
comparisons using Bonferroni’s test were carried out. Normal distributions and homogeneity of variance were 
found for all analyzed categories. Values of P <​ 0.05 were considered to be statistically significant. Data were 
plotted as the mean ±​ SEM.
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