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Assessing Similarity Among Individual Tumor Size
Lesion Dynamics: The CICIL Methodology

Nadia Terranova1*, Pascal Girard1, Konstantinos Ioannou1, Ute Klinkhardt2 and Alain Munafo1

Mathematical models of tumor dynamics generally omit information on individual target lesions (iTLs), and consider the most
important variable to be the sum of tumor sizes (TS). However, differences in lesion dynamics might be predictive of tumor
progression. To exploit this information, we have developed a novel and flexible approach for the non-parametric analysis of
iTLs, which integrates knowledge from signal processing and machine learning. We called this new methodology
ClassIfication Clustering of Individual Lesions (CICIL). We used CICIL to assess similarities among the TS dynamics of 3,223
iTLs measured in 1,056 patients with metastatic colorectal cancer treated with cetuximab combined with irinotecan, in two
phase II studies. We mainly observed similar dynamics among lesions within the same tumor site classification. In contrast,
lesions in anatomic locations with different features showed different dynamics in about 35% of patients. The CICIL
methodology has also been implemented in a user-friendly and efficient Java-based framework.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 228–236; doi:10.1002/psp4.12284; published online 21 February 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Conventional clinical models of tumor dynamics

use the total TS as a continuous variable to model

the tumor time-course following anticancer therapy.

Instead, considering differences among iTLs in their

response to treatment provides new quantitative

insights on tumor heterogeneity and disease

progression.
WHAT QUESTION DID THIS STUDY ADDRESS?
� A novel and flexible methodology for the non-

parametric analysis of iTLs allowed the assessment

of the similarity among lesion dynamics at different

levels.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� Considering that the total TS does not allow to cap-
ture tumor heterogeneity. However, lesions showing
similar dynamics can be grouped to focus on and
describe different tumor lesion responses while reduc-
ing the complexity of the analysis.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY AND THERAPEUTICS
� The CICIL methodology can be used efficiently to
analyze and understand large-scale datasets prior to
modeling. The results can then guide the modeler in
determining whether the dynamics of iTLs, rather than
the total TS, should be considered for a particular case
study and for the questions to be addressed.

Over the past decade, a large number of case studies have
demonstrated the value of model-informed drug discovery
and development (MID3) applications in improving research
and development efficiency. The clear benefits of MID3
integration with research and development programs, pro-
cesses, and planning have fostered its adoption by regula-
tory authorities.1

In oncology drug development, MID3 relies on a variety
of models, including disease progression, pharmacokinet-
ics, and pharmacodynamics, for improving quantitative,
informed decision-making, and regulatory evaluations.2,3

Added benefits have been gained from mathematical mod-
els of tumor size (TS) dynamics4–6 and tumor growth inhibi-
tion,7–9 which can characterize anticancer drug effects over
time and provide improved predictors of long-term clinical
outcomes.10,11

Clinical models of tumor dynamics use the total TS as a
continuous variable to model the tumor time-course. The
total TS is estimated as the sum of diameters (in the case

of unidimensional measures) or the sum of products of

diameters (in the case of bidimensional measures) for all

target lesions in a patient.12 The total TS approach over-

comes the limitations and loss of information that result

from categorizing the response to treatment according to

the World Health Organization (WHO) criteria13,14 or to the

subsequently developed Response Evaluation Criteria In

Solid Tumors (RECIST)15 criteria for solid tumors.16 How-

ever, the total TS represents only an average measure that

reflects mainly the gross behavior of the largest lesion(s) in

a patient. Indeed, the total TS is a highly approximated

measure that does not capture differences in tumor dynam-

ics of individual target lesions (iTLs), their number, and

their locations. This omitted information could be relevant

to tumor differentiation or resistance-related mechanisms.17

In particular, differences among tumor lesions in their

response to treatment might provide new quantitative insights

on tumor heterogeneity (e.g., genetic/epigenetic alterations,
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nature of microenvironmental composition, and cell activation

states) within a given tissue or among different tissues,18 and/

or predict differences in disease progression.19,20 Thus, a tool

for comparing lesion dynamics prior to modeling is important

to assess whether the total TS can reasonably capture the

tumor lesion response. This should be based on a flexible

method that allows a rapid analysis of longitudinal TS data

from iTLs and provides an efficient overview of results from

large-scale studies.
For this purpose, we have integrated existing techniques

from other fields into a new methodology called ClassIfica-

tion Clustering of Individual Lesions (CICIL). In particular,

CICIL relies on the classification of iTLs based on func-

tional and anatomical criteria, defined by current medical

knowledge, and it is based on a workflow accommodating

the assessment of the similarity among lesion dynamics,

through cross-correlation measures of classified lesions.21

Interpretation of the results is then facilitated with the k-means

clustering.22 Taken together, this methodology provides a

better understanding and quantification of the information

available in the considered dataset. Indeed, by combining

information on iTLs with TS data, results allow to assess

whether a total TS evaluation might reasonably predict tumor

lesion behavior, or potential differences in responses, within

or across tumor site classes, should be taken into account.

MATERIALS AND METHODS
Trials and data
We retrieved TS data of iTLs measured in patients with

irinotecan-resistant epidermal growth factor receptor

expressing metastatic colorectal cancer (mCRC). Patients

had been enrolled in the MABEL (Monocolonal Antibody

ErBitux IN A European pre-License study; electronic medical

record 62202-501)23 or EVEREST (Evaluation of Various

Erbitux REgimens by means of Skin and Tumor biopsies;

electronic medical record 62202-502)24 studies, which tested

cetuximab in combination with irinotecan. In the uncontrolled

phase II MABEL study (hereafter defined as study 1), a total

of 1,147 patients were treated with cetuximab (starting dose

of 400 mg/m2, then a weekly dose of 250 mg/m2) plus irino-

tecan, in the following dosage regimens: 125 mg/m2 weekly

for 4 consecutive weeks, followed by 2 weeks rest; 180 mg/

m2 every 2 weeks; or 350 mg/m2 every 3 weeks. Tumor

lesions were evaluated at baseline, every 12 weeks during

study treatment, and at the end of study visit. In the phase I/

II EVEREST study (hereafter defined as study 2), cetuximab

was administered in combination with irinotecan (180 mg/m2

every 2 weeks) to 157 patients. Patients had been random-

ized to the standard cetuximab regimen or to a dose escala-

tion regimen (from 300 mg/m2 to 500 mg/m2, increased by

50 mg/m2 every 2 weeks). Tumor lesions were assessed at

baseline, every 6 weeks thereafter, at the end of treatment

visit, and at the end of study visit (i.e., 6 weeks after the last

treatment).
In both studies, imaging for tumor assessment was per-

formed, either by computed tomography scan or magnetic

resonance imaging scan. Tumor responses were classified

according to modified WHO criteria. At baseline, target (or

index) lesions were defined as measurable lesions repre-

sentative of all involved organs, with a maximum of 5

lesions per organ, and 10 lesions in total. Target lesions

were bidimensionally measured, and size was estimated as

the product of the longest diameter and its perpendicular

diameter. In addition to the recorded TS measures over

time, information about the tumor site and tumor type (i.e.,

primary, node, or metastasis) was collected for each target

lesion. These data were recorded in the study case report

form, as free text and a pre-defined code, respectively. The

sum of the diameter products of iTLs selected as target

lesions and the recorded information on non-target lesions

and new lesions were used to derive response and pro-

gression outcomes throughout the studies.

THE CICIL METHODOLOGY

The CICIL methodology has a novel, flexible workflow that

promotes efficient assessments of similarities of lesion

dynamics on large-scale datasets in a non-parametric man-

ner. It comprises three main sequential steps.

Rule-based classification
Intra-tumor and inter-tumor heterogeneity is characterized

by considerable variations in genetic makeup, aggressive-

ness, and drug sensitivity.25 Hence, heterogeneity actively

influences the therapeutic tumor response and shapes drug

resistance. In addition, the specific tumor microenvironment

contributes to the uniqueness of each tumor lesion.26

Therefore, we used the tissue description and the tumor

type reported for each iTL to develop a new classification

of tumor lesions, based on the anatomical location and dif-

ferent reported features. In particular, our classifications

focused on the tumor types and tumor metastasis sites typ-

ically observed in patients with mCRC. Lesions described

as primary were classified differently from lesions described

as a node (class #100 and class #3, respectively, in

Table 1). The classification of a metastatic lesion was

based on the known pattern of target organ metastasis,

with specific classes assigned to different metastatic sites

typically observed in mCRC, and characterized by different

properties (e.g., the lung is defined as class #2). Instead,

less frequently reported sites were classified according to

the organ system, as reported in the International Classifica-

tion of Diseases,27 and by also considering the vascular

anatomy and tumor microenvironment. Tumor sites with simi-

lar properties were then nested, and successively lumped

into main, well-represented classes. For instance, classes for

lesions in the small intestine/duodenum, large intestine/rec-

tum, retroperitoneum/peritoneum, or in other digestive

organs were merged into a more general class of “Other

digestive organs and peritoneum” (Figure 1). As reported in

Table 1, this process led to the definition of 10 main classes,

each primarily representative of one specific class of tumor

identified in both studies.
Free-text descriptions of tumor sites recorded by physicians

in the study case report forms were based on non-standard-

ized entries, which reported various specific physiological/

anatomical terms. In order to use this information in lesion
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classifications, we defined a list of keywords representative of

the involved sites for each class. We then developed a rule-

based classifier that could automatically classify iTLs based

on the recorded code type and recognition of predefined key-

words in the description (Figure 1). We implemented this

automatic classifier in SAS software 9.3 (Copyright 2002–

2010 SAS Institute).

Cross-correlation analysis
A comparison of lesion TS dynamics involves a large

amount of data: each single patient might have multiple

iTLs, and each lesion is measured at multiple assessment
visits. Hence, this analysis requires a methodological
approach for handling large-scale datasets and providing
concise and construable output information that could also
be used at the study/population level.

Inspired by the analogy between tumor time profiles and
signals, we conducted a cross-correlation analysis to
assess similarities among tumor lesion dynamics in a non-
parametric manner. The cross-correlation analysis is a
standard, well-recognized methodology in signal processing
and it is used to estimate the degree of correlation between

Figure 1 The developed rule-based classifier allows to automatically classify individual target lesions (iTLs), based on the recorded
tumor type and free-text description reported in the case report form. In the illustrated example, patient’s lesions iTL1 and iTL3 were
identified as belonging to the liver and assigned to class #1, lesion iTL2 was assigned to class #2 representative of the lungs, and
lesion iTL4 to the class #100 of primary tumors. The lesion classification then allows to perform: (i) the inter-class analysis to compare
the tumor size (TS) dynamics among lesions of different classes, and, in particular, between the largest lesion at baseline (given by
the sum of iTL1 and ITL3) and those assigned to the other classes (class #1 vs. #2, class #1 vs. #100); (ii) the intra-class analysis to
compare TS dynamics of lesions iTL1 and iTL3 assigned to the same class.

Table 1 Classification of iTLs from study 1 and study 2

Study 1 Study 2

Class # Class description Type No. of lesionsa No. of lesionsa

1 Liver Metastasis 674 (1,628) 129 (337)

2 Lung Metastasis 298 (634) 57 (107)

3 Lymph node Node 119 (188) U

4 Bone/bone marrow Metastasis U U

5 Brain/spinal cord/other parts of nervous system Metastasis - -

6 Other respiratory and intrathoracic organs/structures Metastasis 31 (40) U

7 Other digestive organs and peritoneum Metastasis 77 (105) U

8 Other specified organs Metastasis U U

100 Primary (and locally advanced tumors) Primary U U

999 Other/non-specified Metastasis 96 (113) 36 (71)

TOTAL NUMBER OF INDIVIDUAL LESIONS 1,295 (2,708) 222 (515)

iTLs, individual target lesions; cTLs, class-related target lesions.
aThe number of cTLs derived for the inter-class analysis (one per patient) is reported; the number of all iTLs (>1 per patient) is shown in parentheses.

U 5 Under-represented classes (i.e., including lesions from <20 patients) reassigned to other classes during the second classification step.
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two series at shifted sampling times.21 We assume lesion
dynamics to be wide-sense stationary time series with con-
stant means. Although, in reality, tumor dynamics means

could not be constant, we consider this simplifying assump-
tion to be reasonable in practice as tumor doubling time is
usually extremely slow. Hence, the cross-correlation
between series, or tumor dynamics that are aligned or
shifted in time, can be measured by computing the cross-
correlation coefficient (CC).

The CC between a pair of time series is defined as the

cross-covariance normalized by the standard deviations
(SDs) of the series. More formally, given two time series Xt

and Yt, the CC at sample time shift d (also known as lag)
can be computed as follows:

rxy dð Þ5 1
rxry

E Xt 2lxð Þ Yt2d 2ly

� �� �
5

cxy dð Þ
rxry

(1)

where cxy dð Þ is the cross-covariance, lx and ly are the
means of the corresponding series, rx and ry are the SDs,
and E ½� indicates the expected value.

The CC can be estimated by computing the sample CC
r̂ xy dð Þ, at time shift d , on sample series x5 x1; . . . ; xnf g and

y5 y1; . . . ; ynf g as the average product of the samples
observed from Xt and the samples observed from Yt at its
time shift:

r̂ xy dð Þ5 1
n

Xn

i51

xi 2�xð Þ yi2d 2�yð Þ
sx sy

(2)

where n is the number of pairs of samples, �x and �y are the
sample series means, and sx and sy are the sample series
SDs.

For two sample series, x and y, r̂ xy dð Þ provides an
approximate measure of similarity between the series, with
y delayed by d samples. The CC values range from 21 to

1; these boundaries indicate the presence of opposite pro-
files (i.e., a value of 21 indicates that one profile increases
and the other decreases with time) and completely parallel
profiles (i.e., a value of 1 indicates profiles that similarly
increase or decrease with time). When the CC is computed
for all time shifts (d 5 0, 61,. . .6 n-1), a cross correlation
set of 2n-1 coefficients is obtained. Lagged CCs allow one

to identify at which sample shift the maximum correlation
between series is observed, and to verify whether the pro-
file of one series can be considered delayed with respect to
the other series.

The ccf function provided in the Stats package of R soft-
ware version 3.1 (Copyright 2014; The R Foundation for

Statistical Computing) was used to derive CCs between
pairs of target lesion dynamics for each subject in the two
studies considered. Missing assessments of tumor lesions
were investigated beforehand to ensure that subject lesions
were measured at the same sampling (i.e., scheduled)
time, and, thus, avoid erroneous comparisons. No missing

values were identified before the last tumor assessment.
Therefore, no imputation rule had to be implemented and
no measures had to be disregarded. In this respect, it is
worth noting that, for the calculations of CC sets in a given

patient, a missing tumor measure for one iTL, which would
have resulted in the omission of the total TS at that specific
assessment, would not lead to the complete omission of
the other corresponding iTL measures. Indeed, a tumor
observation at a specific assessment time would not be
considered in comparisons involving a lesion missing that
assessment, but it would be used in the calculation of CCs
for the other tumor lesions.

K-means clustering analysis
We used k-means clustering22 to support and facilitate the
interpretation of similarity measures for each pair of lesions
at different sampling times. In particular, this partitioning
method was used to group the CCs to then, assess possi-
ble differences in cluster centers and distributions in a
straightforward way.

The iterative k-means algorithm is a common, simple
centroid-based clustering method. It finds the best division
of entities, here, the CCs, into k clusters by minimizing the
within-cluster sum of squares as follows:

arg min
S

Xk

i51

X

e2Si

ke2lik2 (3)

Here, li is the centroid (i.e., the representative CC) of the
i-th cluster, and Si is the set of entities e, that belong to
cluster i.

We performed k-means clustering with the kmeans R
function. After exploring the within-cluster sum of squares
with different numbers of clusters, we selected the best
number to be three clusters.

RESULTS
iTL classification
We applied the rule-based classifier that we had developed
to analyze the descriptions of 3,223 iTLs from 1,056 sub-
jects, having at least two available TS assessments. Specif-
ically, the classification involved 2,708 iTLs from 902
subjects, from study 1, and 515 iTLs from 154 subjects
from study 2.

We considered only well-represented classes by perform-
ing a two-step classification strategy. The first step assessed
the lesion and subject distributions; the second step re-clas-
sified iTLs after excluding classes that contained lesions
from <20 patients. For study 1, the second classification
step consisted of redistributing lesions in primary tumors into
classes that represented the corresponding CRC location of
metastasis, and in combining the under-represented class,
“bone/bone marrow,” with the two general classes, “Other/
specified” and “Other/non-specified,” into a unique general
class called “Other/non-specified.” For study 2, all iTLs in
under-represented classes were re-assigned to the general
class “Other/non-specified.”

The second classification step resulted in six and three
classes representative of tumor lesions, in study 1 and
study 2, respectively. Obtained subject and iTL distributions
across classes are reported in Table 1 for both studies.
Note that classes that represented typical sites of mCRC
(i.e., liver and lungs) included the highest numbers of iTLs;
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thus, supporting the appropriateness of the defined classifi-

cation criteria.
The degree of similarity among lesion dynamics was then

assessed with two different approaches. We analyzed

lesions of different classes (inter-class analysis), and lesions

in the same classes (intra-class analysis) within a subject

(see the example in Figure 1). In the inter-class analysis, the

sum of TS of iTLs was first derived for all classes within a

subject. The TS dynamics of resulting class-related lesions

(hereafter defined as cTLs) were then compared. Hence, the

distribution of cTLs involved in this analysis corresponded to

the respective subject distribution across classes. Further-

more, the total number of cTLs included in the inter-class

analysis for both studies only slightly decreased after the

second classification. Thus, the second classification did not

largely determine the sum of TS of iTLs initially classified as

belonging to different sites.

Assessment of similarity among classified iTL

dynamics
To assess the similarity among lesion dynamics within

patients, subjects with more than one classified iTL were

considered in the inter-class and intra-class analyses. For

each patient, the CCs between the largest lesion at base-

line and every other lesion were evaluated, and k-means

clustering was subsequently performed.

The inter-class analysis
The inter-class analysis involved subjects with lesions of

multiple classes. The CCs were measured at different time

shifts for comparisons of 614 classified cTLs from 272 sub-

jects in study 1, and 134 classified cTLs from 65 subjects

in study 2. We then performed k-means clustering on CCs

measured at the zero time shift and on the CCs with the

maximum values. With the available assessments, up to

66 and 610 sample shifts were analyzed for study 1 and

study 2, respectively.
For both studies, results at the zero time shift highlighted

different dynamics for circa, 35% pairs of lesions (CCs in

clusters 1 and 2) from about 30–35% of subjects included

in the inter-class analysis. Specifically, as shown in Table 2

and Figure 2, a small positive correlation was observed at

the zero time shift for about 11–16% of comparisons

assigned to cluster 2. An additional 20% of the CCs assigned

to cluster 1, with a center at or close to 21, indicated the

presence of very different, if not opposite, profiles. Quite high

values were obtained for the remaining CCs assigned to

cluster 3, with a center around 0.9. Higher CCs, and then

similarity in tumor time-course without accounting for any

time shift, could not be further attributed to specific compari-

sons of tumor sites. Indeed, as shown in Figure 3, the per-

centages of CCs assigned to cluster 3 were quite similar
across the pairs of considered classes, and, in particular,

within the numerous classes whose percentages were simi-

lar to the overall size of cluster 3. Considering the maximum
CC values measured at different shifts showed that almost

90% of comparisons were assigned to cluster 2 and cluster

3, with centers near 0.5 and above 0.9, respectively (Figure 2
and Table 2).

Figure 4 shows the distribution of time shifts within clus-
ters. Specifically, the maximum CCs in cluster 2 were

obtained for relatively small shifts, and in cluster 3 maxi-

mum CCs were observed mainly at the zero time shift. The
additional number of high-value CCs suggested that a simi-

lar tumor profile shifted in time is observed for these cTLs.

The CC values assigned to cluster 1 (15% in study 1 and
9% in study 2), which indicated opposite TS profiles, were

all measured at the zero time shift. Indeed, for these coeffi-

cients, comparisons mainly involved cTLs with only two TS
assessments, thus preventing the evaluation of lesion simi-

larity at any time shift and then a potential maximization of

the correlation.

The intra-class analysis
The proposed methodological workflow was then adopted

for the intra-class analysis to compare dynamics of iTLs

that were similarly classified. In particular, for each consid-
ered class, we derived CCs among the classified iTLs

within a given subject; then, we performed a cluster analy-

sis with the k-means algorithm. Similar iTL dynamics were
mainly indicated. Specifically, high CC values (assigned to

cluster 3) were obtained for about 60–80% of CCs at the

zero time shift for most of the considered classes. The per-
centages of CCs at the zero time shift assigned to cluster 3

are shown in Table 3 for each considered class. As for the

inter-class analysis, maximum values obtained at different
shifts determined a size reduction of cluster 1 with a center

at or close to 21 (Table 3), thus highlighting that additional

iTLs would have a similar TS profile when accounting for
shifted sampling times.

DISCUSSION

One of the first advantages of using iTLs is that no tumor

data are omitted. Indeed, as opposite to the total TS, a
missing tumor measure for one iTL would not result in the

omission of all other corresponding iTLs measures. In

Table 2 Inter-class k-means clustering of the CCs measured at the zero time shift and of the maximum CCs for study 1 and study 2

Study 1 Study 2

CCs measured at zero

time shift

Maximum

CCs

CCs measured at zero

time shift

Maximum

CCs

Center Size, % Center Size, % Center Size, % Center Size, %

Cluster 1 20.899 23 21 15 20.802 19 21 9

Cluster 2 0.071 11 0.442 20 0.327 16 0.479 23

Cluster 3 0.944 67 0.959 65 0.929 65 0.93 68

CCs, cross-correlation coefficients.
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addition, combining the information on iTLs with information
on lesion dynamics can provide a new quantitative under-
standing of the influence of tumor heterogeneity on the
therapeutic response that is of particular relevance for met-
astatic cancers. To this end, the CICIL methodology pro-
poses a novel and suitable workflow for the non-parametric
analysis of iTLs. By being sufficiently flexible to be used for
many cases, this approach allows assessments of similarity
among lesion dynamics at different levels by taking advan-
tage of tumor data collected in clinical studies. Indeed, by
classifying iTLs based on the available tumor information,
the CICIL methodology allows one to identify whether rele-
vant differences in tumor responses can be attributed to
heterogeneity between specific pairs of classes in the case
of inter-class analyses, or to heterogeneity within a single
class in cases of intra-class analyses. Specifically, for each
of these analyses, results obtained at the zero time shift
allows to rapidly identify differences in tumor lesion dynam-
ics. Then, depending on the proportion of patients and
lesions showing such differences, the sum of lesions TS
may be considered as a reasonable approximation to
describe lesions dynamics within a patient, or the modeling
of iTLs may be preferred. The latter would be further
informed by the investigation of lagged CCs, which may

indicate that (i) the time-course of one lesion can be con-
sidered delayed with respect to the other (i.e., if high CC
values indicating similarity are obtained when accounting
for a certain time shift), or (ii) more mechanistic assump-
tions (e.g., to describe poor drug’s activity in certain tumor
tissues) should be made.

The CICIL results for the two considered phase II studies
indicated similar dynamics among iTLs within the same
tumor site classification, and different dynamics among
cTLs, which could be, in part, attributed to a tumor profile
shifted in time in about 35% of patients. Thus, subsequent
modeling of TS should be performed on cTLs dynamics,
rather than total TS, and assumptions resulting in delayed
tumor dynamics in certain tissues within a patient (e.g., dif-
ferent tumor growth rate or drug killing rate) should be
tested to describe most of the observed differences. This
would allow to better characterize the subject’s response to
anticancer therapy and drug’s action on specific tumor
tissues.

Indeed, differences in lesion dynamics might be predic-
tive of tumor progression. Considering the total TS does
not allow to capture tumor heterogeneity, then looking for
differences across lesions dynamics is a crucial aspect to
contemplate when developing new, convincing models of

Figure 2 Inter-class analysis. The K-means clustering results are shown for study 1 (top) and study 2 (bottom). The K-means cluster-
ing was performed on cross-correlation coefficients (CCs) measured at the zero time shift (left panels) and on the maximum CC values
measured at different shifts (right panels). The CCs (jittered on x-axis) assigned to cluster 1 (black dots), to cluster 2 (red dots), and to
cluster 3 (green dots) are shown for each clustering analysis.
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tumor dynamics and, in turn, new treatment paradigms.17

Even though the adoption of more mechanistic models
might be discouraged by their complex formulation or lim-
ited availability of experimental data, we have shown that
the CICIL methodology can be used efficiently to analyze
and understand large-scale datasets prior to modeling, and
then guide the modeler in determining the most appropriate

approach for a particular case study and for the questions
to be addressed.

The proposed CICIL methodology can be easily applied
to either the bidimensional product (WHO criteria), the lon-
gest diameter (RECIST criteria), or any future emergent
volumetric measurement provided by progresses in tumor
imaging and/or tumor size collection. Further investigations
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should include the integration of enriched iTL data (e.g.,

information on biomarker and genetic mutations) from

future trials, as well as data on new lesion appearance to

assess relationships within and across tissues that may be

predictive of disease progression.
A Java-based cross-platform implementation of the CICIL

methodology has also been developed to enable a user-

friendly and efficient execution, to assist the interpretation

and visualization of each individual step in the workflow

and to facilitate the knowledge and information sharing

among different projects and users.
The CICIL tool boasts a very intuitive graphical user

interface designed to accommodate an easy creation of

new projects, a flawless dataset importation (csv format),

and quick data manipulation. Moreover, through the graphi-

cal user interface the user can execute the CICIL workflow

and customize the settings of the different components

(e.g., defining the iTLs classification by using standard

terms extracted from the dataset and/or user-defined key-

words, performing the inter-class or intra-class analysis by

optionally considering between-lesion time shifts in tumor

growth dynamics). Eventually, the user can visualize and

assess the CICIL methodology output and data through a

series of clear plots and statistical summaries. A selective

export feature enables to automatically generate customiz-

able reports.
The CICIL tool’s executable (JAR file) is available as

Supplementary Material along with a use case based on

a mock dataset. System requirements and application fea-

tures are described in the respective user guide embedded

in the tool and also available as Supplementary Material.
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