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Type 2 diabetes mellitus (T2DM), characterized by insulin resistance and unclear pathogenesis, is a serious menace to human
health. Bile acids are the end products of cholesterol catabolism and play an important role in maintaining cholesterol
homeostasis. Furthermore, increasing studies suggest that bile acids may regulate glucose tolerance, insulin sensitivity, and
energy metabolism, suggesting that bile acids may represent a potential therapeutic target for T2DM. This study summarizes the
metabolism of bile acids and, more importantly, changes in their concentrations, constitution, and receptors in diabetes.
Furthermore, we provide an overview of the mechanisms underlying the role of bile acids in glucose and lipid metabolism, as
well as the occurrence and development of T2DM. Bile acid-targeted therapy may represent a valid approach for T2DM treatment.

1. Introduction

T2DM is generally considered a progressive, incurable, and
increasingly prevalent illness characterized by insulin resis-
tance and a deficiency in the absence of autoimmune beta-
cell destruction, accounting for 90-95% of all diabetes cases
[1]. Furthermore, it has become the most challenging endo-
crine disease and a leading cause of mortality worldwide,
which by all predictions will only increase [2]. With rapid
urbanization, economic growth, and changes in lifestyles,
the prevalence of T2DM in China is increasing significantly,
representing a serious problem that causes a significant bur-
den on society [3]. The pathogenesis of T2DM is not yet
entirely clear, and some evidence suggests it may be related
to obesity, ethnicity, and environmental risk factors [4].
Recently, emerging evidence has suggested that insulin resis-
tance may be the most important contributor [5]. Obese indi-
viduals tend to develop inflammation in their fat tissue,
reducing the sensitivity of fat cells to insulin and inducing
the development of T2DM and diminished effects of insulin
[1]. Furthermore, T2DM frequently causes microvascular

pathological changes, leading to stroke, heart failure, renal
failure, and myocardial infarction in late stages, leading to
poor prognosis and quality of life in patients [6]. Currently,
treatment of T2DM comprises five primary methods: educa-
tion for patients, self-monitoring of blood glucose, diet, exer-
cise, and medication [7]. However, these methods are
expensive and inefficient. Hence, diagnosis is often delayed
until complications have arisen and financial costs for the
treatment of T2DM have become significant, indicating the
urgent need to develop new and efficient therapies and pre-
vention methods for the control of type 2 diabetes.

Current studies have shown that gut hormones, such as
ghrelin, play an important role in mediating feeding, which
is significant to the development of T2DM [8]. As the endog-
enous ligand for the growth hormone secretagogue receptor
(GHS-R) [9], ghrelin not only induces growth hormone
release but also enhances food intake and stimulates adiposity
[10, 11]. Primarily synthesized by X/A-like cells in the gastric
oxyntic glands [9], acyl ghrelin releases NPY and AgRP by
activating tGHS-Rs to stimulate food intake, body weight gain,
and diabetic hyperphagia [12]. Additionally, gut hormones
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such as ghrelin have a vital influence on glucose metabolism
[13] and T2DM remission; one study revealed that mice lack-
ing acyl ghrelin demonstrated reduced fasting blood glucose
levels and improved insulin sensitivity for controlling feeding
blood glucose [14]. Moreover, other gut hormones, such as
glucose-dependent insulinotropic polypeptide and glucagon-
like peptide 1, hold the same promising potential in T2DM
research [8].

Bile acids are the end products of cholesterol catabolism
and play an important role in maintaining cholesterol
homeostasis and preventing the buildup of toxic metabolites,
as well as the accumulation of cholesterol [15]. Studies have
demonstrated that bile acids are closely associated with the
intestinal microbiota, which intimately affects gut hormones
[16]. Regulation of feeding, metabolism, disease develop-
ment, and homeostasis may be the result of their interactions
and mutual influence [17]. On the one hand, bile acids not
only facilitate transport of lipids and intestinal absorption
but are also inflammatory agents and signaling molecules
that effectively activate cell signaling pathways that regulate
glucose, lipids, and energy metabolism [18]. On the other
hand, accumulating studies have suggested that bile acids
could activate certain receptors, such as the farnesoid X
receptor (FXR) and the transmembrane G protein-coupled
receptor 5 (TGR5), which improves glucose tolerance, insu-
lin sensitivity, and energy metabolism [19]. The effects of
these receptors suggest that bile acids may represent a poten-
tial therapeutic target for treating T2DM. This review is
aimed at summarizing the effects of and changes in bile acids
and their main receptors, such as FXR and TGR5, in T2DM
development and their promise of representing potential
treatment targets for T2DM.

2. Metabolism of Bile Acids

Bile acids (BAs) are significant bile components synthe-
sized in the liver by cholesterol, secreted into the bile duct,
and concentrated in the gallbladder, and they serve as
amphipathic biological detergents for lipid metabolism
[20]. Most bile acids are reabsorbed and recycled via enter-
ohepatic circulation, and approximately 5% are lost in feces
or serve as substrates for biotransformation and metabo-
lism in the intestinal microbiota [20]. These bacteria are
responsible for the dissociation of bile acids from glycine
or taurine mediated by hydrolytic enzymes and hydroxyl
oxidation [20].

The primary bile acids chenodeoxycholic acid (CDCA)
and cholic acid (CA) are synthesized via two pathways utiliz-
ing approximately fifteen enzymes from cholesterol in the
liver [20]. The rate-limiting enzyme, cytochrome P450 cho-
lesterol 7α-hydroxylase (CYP7A1), triggers the classical
pathway, converting cholesterol into 7α-hydroxycholesterol
and producing most of the BA pool [21]. CA is formed
through subsequent modification by a series of enzyme cas-
cades (CYP8B1, AKR1D1, AKR1C4, and CYP27A1), while
CDCA is synthesized by the same enzyme cascades except
for CYP8B1 [21]. The rest of the BA pool is synthesized by
cytochrome P450 27α-hydroxylase (CYP27A1) via an alter-
native pathway. First, cholesterol may be oxidized to 27-
hydroxycholesterol with the help of CYP7B1. Then, 27-
hydroxycholesterol is transformed into CDCA by CYP7B1
[21] (Figure 1). The dissociative BAs mentioned above trans-
form into conjugated BAs after their conjugation to either
glycine (primarily in humans) or taurine (predominantly in
mice) by bile acid-amino acid transferase (BAT) and bile
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Figure 1: Bile acid synthesis and metabolism. Schematic representation of synthetic pathways of primary bile acids in hepatocytes and
secondary bile acids in the intestine.
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acid-CoA synthase (BACS) enzymes. Next, conjugated BAs
are secreted into the bile canaliculi via the bile salt export
pump and BA transporters MRP2 and MDR1A [22]. Subse-
quently, they accumulate and are stored and concentrated
in the gallbladder. When cholecystokinin (CCK) is secreted
by enteroendocrine I cells, the gallbladder is stimulated to
contract and secrete bile into the duodenum to participate
in the digestion and solubilization of ingested lipids. Approx-
imately 95% of intestinal BAs are reabsorbed by enterocytes
from the distal ileum through the apical sodium-dependent
BA transporter (ASBT/SLC10A2) or the ileal bile acid trans-
porter (IBAT) [23, 24]. These absorbed BAs are cleared by
active transporters in the sinusoidal membrane of hepato-
cytes (NTCP, OAT, OATP, and mEH) when they return to
the liver through the superior mesenteric and portal veins
[25]. These redissociated BAs return to hepatocytes, along
with newly formed bile acids, and are then secreted into the
bile ducts, a process known as enterohepatic circulation. A
portion of reabsorbed BAs will successfully escape hepatic
recapture and reach the peripheral tissues via systemic circu-
lation, performing signaling functions on several peripherally
expressed BA receptors [21, 26]. The remaining 5% of BAs
are excreted in the feces or serve as substrates for biotransfor-
mation, where they will be converted into secondary bile
acids by the intestinal microbiota: deoxycholic acid (DCA)
is formed from CA, lithocholic acid (LCA) is formed from
CDCA, and ursodeoxycholic acid (UDCA) is formed in
humans via 7α-dehydroxylation [24, 27].

3. Bile Acid Metabolism Alterations in T2DM

Recently, accumulating studies have shown that bile acids are
involved in systemic metabolism, pancreatic islet insulin
resistance, hyperglycemia regulation, and energy expenditure
[28, 29]. Abnormal BAmetabolism is closely related to a vari-
ety of metabolic diseases, such as obesity, dyslipidemia, and
nonalcoholic fatty liver disease. In addition, bile acids have
been proven to be involved in glucose and lipid metabolism
[22]. Therefore, we will focus on changes in BA metabolism
in T2DM.

3.1. Changes in Total Bile Acids in T2DM. Some studies have
shown that during the feeding state, total BA concentration
in the setting of T2DM is significantly elevated compared
to nondiabetic controls [30–32]. Furthermore, elevated total
bile acid concentrations were positively correlated with
increasing meal fat content [30]. For T2DM patients, total
bile acid levels were positively correlated with triglycerides,
insulin resistance index, blood pressure, and BMI, suggest-
ing a relationship between total BA content and T2DM
[33]. These findings suggest that total BA concentrations
tend to increase in the setting of diabetes. Although the
repeatability and authenticity of these experiments need to
be further verified and the mechanism and causes of
increased total BA concentration are not fully understood,
we speculate that increased levels of total bile acids might
be either a manifestation or cause of T2DM or may repre-
sent a link in the causal chain.

3.2. Changes in Bile Acid Composition in T2DM. Changes in
bile acid composition have been verified in both clinical trials
and animal models of type 2 diabetes mellitus. Increased con-
centrations of deoxycholic acid and decreased concentrations
of chenodeoxycholic acid were observed in T2DM patients
[34–38]. In T2DM patients, CDCA, DCA, and CA were also
significantly increased, and CDCA, CA, and to a lesser extent
DCA were positively associated with insulin resistance.
Another study demonstrated that compared to nondiabetic
controls, glyco-BAs are elevated in T2DM [39]. Moreover,
glucose and insulin can boost histone acetylation of CYP7A1
chromatin, leading to stimulation of CYP7A1. CYP7A1 stim-
ulation then activates the classic BA synthesis pathway and
increases serum bile acids, leading to higher proportions of
CA and DCA to CDCA and suggesting that abnormal glu-
cose metabolism may affect bile acid metabolism in T2DM
[40, 41]. In mouse models, inhibition of CA synthesis
improves glucose homeostasis and prevents diet-induced
obesity. However, increased levels of CA may contribute to
dyslipidemia, diabetes, and obesity by stimulating cholesterol
absorption [40–42].

Clearly, changes in the concentration and composition
of the BA pool should not be ignored in T2DM. Although
a few studies have been performed, evidence of these
changes is still under investigation. Understanding changes
in the bile acid pool is of great significance to the patho-
genesis of T2DM.

4. Bile Acids in the Regulation of
Glucose Homeostasis

Currently, with far more understanding of the regulation of
bile acid metabolism, we now know that it is an important
pathway in glucose metabolism [20] (Figure 2). Bile acid
metabolism is regulated by precise feedback mechanisms
from two receptors called FXR and TGR5, and the differen-
tial affinity of the bile acids towards FXR and TGR5 was sum-
marized in Table 1.

4.1. Regulation of Glucose Homeostasis and Bile Acid
Metabolism by FXR. The nuclear receptor farnesoid X recep-
tor (FXR), a key regulator of glucose metabolism, is signifi-
cant not only to bile acid metabolism in the liver but also to
biliary BA secretion and intestinal BA absorption [42–60].
FXR is easily activated by both free and conjugated bile acids
due to its high expression levels in the liver. Activation of
FXR in the liver subsequently increases the excretion of bile
acids into the intestine and inhibits activity of CYP7A1, the
rate-limiting enzyme of the classic pathway mentioned
above, by increasing transcription of the inhibitory small het-
erodimer partner (SHP) [61]. FXR activation prevents the
accumulation of bile acids in the liver via transcriptional
induction of apical transporters, such as BSEP and MRP2
[62, 63]. To evaluate the function of FXR in regulating BA
homeostasis and detoxification in response to bile duct liga-
tion (BDL), many experiments have been performed in
FXR knockout mice. These mice exhibited enhanced
CYP7A1 mRNA expression and increased BA pools [64,
65]. Accompanied by a lack of CYP7A1 inhibition, FXR null
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mice presented with more serious hepatotoxicity when fed a
CA diet. In addition, activation of FXR has many other
mechanisms to downregulate bile acid synthesis and govern
the composition of the bile acid pool [21, 66–73]. Addition-
ally, activation of FXR in the liver may also regulate and
inhibit CYP8B1 in some ways [61].

Numerous studies have shown that FXR is closely related
to glucose metabolism. Diabetic rats induced by streptozoto-
cin exhibited reduced FXR expression in the liver, which can
be restored by insulin supplementation [74]. FXR knockout
mice exhibited a distinct response to refeeding in hepatic
expression of glucose metabolism genes [74]. Elevated glu-
cose influx and activation of insulin signaling may lead to
postprandial bile acid synthesis [75]. A previous study dem-
onstrated that high concentrations of bile acids stimulate
ligand-dependent FXR transactivating activity and increase
cellular glucose flux [76]. During the postprandial phase,
FXR may be activated to regulate glucose homeostasis [75,
77, 78]. Recent studies suggested that FXR regulates the sen-
sitivity and secretion of peripheral insulin and promotes gly-
cogen synthesis by inducing FGF15 (FGF19 in humans) in
the intestine [70]. In addition, FGF19 directly activates SHP
by combining with FGFR4 with the help of klotho β in hepa-
tocytes [60] (Figure 3).

Though the concrete role of FXR in the regulation of
hepatic glucose metabolism remains debatable, the probabil-

ity that FXR activation inhibits hepatic glucose synthesis to
decrease fasting plasma glucose has been universally
acknowledged [79]. Its natural association with T2DM may
decrease the quantity, activation, or sensitivity of FXR in
some ways, and one study by Staels and Fonseca suggested
that insulin suppresses expression of the FXR gene, speculat-
ing that diabetes may be associated with the dysbiosis of FXR
expression [71–73].

4.2. Regulation of Glucose Homeostasis and Bile Acid
Metabolism by TGR5. Transmembrane G protein-coupled
receptor 5 (TGR5) is expressed in nearly the entire body, par-
ticularly in a variety of liver cells [61]. Multiple studies have
shown that there is a tight connection between TGR5 and
bile acid metabolism [79–81]. TGR5 might also regulate bile
acid metabolism [82]. Distinct from FXR, the affinity of bile
acids for hydrophobicity to TGR5 is LCA>DCA>CDCA>-
CA>UDCA [61]. Combined with its agonists, TGR5, with
the help of its cofactors α, β, and γ, activates protein kinase
A (PKA) signaling pathways by activating adenyl cyclase,
leading to the swift growth of intracellular cAMP production
[77]. Then, PKA pathways lead to the phosphorylation and
induce the expression of the target genes of the transcription
factor cAMP-responsive element-binding protein (CREB)
[83] (Figure 4).

Glucose regulation improves when TGR5 signaling
increases [81, 82]. Glucagon-like peptide 1 (GLP-1) pro-
motes insulin secretion by islet beta cells in a glucose-
dependent manner and reduces glucagon secretion by islet
alpha cells, thereby lowering blood glucose. Secretion of
GLP-1 is enhanced in response to TGR5 signaling activa-
tion in gastrointestinal enteroendocrine L cells [82]. In
addition to its glucose-dependent insulinotropic effect,
GLP-1 has similar properties to glucagon and induces sati-
ety. Bile acids may regulate glucose homoeostasis, appetite,
and even body weight via TGR5 [84–86]. Some studies
have reported that TGR5 is a downstream target of FXR
and it is required for promoting GLP-1 secretion through
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Figure 2: Bile acids in regulation of glucose homeostasis.

Table 1: The differential affinity of the subtypes of bile acids
towards FXR and TGR5.

Subtypes of bile acids

FXR agonists
6-ECDCA43

(synthetic)>CDCA44,45,46>CA>DCA>LCA
FXR antagonists TαMCA, TβMCA47

TGR5 agonists
INT-77748 (a derivative of CDCA)>

LCA49,50>DCA51>CDCA>CA>UDCA
TGR5 antagonists SBI-11552 (synthetic)
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L cell FXR signaling [78]. The specific role of TGR5 in the
regulation of glucose homeostasis requires further study,
but activation of TGR5 does convey an apparent beneficial
effect on glucose homeostasis.

4.3. Role of FXR, TGR5, and Total Bile Acids in Glucose
Homeostasis and T2DM Remission after Bariatric Surgery.
Although T2DM lacks a specific treatment, bariatric surgery,
including Roux-en-Y gastric bypass (RYGB) and vertical
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Figure 3: The relationship between total bile acids, FXR, and FGF19.
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Figure 4: The relationship between TGR5, PKA, and GLP-1.
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sleeve gastrectomy (VSG), conveys long-term disease miti-
gation [87, 88]. Fibroblast growth factor 19 (FGF19), an
intestinal feedback signal of bile acids, has been implicated
in the glucometabolic changes that take place after Roux-
en-Y gastric bypass (RYGB). Bariatric surgery improves glu-
cose regulation by promoting bile acid signaling, which may
then increase circulating bile acid concentrations or ana-
tomical rearrangement of the gastrointestinal tract [89–
91]. Studies have revealed that FXR and TGR5 contribute
to the metabolic benefits of bariatric surgery. FXR is benefi-
cial to weight loss and improves glucose regulation in
response to VSG and TGR5 [89–91]. Improvements in sig-
naling are associated with a TGR5-dependent pathway that
decreases the hydrophobicity of the circulating bile acid
pool [53]. This beneficial spectrum change in bile acids is
associated with decreased expression of TGR 5-dependent
liver CYP8B1 protein, with no effect on the expression of
liver CYP7A1 [89].

A recent study investigating the relationship between
total bile acids, FGF19, and T2DM in bariatric surgery iden-
tified important roles of total bile acids and FGF19 in T2DM
remission after sleeve gastrectomy (SG) by comparing post-
prandial gut hormone patterns between patients undergoing
laparoscopic gastric bypass (GB) and laparoscopic sleeve gas-
trectomy 2 years after surgery [92]. This research revealed
that both laparoscopic GB and laparoscopic SG have signif-
icant effects after surgery but do have discrepancies not asso-
ciated with insulin secretion, weight loss, or hindgut effect
that are connected with reduced insulin resistance and duo-
denal exclusion in GB in T2DM remission. Moreover, differ-
ential regulation of different subtypes of ghrelin and total
bile acids might be involved in the differing insulin resis-
tance and T2DM remission responses between GB and SG
procedures [92].

5. Bile Acid-Based Therapy for T2DM

5.1. Bile Acids as Therapeutic Drugs. Bile acids have been used
for cholestatic liver diseases and metabolic diseases for years
[93]. DCA, transformed by rectal taurocholate (TCA),
increases GLP-1 secretion and insulin, leading to decreased
serum glucose by activating intestinal bile acid receptors
FXR and TGR5 [94, 95]. Although UDCA is not used for
T2DM directly, it has been used to treat obese patients [96].
Short-term UDCA administration activates FXR to stimu-
late bile acid and cholesterol synthesis, while circulation of
FGF19 decreases. Metformin is a noted drug prescribed
for T2DM that improves insulin resistance and sensitivity.
One of the drug’s effects is increasing TUDCA and GUDCA
by altering the gut microbiota. In addition, TUDCA and
GUDCA act as antagonists of intestinal FXR to improve
hyperglycemia in T2DM [72]. Therefore, another way to
treat T2DM may be to increase concentrations of TUDCA
and GUDCA directly.

5.2. Bile Acid Sequestrants. Bile acid sequestrants were
observed to improve glycemic control in T2DM patients as
early as the 1990s [31]. Since bile acids have been proven to
play an important role in glucose metabolism, which is rele-

vant to T2DM and insulin resistance, bile acid sequestrants
were explored.

First used as a treatment for hypercholesterolemia, bile
acid sequestrants, such as cholestyramine, colesevelam,
colestimide, and colestipol, are nonabsorbable resins that
combine negatively charged bile salts into a complex in the
intestinal lumen, which are then excreted in the feces; there-
fore, bile acids are diverted from the enterohepatic cycle and
excreted from the body [97]. Bile acid sequestrants decrease
circulating concentrations of LDL cholesterol, the substrate
for bile acid production, via increasingly delivering LDL cho-
lesterol to the liver and enhancing cholesterol synthesis and
upregulation of LDL receptors [31]. Cholestyramine func-
tions as a combination of bile acids and is a therapeutic
option for some metabolic syndromes, such as dyslipidemia
[98]. It stimulates cholesterol transformation into bile acids
by decreasing the concentration of bile acids returned to
the liver via enterohepatic cycling.

Recently, bile acid sequestrants have been approved in
the USA for the treatment of T2DM, despite the mechanisms
of action still not being completely understood [99]. Bile acid
sequestrants successfully treat T2DM due to their hypoglyce-
mic effect. Bile acid sequestrants could alter the bile acid pool
composition. However, this hypothesis was not supported
by clinical research findings, which suggested that alter-
ations of bile acid pool composition are not a significant
pathway in the glucose-lowering action of bile acid seques-
trants [61]. In 2008, colesevelam was approved by the FDA
for the treatment of T2DM [28, 29]. Two weeks of colese-
velam treatment in T2DM patients altered the synthesis of
specific bile acids, which affected the concrete composition
of the total pool size [42]. However, animal studies indi-
cated that colesevelam improved oral glucose tolerance by
activating TGR5 on L cells with subsequent GLP-1 secre-
tion. Although the hypothesis that BAs may activate
TGR5 to modulate human intestinal GLP-1 release and
glucose homoeostasis remains to be further understood,
the TGR5 signaling pathway may represent a target that
may provide a highly promising strategy for the treatment
of T2DM.

5.3. Farnesoid X Receptor Agonists. Currently, studies of
FXR-targeting therapies for T2DM are extremely limited.
Obeticholic acid (OCA), a semisynthetic bile acid, is 30 times
more effective in activating FXR than CDCA. Although it
was not used for diabetes treatment, its effects in inhibiting
bile acid synthesis and improving liver function have been
verified in the treatment of metabolic liver diseases [100,
101]. Since FXR activation inhibits hepatic glucose synthesis
to decrease fasting plasma glucose, it is likely that similar to
OCA, targeting FXR represents a novel strategy for improv-
ing hyperglycemia in T2DM.

5.4. G Protein-Coupled Bile Acid Receptor Agonists. Intes-
tine-selective TGR5 agonists may represent a potential
strategy for T2DM therapy, as they have been observed to
improve glucose homeostasis [21]. Insulin resistance is a
characteristic of T2DM, although the mechanism of its
occurrence has yet to be elucidated, but there are two
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primary theories. First, lipid overload, in which fat cell
enlargement leads to increased levels of circulating free
fatty acids (FFAs) and its metabolites, as well as deposition
in nonfat cells, inhibits insulin signaling. Second, the
inflammation doctrine postulates that enlarged fat cells
attract macrophages, which secrete inflammatory signaling
molecules, such as TNF-α, resistin, and IL-6 [102]. These
two theories intersect and complement each other. INT-
777, a semisynthetic acid that activates TGR5, can decrease
lipid loading and macrophage inflammation by inhibiting
nuclear factor κB (NF-κB) and production of proinflamma-
tory cytokines (Figure 5).

6. Conclusions

In this review, we focused on the role of bile acids in glucose
metabolism and the occurrence and development of T2DM,
as well as the possibility of bile acids representing a new tar-
get for treating T2DM. Without a doubt, bile acids are
exceedingly significant in glucose metabolism. Their impor-
tant roles in the occurrence and development of T2DM have
drawn plentiful attention. A mass of research findings have
shown that there might be transformations of bile acids in
their metabolism concomitant with the occurrence of
T2DM, to some extent, leading to abnormal glucose metabo-
lism and insulin resistance. However, additional studies are
needed to verify these alterations and to understand the spe-
cific interactions that are occurring. Additionally, further
animal experiments and clinical trials are required to support
the safety and efficacy of bile acids and their sequestrants.
Importantly, novel methods of targeted therapy for T2DM
have recently been identified, and the future of T2DM treat-
ment is becoming more promising.
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