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Abstract: (1) Background: New technologies involving gas hydrates under pre-nucleation condi-
tions such as gas separations and storage have become more prominent. This has necessitated
the characterization and modeling of the transport properties of such systems. (2) Methodology:
This work explored methane hydrate systems under pre-nucleation conditions. All-atom molecular
dynamics simulations were used to quantify the performance of the TIP4P/2005 and TIP4P/Ice water
models to predict the viscosity, diffusivity, and thermal conductivity using various formulations.
(3) Results: Molecular simulation equilibrium was robustly demonstrated using various measures.
The Green–Kubo estimation of viscosity outperformed other formulations when combined with
TIP4P/Ice, and the same combination outperformed all TIP4P/2005 formulations. The Green–Kubo
TIP4P/Ice estimation of viscosity overestimates (by 84% on average) the viscosity of methane hydrate
systems under pre-nucleation conditions across all pressures considered (0–5 MPag). The presence
of methane was found to increase the average number of hydrogen bonds over time (6.7–7.8%).
TIP4P/Ice methane systems were also found to have 16–19% longer hydrogen bond lifetimes over
pure water systems. (4) Conclusion: An inherent limitation in the current water force field for
its application in the context of transport properties estimations for methane gas hydrate systems.
A re-parametrization of the current force field is suggested as a starting point. Until then, this work
may serve as a characterization of the deviance in viscosity prediction.

Keywords: water; methane; hydrates; viscosity; diffusivity; molecular dynamics

1. Introduction

Gas hydrate structures form under low temperatures and elevated pressures. Under
these conditions, the liquid-to-solid phase transition of water favors the formation of a gas
hydrate solid structure over that of hexagonal (Ih) ice. During the phase transition, a “guest”
gas species dissolved in water can become trapped in cages that form in the molecular
lattice. Gas hydrates have three common types of structure, namely sI, sII, and sH, which
differ in their geometric morphology and the sizes of the cages that they form [1]. Methane
gas mainly forms sI hydrates as its molecular radius allows it to fit in the cages of this
structure. The guest molecule’s presence in the cage stabilizes the structure by lowering its
potential energy [1,2].

Operational conditions in the oil and gas industry and the prevalence of water and gas
in multi-phase systems such as transportation pipelines and drill wells are conducive to gas
hydrate formation [3]. As a result, historically, gas hydrate research has focused on solving
physical, economic, and engineering issues common in the oil and gas industry [4]. The
flow assurance of oil and gas systems has been the primary focus, and thus has motivated
research into inhibitor additives to prevent or slow the formation of gas hydrates in flow
lines [5–11]. Moreover, the rheological properties of these systems have been of interest [12–18].
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These studies have mostly involved oil-in-water systems to reflect applications in the oil and
gas industry.

Gas hydrates have a gas storage capacity of up to 180:1 gas-to-liquid volume ra-
tio [1,19]. Additionally, the mixtures of gases with different molecular radii can be sepa-
rated based on the size selectivity of the cages that form in gas hydrate structures. New
technologies that take advantage of the formation and physical properties of gas hydrates
have been proposed. These include gas separations [19,20], pre- and post-combustion car-
bon capture [21–23], the transport and storage of natural gas [24,25], and the desalination
of water [26]. These emerging applications have led to research on promoter additives
such as graphene nanoflake and multi-walled carbon nanotube nanofluids [27–29]. Many
of the technologies above involve the continuous flow of pre-nucleation and nucleating
gas hydrate systems that require to be maintained in the flow state for operation and
involve aqueous systems (no oil). This has led to interest in characterizing the rheological
properties of such systems. Rheological phase diagrams of methane and carbon diox-
ide hydrates systems in pure water have been recently developed [30]. However, the
experimental limitations (kinetic, mass diffusion, and heat effects) of working with gas
hydrates in shear rheometers that reduce the feasibility of such rheological work have also
been identified [30]. Moreover, the addition of plasma-functionalized carbon nanotube
nanofluid promoters to methane hydrate systems has been reported, suggesting molecular
scale phenomena as a cause of non-Einsteinian dynamic viscosity effects [31].

Computational methods have enabled the investigation of multiple material proper-
ties of gas hydrates. Density functional theory (DFT) has been used to characterize the
piezoelasticity and stability limits of hydrate structures [32,33] and investigate the vibration
spectra of structure II and H as a method to predict the Young’s modulus of these hydrate
structures [34,35]. DFT and phonon calculations have been used for the prediction of the
thermal properties of methane, ethane, ethylene oxide, carbon dioxide, and empty sI and
hexagonal ice (Ih) structures [36]. Molecular dynamics (MD) has also been a promising tool
to investigate gas hydrate phenomena. It has been used to explore gas hydrate interfacial
thickness and tension with high agreement to experimental results [37]. Additionally, MD
has been used to investigate methane hydrate growth with impingement, which led to the
observation of some cages being occupied by two methane molecules at the same time [38].
Moreover, MD has been previously used to predict the transport properties of water [39,40],
methane, and carbon dioxide systems[41]. A comprehensive list of best practices for the
calculation of transport properties by molecular dynamics has been compiled by Maginn
et al. [42]. The computational estimation of the transport properties of pre-nucleation
methane hydrate systems via MD is a promising alternative to overcome the limitations in
the experimental rheology work of gas hydrates [30,31].

Molecular dynamics simulations offer a computational methodology for the solution
of Newton’s equations of motions to represent atomic (and molecular) trajectories and
interactions given force field potentials. Force fields are parametrized models designed
to represent potential energy in an atomic system, which is a function of the individual
atomic positions [43]. The total potential energy of the system represented by the force field
includes bonded and non-bonded interactions. Potential energy from bonded interactions
arise from changes in bond length, bond angle, and bond torsion along dihedrals. These
tend to be modeled as harmonic oscillators. The potential energy from non-bonded inter-
actions arise from electrostatic and repulsive (van der Waals) forces between non-bonded
atoms. Coulombic pair-wise interactions commonly represent the electrostatic interactions
in the system, while Lennard-Jones 12/6 potentials are used to model repulsive forces. The
recursive solution of molecular systems and the application of statistical mechanical princi-
ples allows MD simulators to predict macroscopic properties such as viscosity, diffusivity,
and thermal conductivity.
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Molecular dynamics has been used a tool to study gas hydrates phenomena in
multiple scenarios. Simulations have considered the formation/nucleation [44–52] and
dissociation [53–59] of gas hydrates, guest gas mobility between cages and displacement
by different species [60–63], surface effects on nucleation [64–68], the inhibition mecha-
nisms of polymers such as poly(vinyl pyrrolidone) and poly(vinyl caprolactam) [69–72],
as Qi et al. conducted a recent review of studies utilizing molecular simulations investi-
gate gas hydrate phenomena [73]. However, the examination of the transport properties
of methane hydrates systems under pre-nucleation conditions remains mainly unex-
plored, especially in pure water–methane systems. The work presented herein intends
to examine the performance of the TIP4P/2005 and TIP4P/Ice water models in the
prediction of transport properties of pure water under near freezing conditions and of
pre-nucleation methane gas hydrate systems. This work will use previously obtained
experimental viscosity data [30] to compare and validate computational estimations.
Multiple formulations for the calculation of viscosity are evaluated here and the system’s
adherence to the Stokes–Einstein constant across temperatures is examined. A large
molecular system (7641 atoms), a rigorous equilibration methodology, and bootstrapping
statistics (with replacement) of calculated values is performed to ensure the confidence
and physical meaningfulness of the results presented herein.

2. Material and Methods
2.1. Software Packages

Molecular dynamics (MD) simulations involve the modeling of system energy and
atomic interactions by dynamically tracking atomic trajectories through Newton’s equa-
tions of motion. The MD simulations conducted in this work were performed using the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package [74]. This
is a mature and widely used MD simulation package developed and maintained by Sandia
National Laboratory and Temple University. The molecular systems simulated in this work
were defined using PACKMOL [75] and Moltemplate [76] packages. PACKMOL is a pack-
ing optimization algorithm that uses a random position generator to place atoms and/or
molecules in a simulation box within a specified geometry and tolerance of separation from
each other (2.5 angstroms in this work). As a result of PACKMOL’s optimized molecular
positioning algorithm, the system’s inter-molecular repulsive forces are reduced and thus
so is its initial potential energy, making the initial MD simulation steps less computationally
intensive. This is an improvement on the regular lattice structure that is normally produced
from standard simulation box populating commands available in LAMMPS or Moltemplate.
Moltemplate is a Python software package that facilitates the assignment of force field
parameters to atoms and/or molecules in an MD system [76]. It was used in this work to
assign atom masses, charges, and molecule bond and angle parameters associated with
the Optimized Potentials for Liquid Simulations All-Atom (OPLS-AA) force field for water
and methane molecules. Finally, the MDAnalysis is a molecular trajectory handling and
analysis software. The hydrogen bond (H-bond) analyses and the all-to-all RMSD plots
discussed below were performed with the aid of MDAnalysis.

2.2. Simulation Design
2.2.1. Force Field

In this work, the Optimized Potentials for Liquid Simulations (OPLS) force field was
used in its all-atom form (OPLS-AA) [77–79]. The all-atom form of the force field allows the
explicit representation of hydrogen atoms in the system, as opposed to the coarse-grained
version united-atom (UA) form of the force field, which lumps hydrogen atom parameters
with their bonded carbon atom. The explicit representation of hydrogen atoms in the all-
atom parameters allows for the improved modeling of the hydrogen interactions in liquid
water systems which involve a high presence of hydrogen bonding, such as those simulated
in this work. The OPLS-AA force field was used to model methane molecules simulated
in this work. Additionally, two variations of the original four-site water model TIP4P [77]
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were used in this work-TIP4P/2005 [80] and TIP4P/Ice [81]. The four-site models allow for
an all-atom representation and interaction between the water molecules and the OPLS-AA
methane molecules.

2.2.2. LAMMPS Input

The water systems simulated here used the TIP4P/2005 and TIP4P/Ice OPLS-AA four-
site water models. The TIP4P/2005 model was developed to represent water under any
condition in its entire phase diagram, while TIP4P/Ice is a re-parameterized version of the
TIP4P/2005 model designed for an improved representation of water properties in its solid
state [80,81]. The water systems simulated in this work consisted of 2547 molecules, which
is one order of magnitude larger than the classic 256 molecule system normally simulated,
which suffers from finite size effects[40]. The systems were represented in LAMMPS with
full atom style and lj/cut/tip4p/long pairstyle with 8.5 Å OM site and Coulombic cutoff
lengths. A pppm/tip4p kspace space style with a dimensionless relative force accuracy of
1 × 10−5 and Lorenz–Berthelot arithmetic mixing rules were applied. Bond and angle
styles were set to harmonic, with water molecules bonds kept rigid via the shake command.
Although PACKMOL was used to minimize inter-molecular repulsive forces during the
initial system definition, an energy minimization procedure was run in LAMMPS prior
to the start of the equilibration run to ensure that minimum energy was achieved. All
tests required less than 500 time steps to achieve a local minimum of potential energy
for the system. The short simulation time required to achieve this local minimum can
be attributed to the usage of PACKMOL as a preliminary step to reduce repulsive forces
through its packing optimization algorithm. The Verlet algorithm with a 2-femtosecond
timestep was used to conduct the numerical integration of Newton’s equations of motion.
Table 1 contains the detailed list of parameters for the original TIP4P force field developed
by Jorgensen et al. [77], and the modified TIP4P/2005 and TIP4P/Ice used in this work.
Finally, Table 2 presents the OPLS-AA parameters used to model methane molecules in
this work [79].

Table 1. LAMMPS force field parameters for various OPLS-AA water models.

Attribute, Units TIP4P [77] TIP4P/2005 [80] TIP4P/Ice [81]

O mass, g/mol 15.9994 15.9994 15.9994
H mass, g/mol 1.008 1.008 1.008

O charge, e −1.04 −1.1128 −1.1794
H charge, e 0.52 0.5564 0.5897

OH bond ro, Å 0.9572 0.9572 0.9572
HOH angle θ 104.52◦ 104.52◦ 104.52◦

OM distance, Å 0.15 0.1546 0.1577
O-O LJ ε, kcal/mol 0.155 0.1852 0.21084

O-O LJ σ, Å 3.1536 3.1589 3.1668
O-H LJ ε, kcal/mol 0 0 0

O-H LJ σ, Å 0 0 0
H-H LJ ε, kcal/mol 0 0 0

H-H LJ σ, Å 0 0 0
rc, Å 8.5 8.5 8.5

Notes: H: hydrogen; O: oxygen; O-O: oxygen–oxygen interactions; H-H: hydrogen–hydrogen interactions; charge
units in multiples of an electron charge (e); M is the massless fourth site in the TIP4P water model; rc: cutoff
distance of Coulombic and Lennard-Jones (LJ) interactions, σ: distance for zero potential energy in LJ potential,
ε is the depth of the LJ potential well.
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Table 2. LAMMPS force field parameters for OPLS-AA methane model.

Attribute, Units OPLS-AA [79]

C mass, g/mol 12.011
H mass, g/mol 1.008

C charge, e −0.24
H charge, e 0.06

CH bond ro, Å 1.09
CH angle θ 107.8◦

C-C LJ ε, kcal/mol 0.066
C-C LJ σ, Å 3.5

H-H LJ ε, kcal/mol 0.03
H-H LJ σ, Å 2.5

C-H LJ ε, kcal/mol 0
C-H LJ σ, Å 0

rc, Å 8.5
Notes: H: hydrogen; C: carbon; C-C: carbon–carbon interactions; H-H: hydrogen–hydrogen interactions; charge
units in multiples of an electron charge (e); rc: cutoff distance of Coulombic and Lennard-Jones (LJ) interactions;
σ: distance for zero potential energy in LJ potential; ε is the depth of the LJ potential well.

2.2.3. Methane Systems

The pre-nucleation gas hydrate systems simulated here are made up of two species—
water and methane. According to the Gibbs phase rule, the two-phase system with two
component species has exactly two degrees of freedom. These are taken up by the tem-
perature and pressure conditions imposed on the simulation. As a result, the methane
concentration of the liquid mixture is fixed at every condition. Concentrations can be deter-
mined by the calculation of the methane fugacity as modeled by the Trebble–Bishnoi [82]
equation of state (EOS) in combination with the modified Henry’s law for higher pressures
as presented by Krichevsky and Kasarnovsky [83] and the methane dissolution in water
measurements by Lekvam and Bishnoi [84]. The Trebble–Bishnoi EOS is a widely used
model and has been extensively described and explored so it will not be included here. The
modified Henry’s law for higher pressures by Krichevsky and Kasarnovsky is presented in
Equation (1).

ln
f2

x2
= ln H2,1 +

ν̄∞
2 (P− PS

1 )

RT
(1)

In this relation, the gas species fugacity in the liquid is f2, H2,1 is Henry’s law constant,
x2 is the gas concentration in the liquid phase, PS

1 is the partial saturation pressure of
the liquid, ν̄∞

2 is the partial molar volume of the gas at infinite dilution, R is the gas
constant, P is pressure, and T is the temperature. The fugacity of methane in water is
calculated using the Trebble–Bishnoi EOS [82]. Lekvam and Bishnoi provide values for
Henry’s constant, H2,1, and the partial molar volume, ν̄∞

2 , of methane for temperatures
between 1.2 and 10.2 ◦C [84]. These values were linearly extrapolated to include the 0 °C
conditions. The methane systems consisted of 1470–2547 molecules depending on the
concentration calculated.

2.3. Equilibration Procedure

The equilibration methodology conducted in this work was based on recommenda-
tions by Maginn et al. [42] regarding the best practices for the MD estimations of transport
properties [42]. The initial system temperatures were assigned to the molecules in the
form of initial velocities based on the Maxwell–Boltzmann distribution. All molecular
systems in this work were equilibrated using a series of simulations. First, the system was
simulated using the isobaric-isothermal (NPT) ensemble for 25 ns. During this phase, the
system’s potential energy and density were monitored to be in the expected range based
on temperature and pressure conditions, and to evolve to be stabilized over the simulation
time [80,81,85]. Once satisfactory stabilization was achieved, the system was simulated for
100 ns using the canonical (NVT) ensemble with a Nosé–Hoover thermostat. The release
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of the NPT ensemble’s barostat reduces the mechanical disturbances (volume corrections)
imposed on the system by the ensemble dynamics to maintain constant pressure. This is
an important step as the autocorrelation functions used to calculate transport properties,
particularly the Green–Kubo velocity and pressure autocorrelations, are affected by these
disturbances [42]. Additionally, the pressure and temperature damping factors used in
this work were 1000*dt and 100*dt, respectively, where “dt” is the simulation timestep
(2 femtoseconds). This was determined to be enough to allow the system to relax between
iterations of the barostat and thermostat, and thus help reduce the disturbances introduced
by the dynamics of the ensemble. During the NVT equilibration step, the pressure and
density of the system is monitored to ensure that they did not dramatically deviate from
their values at the end of the NPT equilibration step.

2.4. Replicate Production Runs

Ideally, the NVE ensemble would be used for production runs to minimize the distur-
bances introduced into the system by the dynamic thermostat and barostat algorithms in
NVT and NPT ensembles. However, the temperature control can be insufficient in NVE
ensembles, and can be inappropriate when simulating temperature-specific property data
points. Additionally, in the context of dynamic viscosity and diffusivity estimations, it
has been shown that predictions from NVT ensembles are indistinguishable from those
obtained from NVE ensembles [86,87]. Thus, the production runs simulated in this work
were performed using the NVT ensemble.

Once equilibration was satisfactorily achieved, ten replicate production runs per
temperature–pressure condition considered were simulated, each with a different random
number generator seed for the temperature (velocity) assignment according to the Maxwell
distribution. These replicates were used to create a sample of ten production runs (n = 10)
for statistical analysis. Bootstrap analyses (with replacement and n = 10,000) of samples
with ten simulations per condition (n = 10) were performed on the replicate production
runs. Bootstrap statistics can improve the reliability and accuracy of the transport property
predictions, as the uncertainty in prediction is inversely proportional to the square root
of the number of replicates (u ∝ 1/

√
n) [88]. Furthermore, replicate runs benefit from the

computational speed of parallel simulations versus one long simulation, which have been
shown to converge to the same value [89,90]. Additionally, the random states generated by
the temperature assignment described above have the effect of reducing the disturbances,
or noise, on the Green–Kubo integral and the Einstein slope via the averaging of the
disturbances that occur across the random states generated. This improves the reliability
on the GK and Einstein transport property calculations, which will be described in the
next section.

2.5. Transport Property Calculations

Molecular dynamics simulations produce mechanical property data of the systems
simulated as they arise from the fundamental principles of statistical mechanics [74]. The
fluctuations of mechanical properties such as pressure, velocity, or heat flux can be used to
estimate transport properties of molecular systems. The equilibrium time autocorrelations
of these mechanical variables can be used to calculate the viscosity, diffusivity, and thermal
conductivity as described by the Green–Kubo (GK) integral definition [91,92]. Viscosity
utilizes the elements of the pressure tensor (Equation (2)), while diffusivity uses the molec-
ular velocities (Equation (3)). Additionally, thermal conductivity can also be estimated by
the Green–Kubo formulation using the autocorrelation of the heat flux through surfaces
normal to each dimension of the simulated system (Equation (4)).

ηGK =
V

kBT

∫ ∞

0

〈
Pαβ(t) · Pαβ(0)

〉
dt (2)
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DGK =
1
dα

∫ ∞

0
dt

〈
1
N

N

∑
i=1

v(t) · v(0)
〉

(3)

κGK =
1
dα

V
kBT2

∫ ∞

0
〈J(t) · J(0)〉dt (4)

where kB is the Boltzmann constant, dα is the number of dimensions in the simulation
(dα = 3 in this work), Pαβ is an off-diagonal element of the pressure tensor, v is velocity,
and J is the heat flux through a surface.

The Green–Kubo formulation for transport properties can be integrated and re-stated
as a differential form, normally referred to as the Einstein (Eins) formulation. For instance,
the Green–Kubo diffusivity equation can be re-expressed with the Einstein formulation as
presented in Equation (5). The Einstein formulations tend to be preferred over the Green–
Kubo ones due to the instability of the time autocorrelation of the respective mechanical
property and the longer time requirement for convergence when compared to the slope
used by the Einstein formulations [42]. This work explores the application of an additional
formulation of viscosity, namely the Stokes–Einstein formulation (Equation (7)). This
formulation utilizes the Stokes–Einstein relation for spherical particles in low Re flow
(Equation (6)) and the Einstein formulation of diffusivity described above (Equation (5)).

DEins =
1
6

lim
t→∞

d
dt
(|ri(t)− ri(0)|2) (5)

D =
kBT

6πηr
(6)

ηSE =
kBTdt

πrMSD
(7)

where MSD ≡ |ri(t) − ri(0)|2 is the mean squared displacement of molecules, r is the
molecular radius, and ri is the position of the ith molecule.

3. Results and Discussion
3.1. Molecular Simulation Design Considerations

The equilibration suggestions for the development of molecular simulations with the
interest of performing transport property predictions presented by Maginn et al. [42] were
followed in this work. The rigorous equilibration procedure ensured that simulations are
physically meaningful and results are reliable. This work used multiple design consid-
erations and simulation indicators to evaluate whether the simulated systems achieved
equilibrium. The first consideration was the consecutive equilibration steps, which were
discussed above as a series of simulations starting from an isobaric-isothermal (NPT) en-
semble followed by a canonical (NVT) ensemble. During the consecutive simulations,
significant simulation properties were used to determine the approach to equilibrium. Ad-
ditionally, long-term indicators of equilibrium were used to confirm whether the simulated
system achieved a diffuse regime. Finally, a discussion on the importance of H-bonds to the
molecular simulation predictions of transport properties in water-rich systems is presented.

3.1.1. Consecutive Equilibration Steps

This work used a TIP4P/2005 pure water system at 25 ◦C and atmospheric pressure as
a model to demonstrate the equilibration procedure performed for all simulations presented
here. As described above, the system was first simulated for 25 nanoseconds in an NPT
ensemble, where the potential energy, diffusivity, and density of the system were observed
to ensure that they approached the values presented by the original TIP4P/2005 water force
field literature [80,81]. The simulation time-series results are presented in Figure 1 and the
property values are compared to literature values in summary Table 3. The results presented
indicated that during the NPT simulation, the system was approaching the literature values
for density, potential energy, and diffusivity. These are properties utilized in the original
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parametrization of the TIP4P/2005 water force field [80], and thus serve as significant
validation indicating an approach to equilibrium and physically meaningful results.
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Figure 1. Pure water system at 25 ◦C and atmospheric pressure (a) potential energy (red: literature [80]
value, black: mean value); (b) diffusivity; and (c) density (black: mean value) during 25 ns of an NPT
ensemble equilibration simulation. In panels (a,c): blue: raw LAMMPS output, orange: average over
a 0.4 ns running window.

Table 3. A summary of the system’s mean physical properties after the NPT and NVT equilibration
simulations and a comparison to expected literature values for a TIP4P/2005 pure water system at
25 ◦C and atmospheric pressure.

Property, Units TIP4P/2005 Literature [80] NPT (25 ns) NVT (100 ns)

Density, kg/m3 0.998 0.997 0.992
Potential Energy, kcal/mol −11.405 −11.407 −11.398

Diffusivity, mm2/s 2.28 × 10−3 2.23 × 10−3 2.24 × 10−3

Once the equilibrium indications from Figure 1 and Table 3 were established, the sys-
tem was released from its barostat and simulated in a canonical (NVT) ensemble for 100 ns.
During this stage in equilibration, the mechanical disturbances from the volume corrections
of the barostat were removed and the same properties (potential energy and diffusivity)
were monitored and compared to literature values [80] to determine how approach to
equilibrium. The results are presented in Table 3 and Figure 2. The time-series of potential
energy and density presented in this section have the raw simulated values presented in
blue (high noise signal), a running average presented in orange (attenuated noise), the
mean value presented as a black horizontal line, and the literature value presented as a
red horizontal line (Figures 1a,c and 2a). The diffusivity plots (Figures 1 and 2b) present
the Einstein formulation of diffusivity (Equation (5)) through two methods of computing
the mean squared displacement (MSD) slope—initial and final two-point slope (blue), and
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the running mean of all MSD values (orange). Both methods result in similar prediction
performance relating to the literature value of water diffusivity under these conditions.
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Figure 2. A pure water system at 25 ◦C and atmospheric pressure: (a) potential energy (red: liter-
ature [80] value, black: mean value) and (b) diffusivity during the last 50 ns segment of a 100 ns
NVT equilibration. In panels (a,c): blue: raw LAMMPS output, orange: average over a 0.4 ns
running window.

3.1.2. Long-Term Equilibrium Indicators

The physical properties predicted by MD used as indicators discussed above were
further corroborated by long-term equilibrium indicators. All indicators presented in this
section refer to whether the simulation was run for a sufficiently long time for all molecules
to traverse (sample) the entire phase-space of the system. In other words, long-term indi-
cators were used to determine whether the system reached the diffuse regime—at which
point the system can be confidently used for transport property predictions. Furthermore,
a proper simulation length can overcome periodic boundary condition discrepancies in
molecular simulations. Firstly, the MSD of the simulation was compared to the box length
(L) of the simulated region. In the diffuse regime, the MSD is much larger than L. Al-
ternatively, the root mean squared displacement (RMSD) can be used: if it is larger than
half of the box length (L/2), then the system is diffuse. Additionally, the slope of the
log-log plot of MSD should be close to unity in the molecular diffuse regime [42]. Figure 3a
presents the MSD, Figure 3b shows the RMSD, and Figure 3c presents the log-log plot for
the NVT equilibration run for the model TIP4P/2005 water system. The system’s RMSD
calculated at the end point of the NVT simulation presented in Figure 3b (approximately
420 angstroms) is one order of magnitude larger than half the longest dimension of the
simulation box (84 Å), and the slope of the log-log plot is 1.11. Both of these results indicate
that a diffuse regime was achieved. Then, the velocity autocorrelation function (VACF)
was analyzed. The VACF of a well-sampled simulation in which the lag time between
correlated velocities is not too large will converge to zero [42]. Additionally, the VACF
can be used in the Green–Kubo formulations for transport property calculations, so it is
important to ensure that the VACF converges towards zero so as to not introduce errors
into the Green–Kubo integral. Figure 3d presents the NVT simulation’s VACF and its mean
value converging to zero. This served as an added indicator of equilibration.
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Figure 3. A pure water system at 25 ◦C and atmospheric pressure: (a) mean squared displacement
(MSD); (b) root mean squared displacement (RMSD); (c) log-log plot of MSD; and (d) velocity time
autocorrelation function (VACF) during the last 50 ns segment of a 100 ns NVT equilibration.

A limitation of the MSD and RMSD indicators discussed above is that they are one-
dimensional in nature. Although they quantify the diffusion of molecules through the
simulation box, they do so by taking 3-dimensional motion and projecting the motion
onto a one dimensional space. A more robust measure of the equilibration and presence
of a diffuse regime is the all-to-all RMSD plot [93], which takes into consideration all
three dimensions in molecular trajectories. In this plot, all conformational states from the
molecular trajectory produced by the MD simulation are compared to all other conforma-
tional states by quantifying the RMSD between the states in units of distance. This plot
measures how far apart each conformational state is from all others. By definition, the
diagonal is always equal to zero, as it is equivalent to a conformational state compared to
itself—and its distance from itself is zero. As the distance value increases, this signifies
that the two conformational states compared are further apart from each other. Diffuse
regime simulations have homogeneous all-to-all RMSD plots with an increased RMSD
between states as moving away from the diagonal of the plot. Figure 4 presents the RMSD
all-to-all plots for the NPT and NVT in the model TIP4P/2005 system. Figure 4c represents
an unequilibrated system in which regions of conformational change are detected by the
darker square regions that form on the plot. These correlate to smaller RMSD distances (see
colorbar legend), and thus conformational states that have not yet traversed far from one
another (not yet diffuse enough). In the case of the NVT ensemble (Figure 4b), the diagonal
is thin and no regions of low RMSD values (darker colors) are evident. This indicates a
diffuse regime and approach to equilibrium.

Finally, the Stokes–Einstein constant was calculated and temperature-normalized at
25 ◦C (298 K) for the quantification of each simulated system’s deviation from ideal be-
haviour. The largest deviation was determined to be 9.1% at 0 ◦C. Additionally, pressure
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did not have an effect on the Stokes–Einstein fidelity in the methane gas hydrates systems
simulated. Deviations arising from the use of the TIP4P/2005 water model have been
previously reported, but these violations were more pronounced at colder temperatures
(below 260 K) as the system approaches water’s liquid–liquid critical point near its Widom
line [40]. The deviations observed from the simulations performed in this work did not
indicate abnormal behaviour that would lead to concern about the equilibration process
described above.
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Figure 4. A pure water system at 25 °C and atmospheric pressure: (a) 25 ns NPT ensemble runs and
(b) last 50 ns segment of a 100 ns NVT equilibration following the NPT run. Panel (c) presents the
all-to-all RMSD plot of a simulation that is further from equilibrium.

3.1.3. Hydrogen Bonding Effects

Hydrogen bond effects are known to be a dominant factor for molecular transport
in aqueous systems [94], and a major contributor to the intermolecular forces that give
rise to the bulk property of dynamic viscosity [95–97]. Recently, H-bond vibrations were
indirectly measured by determining the stretching vibration of OH covalent bonds in
water via infrared absorption in an effort to experimentally determine viscosity [98]. The
importance of hydrogen bonding as a contributor to viscosity must be considered in the
design of molecular simulations for transport property predictions. For this reason, this
work implements an all-atom (AA) version of the OPLS water force fields considered here
(TIP4P/2005 and TIP4P/Ice). This normally renders the simulation more computationally
intensive. However, if the intention is the prediction of transport properties in systems
known to be dominated by hydrogen bonds (water and gas hydrates), then coarser-grained
force field variations such as the OPLS united atom (UA) would be inappropriate as they
fail to fully model H-bond interactions. Furthermore, it is this increased complexity in
all-atom MD systems that enhances the necessity for a robust equilibration procedure, as
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presented in this section, to ensure that such simulated systems are properly designed and
physically representative.

3.2. Water Models
3.2.1. Viscosity

The bootstrapped values of the viscosity predictions from the molecular simulations
performed here are presented in Figure 5a with their standard errors from the bootstrap
analysis. The experimental values of dynamic viscosity for pure water systems, which were
measured and presented elsewhere [30], were also added (black triangles) for comparison.
Figure 5b shows the deviation between prediction values and the experimental data in the
form of residual difference fractions. The dynamic viscosity was predicted using the Green–
Kubo (Equation (2)) and the Stokes–Einstein (Equation (7)) formulations presented above.
The TIP4P/Ice predictions overestimated the experimental values and the TIP4P/2005
predictions, except for at 25 ◦C, where the TIP4P/Ice model underestimated both. This
behaviour is expected as at low temperatures, this force field more closely models solid
water. The Green–Kubo (GK) prediction resulted in more stable viscosity predictions across
temperatures than the Stokes–Einstein (SE) predictions. This is evident from the lower
GK standard errors (Figure 5a) and the distribution of residual differences in Figure 5b.
The SE predictions deviated more from experimental values near 5 ◦C, which is near the
maximum density point for water (at 4 ◦C). Additionally, the SE prediction results in larger
standard errors as the SE formulation (Equation (7)) is inversely proportional to MSD
and thus sensitive to changes in density. Increased density leads to greater impedance in
molecular displacement, and thus higher viscosity (Equation (7)). The variance in standard
error between consecutive temperature conditions can be attributed to the bootstrapping
procedure described above, where different random-number generator seeds are used
to populate molecular velocities and thus set temperature. For these reasons, the SE
predictions were determined to not offer an improvement on the GK predictions in the
water systems simulated here. Finally, due to the improved performance of the TIP4P/Ice
force field in the context of dynamic viscosity predictions at lower temperatures, it was
selected as the most appropriate between the two to be used to model gas hydrate systems
(similar to ice forming conditions) in the remainder of this work.
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Figure 5. The (a) viscosity of pure water systems and (b) fractional residual difference between the
MD prediction and experimental value. Repeated simulation produced samples of each condition’s
prediction value of size n = 10; theses samples were bootstrapped with replacement (n = 10,000) to
calculate the mean values which are presented here with their standard error bars. Experimental
values were collected and presented elsewhere by Guerra et al. [30]. GK: Green–Kubo formulation;
SE: Stokes–Einstein formulation, 05: TIP4P/200; ice: TIP4P/Ice.
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3.2.2. Diffusivity and Thermal Conductivity

The diffusivity of the water models simulated here are presented in Figure 6. Literature
experimental data were used to develop a linear regression for the temperature range
considered [99–103]. It is evident from Figure 6 that the Einstein formulation for diffusivity
was the best performing prediction for this property regardless of the water force field used.
This formulation benefits from the stability of the Einstein slope over the Green–Kubo
autocorrelation integral [42], which is more unstable as seen by the increased deviations
between the GK predictions and the experimental regression in Figure 6b. The Einstein
prediction for the TIP4P/2005 system closely follows (−13–15% difference) the experimental
linear regression culminating at a relatively accurate value of 25 ◦C, underestimating the
accepted value by only 3.9%. This is expected as diffusivity was one of the properties
used in the development of the TIP4P/2005 force field parameters [80]. Figure 6b depicts a
deviation from the overall trend in Einstein diffusivity predictions for both water models
near the density maximum of water (4 ◦C). Due to the use of the Einstein slope in the
Stokes–Einstein formulation of viscosity, these deviations in diffusivity lead to deviations
in the viscosity predictions discussed above at the same temperature.
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Figure 6. The (a) diffusivity of pure water systems and (b) fractional residual difference between
MD prediction and experimental value. Repeated simulation produced samples of each condition’s
prediction value of size n = 10; theses samples were bootstrapped with replacement (n = 10,000) to
calculate mean values which are presented here with their standard error bars. GK: Green–Kubo
formulation; Eins: Einstein formulation; 05: TIP4P/200; ice: TIP4P/Ice; exp: linear regression of
experimental data [99–103].

The thermal conductivity predictions for the water systems are presented in Figure 7.
The experimental data presented are a linear regression from thermal conductivity data
gathered elsewhere [104,105]. The thermal conductivity was calculated using the GK for-
mulation (Equation (4)) for both water force fields. Although somewhat unstable, the
GK formulation for thermal conductivity produced more accurate values than the GK
formulation for viscosity, relative to their respective experimental data. This is likely due
to the higher fluctuation in the pressure tensor elements (Equation (2)) versus heat flux
(Equation (4)) in an NVT ensemble simulation, where temperature is controlled dynami-
cally. Both the TIP4P/2005 and TIP4P/Ice models performed similarly in the prediction
of thermal conductivity, with a percentage difference from experimental data regression,
minimally of −6% and maximally of −16%.
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Figure 7. The (a) thermal conductivity of pure water systems and (b) fractional residual difference
between MD prediction and experimental values. Repeated simulation produced samples of each
condition’s prediction value of size n = 10; these samples were bootstrapped with replacement
(n = 10,000) to calculate the mean values which are presented here with their standard error bars.
GK: Green–Kubo formulation; 05: TIP4P/2005; ice: TIP4P/Ice; exp: linear regression of experimen-
tal data [104,105].

3.3. Methane Gas Hydrate Systems

The viscosity of the methane gas hydrate systems under pre-nucleation conditions
were predicted using the same procedure as for the pure water systems discussed above.
An overestimation in dynamic viscosity predicted by the molecular simulations for all
conditions considered was evident from the results (Figure 8). The TIP4P/Ice force field
was parametrized with the intent of representing the solid phase properties of ice [81]. It is
then unsurprising that the MD simulations implementing this force field overestimated
the dynamic viscosity of sub-cooled water as the force field generally has a higher fidelity
to the properties of the solid phase water. This overestimation was evident in the pure
water systems presented above (Figure 8a). However, the results presented here show this
overestimation to be exacerbated in the presence of methane molecules. MD simulations
overestimated the experimental values of viscosity at a minimum by 65% (0 ◦C and 0 MPag),
and by a maximum of 99% (6 ◦C and 1 MPag). The overall mean overestimation of
dynamic viscosity by the MD simulations was approximately 84% of the experimental
values presented.
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Figure 8. Viscosity of the methane gas hydrate systems as simulated by MD under pre-nucleation
conditions using the TIP4P/Ice water force field model. Viscosity is presented as a function of (a) tem-
perature and (b) pressure. Repeated simulation produced samples of each condition’s prediction
value of size n = 10; these samples were bootstrapped with a replacement (n = 10,000) to calculate
mean values which are presented here with their standard error. Experimental values were collected
and presented elsewhere by Guerra et al. [30]. GK: Green–Kubo formulation.
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In light of the robust equilibration procedure, simulation design considerations, and
statistical analysis of the results presented above, this work indicates an inherent limitation
to the development of physically representative MD simulations in the context of transport
property estimations of methane gas hydrate systems. This limitation may be addressed
with the development a new water force field with the intent of predicting the transport
properties of pre-nucleation and nucleating condition methane gas hydrates systems. The
experimental data of such systems should be used in the parametrization of the new force
field. Due to the improved performance of the TIP4P/Ice over the TIP4P/2005 force field in
the pure water systems considered above, the authors suggest a re-parametrization of the
TIP4P/Ice as a starting point. However, although the differences between MD predictions
using the current force field and experimental measurements may be large in relative terms,
the absolute differences may be negligible for application purposes depending on process
specifics, such as scale and/or geometry. The results presented by this work indicate
that scientists and engineers may be informed by MD simulations about methane hydrate
systems’ bulk viscosity using the existing TIP4P/Ice force field, if care is taken to avoid
the general and absolute conclusions from the results. Simulations may provide useful
information when compared to one another, and this work can serve as a useful guide for
translating the deviation of MD predictions of viscosity to experimental measurements.

The diffusivity and thermal conductivity of methane gas hydrate systems were cal-
culated in the molecular simulations performed in this work. There were not, however,
direct experimental data obtained at the desired conditions for comparison. In light of
this, these transport properties are presented for completeness and no general conclusions
were drawn. However, the inadequacy of the simulations to predict viscosity would indi-
cate inadequacy in its capability to predict diffusivity, as these properties are physically
closely related. The results from the bootstrap procedure from the repeated production
NVT ensemble simulations are presented in Figure 9. Both the diffusivity and the thermal
conductivity were simulated at various pressures, which are presented in this figure. The
same linear regressions of the experimental data for pure water from Figures 6 and 7a were
also included in Figure 9 as a reference point.
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Figure 9. The (a) diffusivity and (b) thermal conductivity of the methane gas hydrate systems as
simulated by MD under pre-nucleation conditions using the TIP4P/Ice water force field model.
Repeated simulations produced samples of each condition’s prediction value of size n = 10; these
samples were bootstrapped with replacement (n = 10,000) to calculate mean values, which are
presented here with their standard error. GK: Green–Kubo formulation; Eins: Einstein formulation;
ice: TIP4P/Ice; exp: linear regression of experimental data for panel (a) [99–103]; exp: linear regression
of experimental data for panel (b) [104,105].

3.4. Hydrogen Bond Analyses

The important role played by H-bonds in the context of the transport properties of
aqueous systems has been discussed above. In light of this, the simulations performed
here were designed with the OPLS-AA force fields in which hydrogen atom interactions
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were explicitly and independently treated, and were not lumped into united atom (UA),
or other coarse grain, representations. This type of hydrogen model enabled an extensive
H-bond analysis to be performed on the molecular dynamics systems to further elucidate
the overestimated viscosity results presented above. For all simulated systems, the H-bond
lifetime, the average number of H-bonds per donor molecule available, and the average
number of H-bonds over time were determined. Additionally, H-bond length and angle
probability density distributions were produced. All H-bonds in this work were identified
using the Python package MDAnalysis. The geometric criteria that defined an H-bond were
(1) donor–acceptor distance of less than 3 Å; and (2) donor–hydrogen–acceptor angle greater
than 150 degrees. The results for pure water systems were summarized in Tables 4 and 5.

Table 4. Hydrogen bond lengths and angles at various temperatures and 0 MPag for pure water
systems. Bond lengths and angles are based on a Gaussian kernel density estimation, and the
values presented correspond to the highest density in each system. 2005: TIP4P/2005 [80]; Ice:
TIP4P/Ice [81]; Diff = (Ice − 2005)/2005 × 100%.

T Hydrogen Bond Hydrogen Bond
◦C Length, Å Angle, Deg

2005 Ice Diff, % 2005 Ice Diff, %
±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005

0 2.77 2.77 0.00 165.35 166.86 0.91
2 2.76 2.78 0.72 166.75 166.65 −0.06
4 2.77 2.78 0.36 166.45 167.16 0.43
6 2.77 2.79 0.72 166.45 166.95 0.30
8 2.76 2.78 0.72 165.65 166.45 −0.12

10 2.76 2.78 0.72 165.85 167.36 0.91
25 2.76 2.78 0.72 165.95 166.25 0.18

Table 5. Average number of hydrogen bonds (HBs) per donor molecule, the average number of
HBs over the simulated time, and the time constants (τ) from an exponential fit of HB lifetimes at
various temperatures and 0 MPag for pure water systems. 2005: TIP4P/2005 [80]; Ice: TIP4P/Ice [81];
Diff = (Ice − 2005)/2005 × 100%.

T HB Avg. Number of HB Lifetime Time
◦C per Molecule HB over Time Constant (τ), ps

2005 Ice Diff, % 2005 Ice Diff, % 2005 Ice Diff, %
±0.005 ±0.005 ±0.005 ±0.5 ±0.5 ±0.005 ±0.005 ±0.005 ±0.005

0 2.59 2.75 6.18 3292 3507 6.53 5.27 6.03 14.52
2 2.57 2.76 7.39 3131 3356 7.19 5.26 6.02 14.50
4 2.57 2.77 7.78 2825 3038 7.54 5.20 6.03 16.09
6 2.57 2.75 7.00 2483 2656 6.97 5.26 6.04 14.80
8 2.58 2.73 5.81 2174 2301 5.84 5.27 6.00 13.85

10 2.58 2.75 6.59 1899 2022 6.47 5.25 5.59 14.16
25 2.57 2.74 6.61 1887 2017 6.89 5.23 6.00 14.60

The hydrogen bond lengths and angles were determined via a Gaussian kernel density
estimation, which provided the probability density functions (PDFs) for both variables.
The most probable (highest density) values of the PDFs were presented in Table 4. The
summary tables demonstrate that, in the considered range, temperature did not have a
significant effect on the most probable H-bond lengths and angles. However, an increase
in the average number of H-bonds over time did result from decreased temperatures for
both force fields. Moreover, the percentage differences between the values obtained from
the TIP4P/Ice compared to the TIP4P/2005 were almost negligible—at a maximum of
0.72% for bond length, and 0.91% for bond angle. Conversely, the difference between force
fields for the average number of H-bonds per donor molecule and the average H-bonds
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over time were determined to be non-negligible −5.81–7.78% and 5.84–7.54%, respectively,
(Table 5). Additionally, it is evident that the differences between force fields for the average
number of H-bonds over time and per donor molecule reached maximums near the density
maximum point for water (4 ◦C).

Similar results were obtained for the methane systems simulated—temperature did
not have an effect on the most probable H-bond length and angle, nor on the average
number of H-bonds per donor molecule (Table 6). In addition to the water molecules, these
systems had one more than one donor molecule type available to form H-bonds—methane.
The added donor molecule resulted in a 6.7–7.8% higher number of average H-bonds over
the simulated time compared to the pure water system modeled by the same water force
field (TIP4P/Ice). Additionally, in the range considered by this work, pressure did not have
a considerable effect on any of the H-bond quantities discussed above for the methane
systems studied (Table 6).

Table 6. Bond lengths and angles from a Gaussian kernel density estimation, the average number of
hydrogen bonds (HBs) per hydrogen donor available (H2O and CH4), and time constants (τ) from an
exponential fit of HB lifetimes for methane hydrate systems simulated using the TIP4P/Ice force field.

T P Length Angle HB HB HB τ
◦C MPag Å Degree N/H2O N/CH4 N ps

±0.005 ±0.005 ±0.005 ±0.005 ±0.5 ±0.005
0 0 2.77 166.85 2.97 2.65 3779 7.18
2 0 2.77 167.66 2.96 2.95 3603 7.17
6 0 2.77 167.85 2.95 3.16 2847 7.09
10 0 2.77 166.95 2.93 2.85 2157 7.00
0 1 2.77 167.56 2.99 2.95 3806 7.30
2 1 2.77 167.46 2.96 2.92 3601 7.17
6 1 2.77 166.85 2.95 3.16 2850 711
10 1 2.76 166.95 2.94 2.57 2164 6.99
0 3 2.77 167.25 2.97 2.89 3788 7.18
2 3 2.77 167.36 2.98 2.95 3596 7.16
6 3 2.76 167.76 2.96 3.04 2862 7.18
10 3 2.76 167.06 2.94 2.68 2161 6.99
0 5 2.77 167.96 2.98 3.05 3800 7.23
2 5 2.77 168.16 2.95 2.90 3590 7.09
6 5 2.77 167.56 2.95 2.85 2853 7.09
10 5 2.77 166.95 2.95 3.16 2174 7.10

This work also determined the hydrogen bond lifetimes for the systems simulated.
This analysis was based on the autocorrelation of the binary state (1 or 0) of an H-bond
(present or not present) between all possible donor and acceptor atoms at each time step
of the molecular simulation. The H-bond lifetime autocorrelation has been described else-
where [106,107]. This was performed using MDAnalysis Python package with trajectories
from equilibrated production runs output every 2 femtoseconds for 20 picoseconds. The
autocorrelation data were fit to an exponential model to determine the time constant of
the H-bond lifetime. The time constant was presented in Tables 5 and 6. In pure water
systems, the H-bond lifetimes for the TIP4P/Ice water force field were between 13.8 and
14.6% longer than those for the TIP4P/2005 force field (Table 5). Moreover, the lifetimes
for the methane hydrate TIP4P/Ice systems were between 16.8 and 19.2% higher than for
the pure water system with the same force field. In both cases, the increased H-bond time
constant coincided with a higher number of hydrogen bonds over the simulated time, and
with increased estimations of viscosity.

The discrepancy in the viscosity predictions between the TIP4P/2005 versus the
TIP4P/Ice force fields discussed above (Figure 5) can be attributed to the different behaviour
of H-bonds between force fields. The original re-parametrization of TIP4P/2005 to develop
the TIP4P/Ice force field [81] may have strengthened the H-bond interactions, leading to



Molecules 2022, 27, 5019 18 of 23

longer H-bond lifetimes and thus a larger average number of H-bonds over time. This had
the effect of increasing the estimated viscosity of pure water at lower temperature, and thus
improved the viscosity predictions over those obtained by the original TIP4P/2005 force
field at these temperatures (Figure 5). However, in the presence of an added hydrogen donor
that can contribute hydrogen bonds in same order of magnitude as water (evident from the
per molecule number of H-bonds in Table 6), the TIP4P/Ice hydrogen interactions may have
become too dominant and led to an overestimation of the bulk viscosity of the methane
hydrate systems simulated in this work. The nature of any future re-parametrization
of the TIP4P/Ice force field for the purpose of methane hydrate applications is out of
the scope of the current work and it is not discussed here. Thus, the evidence to the
role of hydrogen bonds to the viscosity overestimation was presented in this section to
inform future attempts to correct this behaviour in all-atom methane hydrate molecular
dynamics systems.

4. Conclusions and Future Work

This work examined two OPLS all-atom force field water models (TIP4P/2005 and
TIP4P/Ice) in an attempt to assess the predictions of transport properties from MD simula-
tions of methane gas hydrates systems under pre-nucleation conditions. Their predictions
were directly compared against experimental data. The TIP4P/2005 force field was deter-
mined to have improved performance over TIP4P/Ice in predicting the diffusivity of pure
water systems under the conditions examined. However, the predictions of viscosity by
the TIP4P/Ice force field had improved performance as evidenced by lower residuals from
experimental values. Based on this result, the TIP4P/Ice force field was determined to be
more adequate to model sub-cooled water conditions for the simulation of methane gas
hydrate systems in the context of predicting dynamic viscosity. The viscosity of various
methane gas hydrate systems under pre-nucleation conditions was estimated by MD and
directly compared to previous experimental results. The Stokes–Einstein formulation for
viscosity was shown to not provide improvements in prediction at lower temperatures as it
suffers from the instability of the Einstein slope at the water density maximum (4 ◦C).

Regarding the methane hydrate systems, the MD viscosity predictions followed exper-
imental temperature and pressure trends, but overestimated experimental measurements
by 84% on average. Hydrogen bond analyses were performed to further characterize the
molecular sources of this large deviation. Differences in H-bond length and angle across
temperatures and between force fields were determined to be negligible (0.72–0.92%). How-
ever, the differences between force fields for the average number of H-bonds over time
and per donor molecule were shown to be non-negligible (5.81–7.78%). Additionally, the
H-bond lifetimes for the TIP4P/Ice force field were determined to be 13.8–14.6% longer
than those resulting from the TIP4P/2005 systems. When methane was added to the system,
H-bond lifetimes increased between 16.8 and 19.2% over pure water systems with the same
force field. The H-bond analyses presented in this work indicate possible sources for the
viscosity overestimation in the case of the methane systems presented here.

Although the differences between MD predictions and experimental measurements
may be large in relative terms, the absolute difference between predictions may be negli-
gible for application purposes. The results presented by this work indicate that viscosity
information may be used from MD simulations using the TIP4P/Ice force field, if care is
taken to avoid drawing general and absolute conclusions from the results. Simulations
may provide useful information when compared to one another, and this work can serve
as a useful guide for relating MD predictions to experimental measurements.

Overall, the results presented herein indicate an inherent limitation to MD simulations
predicting the transport properties of methane gas hydrate systems. Future work should
attempt to address these limitations to improve the accuracy of molecular simulations
in this context. A re-parametrization of the TIP4P/Ice water model for atmospheric and
increased pressures for methane gas hydrate applications may be the next logical step.
This work may serve as a baseline or guidance for future re-parametrization efforts, or for
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the development of alternative solutions. If MD is to be an accurate tool for the dynamic
viscosity prediction of methane gas hydrate systems under pre-nucleation conditions, the
experimental data utilized here and presented elsewhere [30] should be used in any efforts
to address this limitation.
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