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Convolutional neural network-based segmentation can help
in assessing the substantia nigra in neuromelanin MRI
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Abstract
Purpose This study aimed to evaluate the accuracy and diagnostic test performance of the U-net-based segmentation method in
neuromelaninmagnetic resonance imaging (NM-MRI) compared to the establishedmanual segmentationmethod for Parkinson’s
disease (PD) diagnosis.
Methods NM-MRI datasets from two different 3T-scanners were used: a “principal dataset” with 122 participants and an
“external validation dataset” with 24 participants, including 62 and 12 PD patients, respectively. Two radiologists performed
SNpc manual segmentation. Inter-reader precision was determined using Dice coefficients. The U-net was trained with manual
segmentation as ground truth and Dice coefficients used to measure accuracy. Training and validation steps were performed on
the principal dataset using a 4-fold cross-validation method. We tested the U-net on the external validation dataset. SNpc
hyperintense areas were estimated from U-net and manual segmentation masks, replicating a previously validated thresholding
method, and their diagnostic test performances for PD determined.
Results For SNpc segmentation, U-net accuracy was comparable to inter-reader precision in the principal dataset (Dice coeffi-
cient: U-net, 0.83 ± 0.04; inter-reader, 0.83 ± 0.04), but lower in external validation dataset (Dice coefficient: U-net, 079 ± 0.04;
inter-reader, 0.85 ± 0.03). Diagnostic test performances for PD were comparable between U-net and manual segmentation
methods in both principal (area under the receiver operating characteristic curve: U-net, 0.950; manual, 0.948) and external
(U-net, 0.944; manual, 0.931) datasets.
Conclusion U-net segmentation provided relatively high accuracy in the evaluation of the SNpc in NM-MRI and yielded
diagnostic performance comparable to that of the established manual method.

Keywords Parkinson disease .Magnetic resonance imaging . Neural networks (computer) . Artificial intelligence

Introduction

Parkinson’s disease (PD) is the secondmost common progres-
sive neurodegenerative disease and affects 8.5 million individ-
uals worldwide as of 2017 [1]. It is characterized by a progres-
sive loss of dopaminergic neurons within the substantia nigra
pars compacta (SNpc), considered to cause PD’s classical mo-
tor symptoms [2]. Currently, PD diagnosis relies on the clin-
ical features acquired from patient history and neurological
examination; accurate diagnosis is difficult in early stages,
with a misdiagnosis rate of approximately 25% [3].
Although 60–80% of the dopaminergic neurons of the SNpc
are lost before any clinical symptoms appear [4], to date, con-
ventional MRI has been unsuccessful in detecting
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pathological changes in the SNpc, compromising the effec-
tiveness of prophylactic approaches and new therapies [5]
which attempt to slow the neuronal loss. Therefore, objective
PD biomarkers are urgently desired.

In routine clinical practice, the role of MRI in patients with
Parkinson-like motor symptoms is today limited to ruling out
atypical parkinsonisms [6]. Recently, among other promising
approaches [7, 8] developed to detect neurodegeneration in
the SNpc, neuromelanin-MRI (NM-MRI) was proposed to
visualize neuromelanin, as its depigmentation is a key patho-
logical feature of PD [9]. Iron–neuromelanin complexes
stored inside healthy dopaminergic neurons have highly para-
magnetic properties that increase the NM-MRI signal intensity
through a combination of magnetization transfer and T1 ef-
fects [10]. After neuronal death, unbound neuromelanin and
iron become extracellular [11], contributing to neurodegener-
ation by activating the microglia and proinflammatory factors
[12]. In patients with PD, low levels of intracellular iron–
neuromelanin complexes result in decreased NM-MRI signal
intensity. Several authors showed that quantifying the SNpc
signal loss in NM-MRI can yield high diagnostic accuracy for
distinguishing PD patients from controls [13–15], even at an
early stage [16]. Furthermore, some studies reported a corre-
lation with the severity of the disease [17, 18] and L-dopa
induced motor complications [19].

To that purpose, various segmentation techniques have
been proposed for assessing the hyperintense area of the
SNpc: simple manual delineation [14], SNpc hyperintense
area (or volume) estimation using a signal intensity-
threshold derived from the manually segmented background
midbrain [15, 18, 19], and the semiautomated region growing
technique [20]. The only automated process described to date
is the atlas-based method [13], which involves aligning new
images to a set of manually labeled examples. However, this
method may not be able to capture the full anatomical vari-
ability of the target subjects due to the use of a fixed set of
atlases, affecting its accuracy [21], and is known to be com-
putationally intensive.

In this study, we used as reference a threshold signal inten-
sity method using manual segmentation (MS) first described
by Schwarz et al. [15], as it is the onlymethod demonstrating a
stage-dependant SNpc signal loss in PD, unlike the atlas-
based experiment. This method attempts to count the SNpc
hyperintense pixels above a determined threshold based on the
background signal of the midbrain. Several steps, including
manually delineating the SNpc and midbrain, determining the
threshold, and calculating the resulting hyperintense areas, are
required. Despite attractive diagnostic performances, the clin-
ical applicability of this method is impeded by these time-
consuming steps, first and foremostMS; in this regard, autom-
atized segmentation would be a significant improvement.

In this context, deep learning segmentation appears as an
appealing option. It uses neural networks trained to perform

tasks using examples and to grasp intricate structures in
datasets [22]. Specifically, convolutional neural networks
(CNNs) have significantly advanced computerized image rec-
ognition performance. They have successfully been applied to
the neuroradiology field to segment various structures such as
brain tumors [23], white matter hyperintensities [24], or
organs-at-risks prior to radiation therapy [25]. Among
CNNs, the U-net [26] is the most commonly used model in
biomedical image segmentation.

We hypothesized that a U-net architecture CNN could re-
place manual segmentation of NM-MR images as the initial
step of a previously described method aiming to assess SNpc
signal intensity and achieve equivalent diagnostic accuracy
for PD diagnosis. Therefore, we evaluated (1) the segmenta-
tion accuracy and (2) the diagnostic test performance of the U-
net segmentation-based method compared to the established
MS method.

Methods

Study design and participants

This retrospective case-control study used two NM-MRI
datasets. A principal dataset from 60 patients with PD and
62 age- and gender-matched healthy controls (HC) was ob-
tained by a 3T scanner (MAGNETOM Prisma, Siemens
Healthcare) from October 2017 to July 2018 and was used
to train and validate the U-net model. An external validation
dataset, including 12 patients with PD and 12 HC, was obtain-
ed using a different 3T scanner (Achieva, Philips Medical
Systems) from April 2014 to April 2015 and used to test the
U-net. All patients were from the Neurology Department of
Juntendo University Hospital and satisfied the Movement
Disorder Society diagnostic criteria for clinically established
PD [27]. These patients responded to antiparkinsonian therapy
and remained free of atypical parkinsonism for 18 months or
longer after being scanned. The HC group had no history of
neurologic or psychiatric disorders. All the participants pro-
vided informed consent before examination and the Ethics
Committee of the Juntendo University School of Medicine
approved the study.

Using two 3T MR scanners, we obtained modified NM-
sensitive T1-weighted fast-spin echo sequences with addition-
al spectral presaturation inversion-recovery pulses, similar to
that proposed by Schwarz et al. [15]. General scan parameters
for the principal data set were as follows: 600/12 ms repetition
time/echo time; echo train length of 14; 2.5 mm slice thick-
ness; 0.5 mm slice gap; 3.0 mm spacing between slices; 512 ×
359 acquisition matrix; 220 × 220 mm field of view (0.43 ×
0.43 mm pixel size); 175 Hz/pixel bandwidth, three-averages;
7:15 min of total scan time, whereas those for the external
validation dataset were as follows: 688/15 ms repetition
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time/echo time; echo train length of 14; 3 mm slice thickness;
1.0 mm slice gap; 4.0 mm spacing between slices; 0.43 ×
0.43mmpixel size; four-averages; 7:46min of total scan time.
In both cases, all the oblique-axial slices ranged from the
splenium of the corpus callosum to the inferior border of the
pons and were parallel to the line connecting the splenium to
the genu of the corpus callosum and perpendicular to the
fourth ventricle floor.

Thresholdingmethod based onmanual segmentation

We used a similar, slightly modified version of the method
reported by Schwarz et al. [15] to measure the hyperintense
area in the SNpc. Image analyses were performed by two
radiologists blinded to clinical information [reader 1 (KK)
and reader 2 (AL)] on an offline Windows computer using
the MRIcron software v2010. In this study, we used the masks
delineated by the most experienced radiologist (reader 1) as
criterion standard for SNpc and midbrain segmentation.

First, masks were generated by manually delineating the
SNpc and midbrain in two consecutive axial slices that
included the midbrain (Fig. 1). Then, we measured the
average background signal and standard derivation (SD)
for each patient, where the background was defined as
the midbrain subtracted by the SNpc. The hyperintense
areas of the SNpc were calculated by multiplying the num-
ber of pixels within the SNpc masks exhibiting signals
above a chosen threshold by the image resolution. The
optimal threshold was determined in the principal dataset
by performing ROC analyses for the SNpc hyperintense
areas using several thresholding values with intervals of
the same order of magnitude as previous authors [18, 19]:

MSI + 1, 1.5, or 2 SD. The highest diagnostic accuracy was
yielded using the MSI + 1.5 SD threshold. We employed
the same + 1.5 SD threshold in the external validation
dataset, on the principle of externalizing both the segmen-
tation and thresholding processes as a whole. This manual
process took approximately 5 to 10 min for each subject.

U-net architecture CNN-based segmentation

Deep learning segmentation was performed using a U-net ar-
chitecture CNN [26] according to the maximum probability of
candidate classes of each voxel. First, we augmented the prin-
cipal dataset by changing the signal intensity, rotation degree,
and scale of the original images to obtain a model that is robust
against deviations, without prior signal intensity normaliza-
tion. For signal intensity deviation, we converted the original
signal intensity as

A origþ Bð Þ;
where A = 0.7/1.0/1.3, B = − 100/0/100, and orig denotes the
signal intensity of the original image.

For rotational deviation, we processed the original image
by rotating it by − 30°/0°/+ 30°. Finally, for scale deviation,
we resized the original images to 90%/100%/110%. We used
these augmented datasets as the final training data. Two U-
nets were employed to perform two successive segmentation
tasks, where one task was trained to segment the midbrain and
the other was trained to segment the SNpc and background
from the output of the former (i.e., midbrain = SNpc + back-
ground). The two U-nets had the same architecture, which
differed slightly from the original U-net architecture [26].

Fig. 1 Manually labeled neuromelanin-sensitive MR images of midbrain
and masks of hyperintense area within the SNpc obtained using the mean

background signal intensity + 1.5 SD as a threshold. BG, background;
DL, deep learning; HC, healthy control; PD, Parkinson’s disease
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Here, max pooling operations were replaced by convolution
with a stride of 2. Both the U-nets were trained simultaneously
to improve the second U-net’s robustness to noise, as output
images from the first U-net exhibited significant noise; how-
ever, the loss functions of these U-nets were disconnected,
ensuring that the backpropagation of the loss function of one
U-net did not affect the other. In one iteration, a 256 × 256-
pixel image was randomly cropped from the original data
(512 × 512 pixels) with a batch size of 2, and mean cross
entropy was computed for the loss function. The Adam [28]
gradient descent algorithm was used to optimize the model.
Here, the Adam update rule was applied with α = 0.0001,
β1 = 0.5, and β2 = 0.999. Adam optimization was performed
for 10 epochs. Training of the U-net was performed according
to a 4-fold cross-validation based on four balanced groups
mixing HC and PD patients with a 1:1 ratio. Validation and
training Dice coefficients were similar in all folds; therefore,
the model trained on the first fold was arbitrarily chosen to
perform U-net segmentation (US). We did not employ early
stopping or hyper parameter search.

As an inference phase, the trained U-net was applied to the
external validation dataset to segment the unlabelled Achieva
MR images. NM-rich areas of the SNpc were calculated using
the optimal threshold obtained with the principal dataset (sig-
nal intensity of the midbrain +1.5SD).

A computer with 64 GB of CPU memory, a Xeon E5-2670
v3 CPU (Intel, Santa Clara, CA), and a TITAN Xp graphics
processing unit (NVIDIA, Santa Clara, CA) was used to per-
form the model training. Python 3.6 and the DL framework of
Chainer 3.2.0 (http://chainer.org/) was used to code the
computer program. Each fold took 150 min to process. The
time to predict (U-net segmentation and hyperintense voxels
count) for each patient was less than 0.5 s.

Statistical analyses

Statistical analyses were performed using the XLSTAT
v2018.7 software. Age and gender distributions were com-
pared between patients with PD and HC using Student’s t test
and chi-squared test. The relative variation of the background
signal was calculated by dividing the mean background signal
with the standard deviation. The mean relative variations in
the HC and PD groups were compared using the Student’s t
test to assess the image quality. To evaluate the segmentation
accuracy of the U-net, we used the Dice similarity coefficient

(DSC) defined as Dice MS;USð Þ ¼ 2jMS∩USj
MSj jþ USj j, where MS de-

notes manual segmentation and US denotes U-net segmenta-
tion. DSC values range from 0 to 1, where 0 and 1 indicate no
and perfect overlapping, respectively. We compared the seg-
mentation outputs of the U-net to the masks delineated man-
ually by reader 1 (KK), considered the criterion standard. We
also compared the two readers’ segmentation masks. The

inter-reader precision and segmentation accuracy of the U-
net was rated as follows: 0.0–0.39, “low”; 0.40–0.79, “mod-
erate”; and 0.80–1.0, “high.” In terms of DSC, using Mann–
Whitney U test and Student’s t tests with the principal and
external validation datasets, respectively, we compared the
U-net accuracy or the inter-reader precision for SNpc or mid-
brain segmentation between the HC and PD groups. In addi-
tion, we compared the U-net accuracy to inter-reader precision
for SNpc segmentation in both the HC and PD groups. The
Student’s t test was used to compare the NM-rich areas of the
SNpc between the PD and HC groups. The relations between
the hyperintense areas and disease duration or UPDRS-III
scores were determined using the Spearman’s rank correlation
test. The strength of the correlation was determined using the
following criteria for correlation coefficient r: 0.00–0.19,
“very weak;” 0.20–0.39, “weak;” 0.40–0.59, “moderate;”
0.60–0.79, “strong;” 0.80–1.0, “very strong.” Finally, to eval-
uate the diagnostic performance of the thresholding method as
a diagnostic test for PD using either manual or U-net segmen-
tation, receiver operating characteristic (ROC) analyses of hy-
perintense SNpc areas were performed and areas under the
curve (AUC) calculated. ROC curves form the same datasets
were compared using the Delong method [29].

Results

Participants and image quality

There was no significant difference in age or gender between
the HC and patients with PD in the two datasets (Table 1).
Further, there was no significant difference in the relative var-
iations of the background signals between the patients with
PD and HC in both datasets for either segmentation method
(all p > 0.05, see supplemental data online), indicating that the
image qualities were similar in the PD and HC groups.

Evaluation of the U-net

Principal dataset

Table 2 shows the inter-reader precision and US accuracy in
terms of the DSC obtained for the SNpc andmidbrain. The US
accuracy of SNpc and midbrain (MB) was as high as the inter-
reader precision, with similar DSCs for each subgroup and
structure. The DSCs were consistently lower for the SNpc
than for the midbrain (DSCs for all subjects: midbrain, 0.97
± 0.01; SNpc, 0.83 ± 0.04). Further, regarding the SNpc, the
DSCs were lower for patients with PD than HC. The calculat-
ed hyperintense areas within the SNpc were significantly low-
er in the patients with PD than in the HC [MS: PD, 48.6 ±
19.1 mm3 (mean ± SD); HC, 84.9 ± 14.4 mm3; US: PD, 45 ±
18.5 mm3; HC, 83.9 ± 14.5 mm3; all p < 0.0001 using
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Student’s t test] (Fig. 2a). Analysis of the correlation between
the hyperintense area and PD duration demonstrated a signif-
icantly weak negative correlation with both methods (MS: r =
− 0.32, p = 0.013; US: r = − 0.33, p = 0.008) but no significant
correlation with the UPDRS-III score (MS: r = − 0.22, p =
0.079; US: r = − 0.20, p = 0.110). Using US instead of MS
for the threshold signal intensity method did not affect the
diagnostic test performance of NM-MRI. The AUCs for the
hyperintense SNpc area were comparable using either the US
or MS methods with a slight comparative advantage for US
(AUCs, 0.950 and 0.948, respectively, p < 0.05, with optimal
cut-off values of 61.2 and 64.2 mm2, Fig. 3).

External validation dataset

Visual assessment of the output segmentation maps did not
reveal any large segmentation errors. The US accuracy for
SNpc was high for HC and moderate for patients with PD
but was significantly lesser than the inter-reader precision in
both cases (mean DSCs: patients with PD, 0.77 versus 0.83;
HC, 0.80 versus 0.86, all p < 0.0001). As with the principal
dataset, the SNpc segmentation was less accurate than the
midbrain segmentation in each case (Table 2). Hyperintense
areas were significantly lower in the patients with PD than

HC, and the differences between these groups were similar
with both methods [MS: PD, 43.9 ± 18.2 mm3; HC, 87.6 ±
23.1 mm3; US: PD, 36.1 ± 17.4 mm3; HC, 80 ± 23.7 mm3; all
p < 0.0001 using Student’s t test] (Fig. 2b). No significant
correlation was found between the hyperintense area and dis-
ease duration (MS: r = − 0.24, p = 0.449; US: r = − 0.20, p =
0.527) with either method. However, there was a strong sig-
nificant correlation with the UPDRS-III score (MS: r = − 0.65,
p = 0.027; US: r = − 0.60, p = 0.043). Here too, replacing MS
by US did not seem to affect the overall diagnostic test per-
formance of NM-MRI. The AUCs for the hyperintense SNpc
area were respectively 0.944 and 0.931 when US or MS were
employed (p < 0.05), with optimal cut-off values of 54.7 and
64.3 mm2 (Fig. 3).

Discussion

Here, we developed a U-net model to segment the SNpc and
midbrain in NM-MRI and showed that our model could
achieve equivalent diagnostic performance to that of manual
segmentation using a validated thresholding method for the
hyperintense area of the SNpc, despite a moderate segmenta-
tion accuracy of the SNpc by our model.

Table 1 Clinical characteristics
of healthy controls and PD
patients in the principal and
external validation datasets

Principal dataset External validation dataset

Variable HC, n = 60 PD, n = 62 p value HC, n = 12 PD, n = 12 p value

Gender (m/f) 35; 25 28; 34 0.146 12; 0 12; 0 N.A.

Age, year 70.82 ± 3.68 70.24 ± 6.45 0.549 62 ± 14.33 62.5 ± 9.69 0.947

Disease duration, year N.A. 9.98 ± 6.22 N.A. 15.75 ± 13.33

UPDRS-III score N.A. 22.47 ± 15.67 N.A. 20.08 ± 9.88

Hoehn and Yahr stage N.A. 2.73 ± 0.87 N.A. 2.5 ± 0.52

Data are presented as mean ± standard deviation unless otherwise noted

HC, healthy controls; PD, Parkinson’s disease; UPDRS-III, part III of the Unified Parkinson’s Disease Rating Scale

Table 2 Inter-reader precision and U-net segmentation accuracy shown as mean DSC obtained for the SNpc and midbrain in healthy controls and PD
patients of both datasets

Dataset Structure Mean DSC
Reader 1 versus reader 2

Mean DSC
U-net versus reader 1

All HC PD p value* All HC PD p value*

Principal MB
SNpc

0.97 ± 0.01
0.83 ± 0.04

0.97 ± 0.01
0.85 ± 0.04

0.97 ± 0.01
0.81 ± 0.04

0.974
< 0.001

0.97 ± 0.01
0.83 ± 0.04

0.97 ± 0.01
0.84 ± 0.03

0.97 ± 0.02
0.82 ± 0.04

0.868
0.001

External validation MB
SNpc

0.96 ± 0.02
0.85 ± 0.03

0.95 ± 0.02
0.86 ± 0.02

0.96 ± 0.02
0.83 ± 0.03

0.563
0.036

0.95 ± 0.01
0.79 ± 0.04

0.96 ± 0.01
0.80 ± 0.05

0.95 ± 0.02
0.77 ± 0.03

0.532
0.101

Data are presented as mean ± standard deviation unless otherwise noted

DSC, Dice similarity coefficient; HC, healthy controls; MB, midbrain; PD, Parkinson’s disease; SNpc, substantia nigra pars compacta

*Between HC and PD patients
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U-net segmentation of the midbrain was highly accurate in
both datasets; however, the U-net could not achieve a segmen-
tation of the SNpc in the same range as the inter-reader

precision in the external validation dataset. The lower accura-
cy of the US for SNpc in the external dataset implies that
different imaging parameters and signal intensity variations

Fig. 2 Neuromelanin-rich areas obtained withmanual (reader 1) andU-net segmentationmethods on neuromelanin-sensitiveMR images of the principal
(a) and external validation (b) datasets

Fig. 3 ROC curves of NM-rich areas of the SNpc obtained by manual and U-net segmentations for differentiating patients with PD and healthy subjects
in both datasets
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challenge the U-net inference capabilities. Also, applying the
optimal threshold for the principal dataset to the external
dataset could have affected the diagnostic test accuracy, be-
cause the threshold should be adapted to the neuromelanin-
sensitivity level of the pulse sequence. To address this specific
issue, Schwarz et al. [18] proposed a normalization procedure
based on the theoretical volume of the SNpc hyperintense area
in healthy controls. Because we wanted to test independently
the accuracy of the U-net in the external dataset, we did not try
to normalize the signal intensity level.

Another finding is that the accuracy of the SNpc seg-
mentation was consistently lower than that of the mid-
brain, denoting the difficulty in determining the boundary
of the SNpc regardless of the segmentation method.
Unlike the boundaries between the midbrain and sur-
rounding cisterns, the boundaries between the SNpc and
the background are difficult to delineate precisely because
hyperintense pixels depict only neuromelanin content and
not the entire SNpc. The relative subjectivity inherent in
the manual segmentation of the SNpc seems to have af-
fected both manual and U-net segmentation accuracies.
Further, the DSCs were lower in the patient group com-
pared to the healthy group probably because reduced-
hyperintense areas result in an even more challenging
segmentation task.

Despite the relative lack of precision of the SNpc seg-
mentation in the external dataset, the calculated hyperin-
tense areas were significantly reduced in patients with PD
compared to HC in both datasets, consistent with the re-
sults of previous studies [13, 15, 19, 20]. The diagnostic
test accuracy for PD of the thresholding method was not
affected: AUC were similar using U-net or manual seg-
mentation in both datasets, with a slight comparative ad-
vantage for the U-net method, and as high to that of the
previously described manual techniques, where it ranged
from 0.82 to 0.93 [13, 15, 20]. These results suggest that
an extremely precise segmentation of the SNpc is not
required to provide useful size estimates of the hyperin-
tense area. Our U-net model is sufficient to obtain a sat-
isfying diagnostic accuracy.

The hyperintense areas were correlated to motor severity
(reflected by UPDRS-III scores) in the external validation
dataset but not in the larger principal dataset. We do not
have a clear explanation for this finding, as disease severity
was similar between the two groups. Due to its small size
(12 PD patients), the correlation analyses performed on the
external validation dataset should be viewed cautiously. As
previous studies on smaller samples also found weak [18]
or no correlation [13, 17] with UPDRS-III scores, the util-
ity of NM-MRI as a monitoring tool for patients with PD
could not be proved.

This study had several limitations. First, the sample size
was relatively small for a case-control study, particularly of

the external validation dataset. Second, PD diagnosis in this
study was not histopathologically confirmed; thus, misdiag-
nosis could be possible. Third, as pathological examination
could not be used as a criterion, the U-net model was trained
using manually obtained masks of the SNpc and midbrain
from NM-MRI as input. MS relies on recognition of the hy-
perintense area and the anatomical knowledge of the radiolo-
gist and is therefore subject to subjectivity bias. Hyperintense
areas could be underestimated in patients with PD, amplifying
the difference between the patients with PD and HC. Thus,
additional sequences providing clearer SNpc images, such as
proton density-weighted images, could be beneficial for cre-
ating more accurate SNpc masks for application to NM-MR
images. Fourth, both the methods relied on a threshold to
define the hyperintense area. A drawback of this approach is
the loss of information, such as the magnitude of the signal
intensity above the threshold or its spatial distribution [30].
Several studies have found sub-regional patterns of
neuromelanin loss within the SNpc using manually placed
regions of interest [16, 18] or voxel-wise analysis [30], with
differences between HC and patients with PD preferentially
involving the posterior and lateral parts of the SNpc. Studying
the whole SNpc could have contributed to the lack of correla-
tion with the clinical status in our study, which remains an
important focus for further improvement of NM-MRI.
Additional studies focusing on this region of the SNpc could
help achieve this goal. Finally, mean disease duration was
longer in the external validation dataset and it may have influ-
enced positively the diagnostic accuracy of the method in the
external dataset. Additionally, the mean age differed between
the datasets; thus, the potential influence from these factors
cannot be ignored because the midbrain is subject to age-
related changes [31]. However, despite these limitations, be-
cause the U-net saves times and does not affect the diagnostic
accuracy of the thresholding method, it may be useful to pro-
mote the clinical application of NM-MRI for PD diagnosis.

In conclusion, U-net segmentation provided relatively high
accuracy in the evaluation of the SNpc in NM-MRI and yielded
diagnostic performance comparable to that of the established
manual method, but its segmentation accuracy should be further
improved to be able to fully replace manual segmentation.
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