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Abstract

Malaria is one of the deadliest vector-borne diseases in the world. Researchers are develop-

ing new genetic and conventional vector control strategies to attempt to limit its burden.

Novel control strategies require detailed safety assessment to ensure responsible and suc-

cessful deployments. Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii, two

closely related subspecies within the species complex Anopheles gambiae sensu lato (s.l.),

are among the dominant malaria vectors in sub-Saharan Africa. These two subspecies

readily hybridise and compete in the wild and are also known to have distinct niches, each

with spatially and temporally varying carrying capacities driven by precipitation and land use

factors.

We model the spread and persistence of a population-modifying gene drive system in

these subspecies across sub-Saharan Africa by simulating introductions of genetically mod-

ified mosquitoes across the African mainland and its offshore islands. We explore transmis-

sion of the gene drive between the two subspecies that arise from different hybridisation

mechanisms, the effects of both local dispersal and potential wind-aided migration to the

spread, and the development of resistance to the gene drive. Given the best current avail-

able knowledge on the subspecies’ life histories, we find that an introduced gene drive sys-

tem with typical characteristics can plausibly spread from even distant offshore islands to

the African mainland with the aid of wind-driven migration, with resistance beginning to take

over within a decade. Our model accounts for regional to continental scale mechanisms,

and demonstrates a range of realistic dynamics including the effect of prevailing wind on

spread and spatio-temporally varying carrying capacities for subspecies. As a result, it is

well-placed to answer future questions relating to mosquito gene drives as important life his-

tory parameters become better understood.

Author summary

Conventional control methods have dramatically reduced malaria, but it still kills over

300,000 children in Africa each year, and this number could increase as their effectiveness

wanes. Novel control methods using gene drives rapidly reduce or modify malaria vector
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populations in laboratory settings, and hence are now being considered for field applica-

tions. We use modelling to assess how a gene drive might spread and persist in the

malaria-carrying subspecies Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii.
These two subspecies interbreed and compete, so we model how these interactions affect

the spread of the drive at a continental scale. In scenarios that allow mosquitoes to travel

on prevailing wind currents, we find that a gene drive can potentially spread across

national borders—and jump from offshore islands to the African mainland—but spread is

eventually arrested when the drive allele is ousted by a resistant allele. As we learn more

about the population dynamics of both genetically modified and wild mosquitoes, and as

gene drive systems are further developed to allow local containment and evade resistance,

our model will be able to answer more detailed questions about how they can be applied

in the field effectively and safely.

Introduction

Contemporary malaria control interventions—insecticide treated bed nets, indoor residual

spraying and artemisinin based combination therapy—have dramatically reduced the burden

of malaria in Africa [1]. Since 2017, however, the rate of progress on malaria reduction has

stalled and in 2019 malaria still claimed an estimated 389,000 African lives, mainly children

under 5 years of age [2]. At least 99% of these cases are caused by Plasmodium falciparum,

transmitted by a small number of dominant malaria vectors, most notably Anopheles arabien-
sis, Anopheles coluzzii, Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus [3].

The ongoing burden of malaria, together with increasing rates of insecticide resistance in

malarial vector mosquitoes [3], has motivated proposals to develop new genetic control strate-

gies, including: a) self-limiting, population suppression methods that induce male sterility [4,

5] or male bias [6, 7]; b) self-sustaining (gene drive), suppression methods that induce female

sterility [8, 9]; and, c) self-sustaining, population replacement methods that make vectors

refractory for the malaria parasite [10, 11]. Any proposal to test these genetic control strategies

outside of contained laboratory settings will likely require a detailed quantitative risk assess-

ment that predicts the potential spread and persistence of transgenic mosquitoes from release

sites, and the possible introgression of a transgenic construct into closely related species

through interspecific mating [12, 13]. Spatial models of spread and persistence are also needed

to describe the dynamics of important gene drive processes such as the development of resis-

tance to the gene drive [14]. Quantitative spatial models have been developed for the spread

and persistence of self-limiting, population suppressing constructs [7, 15], together with self-

sustaining, population-modifying [16–19] and population-suppressing [20–22] constructs.

This paper models the spread and persistence of a population-modifying gene drive system

[23, 24] in Anopheles gambiae s.s. and Anopheles coluzzii across sub-Saharan Africa. These two

subspecies, which are often modelled as single group, are together with Anopheles arabiensis
and Anopheles funestus the dominant vectors of malaria in sub-Saharan Africa. An. gambiae s.

s. and An. coluzzii are both highly anthropophilic and efficient malaria vectors. The two sub-

species are closely related enough to interbreed but hybridisation rates vary in space and time

[25]. They also have different larval habitat preferences [26], and An. coluzzii is thought to

have a superior resistance to desiccation stress [27], hence is more drought tolerant than An.
gambiae s.s. [28]. Although they are defined as two separate species by [29], we refer to them

here and subsequently as subspecies to emphasise the lack of reproductive isolation between

the two taxa (see [25, 27]), which is a focus of our model.
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In addition to general concerns for gene drives such as the development of resistance, the

following ecological hypotheses proposed in the literature are investigated: transmission of the

gene drive between two hybridising subspecies of Anopheles gambiae sensu lato (s.l.) by verti-

cal gene transfer [25, 30, 31]; possible long range dispersal or long distance migration [21, 32];

and the nature of spatially and temporally varying carrying capacities driven by precipitation

and land use factors [22, 27, 33]. This model is designed to provide scenario based testing of

structural hypotheses that formalise the current state of knowledge for key gene drive and pop-

ulation life history parameters.

Each of these structural issues are described in the following subsections:

Choice of construct

Our focus is on the spread and persistence of a gene drive system with near-neutral fitness that

incorporates an unavoidable small reproductive payload cost of expression of the nuclease (see

[8] and [16]) through a spatially and temporally dynamic population with differential gene

flow across sub-Saharan Africa. This scenario thereby evaluates the behaviour of an idealised

nearly fitness-neutral population replacement gene drive system at the continental scale. Our

analysis focusses on three alleles: the wild–type, the genetic construct for a population replace-

ment gene drive and a resistant allele. Together these form a minimal gene drive spatial model

(see [16]). Further, we assume that the gene drive is activated in a single locus in each parent’s

genetic code as in [16]. However, we avoid modelling a gene drive “payload” of a nuclease or

effector gene as done in their paper. That is, the nuclease and effector gene may be considered

as the same unit, with the effector gene either absent or nearly fitness neutral. In practice, an

effector would also be likely to exhibit a genetic load on the receiving organism (e.g. [16]).

Therefore the model predictions are deliberately optimistic in terms of the magnitude of

spread and persistence of the construct, and provide an indication of the spread of a popula-

tion replacement drive for an idealised effector with negligible fitness cost.

Taxonomic resolution

We model an intervention where the genetic construct has been introgressed into locally

sourced, wild-type An. gambiae s.s. or An. coluzzii mosquitoes, and subsequently released back

into this local population. Depending on geographic location, these subspecies of the An. gam-
biae s.l. complex may introgress with each other and potentially other subspecies such as An.
arabiensis [25, 34, 35]. Studies at the scale of sub-Saharan Africa often do not discriminate

between An. gambiae s.s. and An. coluzzii. For example, [36] combined these two subspecies

when plotting species distribution maps due to lack of data; An. arabiensis, however, was plotted

separately. Similarly, [21] argued that currently there is a lack of available data for parametrising

alternative life history strategies of An. gambiae s.s. and An. coluzzii, and so did not discriminate

between these subspecies in their process model. Indeed, we are currently unaware of any analy-

sis of genetic vector control strategies at this continental scale, with explicit spatial and temporal

dynamics, that discriminates between these two co-dominant malaria vectors.

We include alternative subspecies in our model because this leads to altered population

dynamics via interspecific mating and density dependence effects [30]. Here we explore two

different approaches to species assignment of first generation hybrids: 1) species assignment

by maternal descent, and 2) equal proportions.

Larval carrying capacity

To parameterise a spatial model that discriminates between An. gambiae s.s. and An. coluzzii,
and their inter– and intra–specific density dependence at the larval stage, we require spatially
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explicit carrying capacity information about each subspecies, which is anticipated to depend

on environmental and social covariates. As observation data is relatively sparse at the subspe-

cies level, we approach the problem in two parts. First, we model the larval carrying capacity of

the two subspecies taken together using a functional form. Second, we use empirical relative

abundance data to spatially model the relative carrying capacities between subspecies.

Total abundance. The carrying capacity of Anopheles species in Africa is often expressed

as a function of rainfall. For example, [33] found exponentially weighting the past 4 days of

rainfall gave the best fit when modelling the abundance of An. gambiae s.s. and An. arabiensis
in Nigeria, an approach subsequently adopted by [37]; whilst [38] used a 7 day moving average

of rainfall to model the carrying capacity of the aquatic population of An. gambiae s.s., An.
coluzzii and An. arabiensis in Mali.

More complex functional forms invoke additional parameters such as the location (and

sometimes length or size) of perennial, intermittent, permanent or human-associated water

bodies, as in the models developed by [39] and [40]. The most relevant approach for our pur-

poses, however, is that of [21], who group our two proposed subspecies An. gambiae s.s. and

An. coluzzii in a spatially explicit, individual-based model, across an area of West Africa that

exhibits significant environmental variation. They predict local larval carrying capacity based

on rainfall, as well as level of access to temporary and permanent water courses. We adapt

their results for our model of total carrying capacity for the aggregate of An. coluzzii and An.
gambiae s.s.

Relative abundance. An. coluzzii has only relatively recently been described as its own

subspecies [29] after its earlier description as a molecular form within An. gambiae s.s. [41,

42]. Despite this taxonomic difficulty, several papers have examined differences in habitat pref-

erence between An. gambiae s.s. and An. coluzzii. In particular, [26] note that larval predation

and competition has led to selection for temporary freshwater habitats in An. gambiae s.s. and

conversely permanent habitats for An. coluzzii. They suggest that this leads to humidity and/or

rainfall clines in relative abundance. Other sources provide data suggesting this is the case for

rainfall [43–46], and that a particular chromosomal arrangement in An. coluzzii performs well

in low-rainfall environments [47]. These conclusions, however, tend to be based on relatively

small-scale observations or experiments. Some information on relative abundance at larger

scales is available [48–51], but very little modelling has been done to quantify these differences

across sub-Saharan Africa. So far only occurrence information has been widely used [52]. In

contrast, the relative abundance of An. gambiae s.s. in its former definition (including An.
coluzzii) versus An. arabiensis has long since been modelled and estimated across sub-Saharan

Africa [53].

A notable exception in this context is [27], who develop a logistic regression model using

abundance data of each subspecies across western sub-Saharan Africa to predict relative prob-

ability of occurrence of the two subspecies. They use model selection to select a subset of rele-

vant spatial, climatic and land cover variables in their predictions. However, despite

acknowledging the likelihood of nonlinear effects of some variables, they use only linear pre-

dictors in a logistic regression. We use their work as a starting point to develop a flexible neural

network model to incorporate nonlinear relationships, along with additional predictors and

newly collated records of relative abundance (VectorBase: [54]) to extend our predictions to

include the rest of sub-Saharan Africa.

Dispersal

Anopheline mosquitoes have historically been categorised as being unlikely to migrate long

distances (with mean dispersal distances typically less than 1 km, maximum distances typically
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no greater than 5 km). Although longer range dispersal events are possible and have been

linked to mosquito-borne disease outbreaks, short range dispersal is supposed to predominate

life history strategies [55, 56]. A recent empirical study [32], however, provides evidence for

wind-driven long-range dispersal of An. gambiae s.s. and An. coluzzii mosquitoes in large

numbers. These mosquitoes remain capable of reproduction and pathogen transmission [57],

and are estimated to regularly travel much further than even a rare long-range dispersal event

could achieve. Moreover, it has been recently suggested that An. gambiae s.l. populations in

areas of low human density may also facilitate migration, gene flow or both [58].

Aestivation

Another source of controversy is aestivation, in which mosquitoes become dormant during

dry conditions in which they would not otherwise survive. While not proven to occur widely

on a population scale, it is a popular hypothesis for wet season reemergence of An. coluzzii in

the Sahel [59, 60]. Modelling studies that address this problem include [38] and [21]. The latter

simulation study notes that rare persistent water sources provide a competing explanation for

persistence through the dry season, as does long distance migration. In this model, these latter

proposed processes are accommodated by spatially and temporally varying carrying capacities

(see Larval carrying capacity above) and dispersal behaviour (see Dispersal above); aestivation

is not explicitly modelled.

Spatial scope

The spatial scope for this analysis includes all countries within the African region as defined by

the United Nations geoscheme that are within the range of Anopheles gambiae s.l. (United

Nations regions are listed here: https://unstats.un.org/unsd/methodology/m49/overview/).

The spatial scope includes the range of Anopheles gambiae s.l. on the African continent and

also island countries or territories of the African region where Anopheles gambiae s.l. is pres-

ent, such as Madagascar, Mauritius, Comoros and São Tomé and Prı́ncipe. Anopheles gambiae
s.l. is also found in Cabo Verde [61].

Materials and methods

Spatio-temporal mosquito demographic model

We represent each combination of age class (a), sex (s), genotype (g) and subspecies of mos-

quito (m) as a separate scalar field Xa,s,g,m(t, x) in a Partial Differential Equation (PDE) model

with time t and 2D location x. Mosquitoes are assumed to not persist in ocean regions, and we

set a zero-population Dirichlet condition in those regions. We allow, however, for the possibil-

ity that mosquitoes can advect across the ocean to neighbouring islands for a maximum dura-

tion of one day.

We represent the model numerically by spatially discretising the mosquito population of

sub-Saharan Africa into 5 km × 5 km grid cells using the Africa Albers Equal Area Conic pro-

jection (ESRI:102022), and temporally discretising in 1 day timesteps, using fourth-order

Runge-Kutta to integrate between timesteps. This timestep was determined experimentally to

be both numerically stable and accurate. Combined with the spatial resolution, the model can

be run within a reasonable time frame, while still being suitable for modelling the relevant bio-

logical processes, with a mosquito home range being roughly one cell in size. Within a time-

step, we model demographic processes, followed by diffusion (see Diffusion below), followed

by advection (see Wind advection below). While our model is deterministic, we allow extinc-

tion to occur by making a continuous model correction: at the end of the demographic
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processes step in each timestep, any cell with less than one total mosquito in a subspecies is set

to zero for all classes of that subspecies.

We define Nsubspecies subspecies, such that each subspecies is given an integer number from

m = 0 to m = Nsubspecies − 1: in our main results, Nsubspecies is set to 2 to represent An. gambiae s.

s. and An. coluzzii as m = 0 and 1 respectively. We also discretise age into Nage age classes in

our model: in our main results, we use Nage = 2 (one newborn and one adult class), but we

describe the general model for Nage� 1 here, as different values of Nage may be more relevant

for different model applications. For Nage� 2 age classes, the constant transition rate b results

in an exponential distribution of maturation times between larval classes, and between the old-

est larval class and adults. When Nage = 2, as in our model, some larvae will quickly mature,

potentially making the population more resilient to intervals without rainfall. Although we

focus on Nage = 2, S2 Fig shows that results for Nage = 6 closely match results for Nage = 2 in S1

Fig, with resistance spreading slightly more slowly over time.

Ages vary from the “newborn” larvae age class a = 0 (into which all individuals are born)

through to adults at a = Nage − 1, with [1, Nage − 2] representing intermediate larval stages

where these exist (Nage> 2). We here describe the PDE separately for these three stage types.

Note that in our model we only track those mosquito eggs that produce viable larvae, hence

our newborn class consists of larvae instead of eggs. Our numerical model is written in Cython

(the Python programming language with C extensions: [62]) and visualisations are performed

in the R programming language [63].

Adults. The PDE governing each scalar field representing adult populations

XNage � 1;s;g;mðt; xÞ for Nage> 1 is given by

@XNage� 1;s;g;m

@t
¼ � dAXNage� 1;s;g;m þ bXNage� 2;s;g;m

þr � ðDrXNage� 1;s;g;m � AVðt; xÞXNage� 1;s;g;mÞ

where subscript s denotes sex (M or F), g genotype, and m mosquito subspecies ((1) An.
gambiae s.s. and (2) An. coluzzii). We model three alleles: w for wild–type, c for construct

(gene drive system), and r for resistant. This results in a set of six potential genotypes G = {ww,

wc, wr, cc, cr, rr}. The vector field V(t, x) represents the wind experienced across the spatial

domain at a specified time t and place x. Note that our model makes some modifications to the

advection process for biological reasons, specified below in Wind advection. Other parameters

are given in Table 1.

Here Nage − 1 indicates the adult age bracket. If Nage> 1 then Nage − 2 is the eldest larvae

age bracket; the special case of Nage = 1 is considered below (Newborns and Nage − 1 model).

The first term on the right-hand side (� dAXNage � 1;s;g;m) describes the mortality of adults, while

the second term (bXNage� 2;s;g;m) describes aging from the eldest larvae. The final term represents

diffusion (rDrXNage� 1;s;g;m) and advection (� rAVðt; xÞXNage� 1;s;g;m), with A being the probabil-

ity of an adult mosquito being advected by wind.

Larvae. For a 2 [1, Nage − 2], the populations are governed by

@Xa;s;g;m

@t
¼ � dJXa;s;g;m þ b Xa� 1;s;g;m � Xa;s;g;m

h i
ð1Þ

As above, the first term on the right-hand side (−dJXa,s,g,m) describes the mortality of this

age-bracket of larvae, while the second (b[Xa−1,s,g,m − Xa,s,g,m]) describes aging to/from older

and younger age brackets respectively. Note that for Nage� 2 there are no such intermediate

larvae.
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Newborns and Nage = 1 model. The PDE governing X0,s,g,m(t, x) is given by

@X0;s;g;m

@t
¼ � dJX0;s;g;m � bX0;s;g;m þ Bðs; g;mÞ : ð2Þ

Where Nage = 1, there is no age structure and the full PDE takes the form

@Xs;g;m

@t
¼ � dAXs;g;m þ Bðs; g;mÞ

þr � ðDrXs;g;m � AVðt;xÞXs;g;mÞ

ð3Þ

Table 1. Parameter definitions and estimates for final model (Nage = 2).

Variable Name Description Estimate Source
Demographics

dA Adult mortality Daily probability of mortality 0.1 d−1 [21] (or see

[40], [39], [64],

[37])

dJ Juvenile (larval) mortality Daily probability of mortality 0.05 d−1 [21] (or see

[40], [39], [64],

[38])

b Larval transition rate Number of days from an egg being laid to when it emerges as a

sexually mature adult (when Nage = 2) or reaches next larval stage

(Nage> 2)

0.1 d−1 [21] (or see

[39], [64], [37])

D Diffusion coefficient Typical rate of spread of population from a point source 900 m2 d−1 [40] (or see

[65])

λ Larvae per female Expected number of larvae per female per day (wild type

mosquitoes)

9 female−1 d−1 [21] (or see

[40], [39], [37])

k Relative probability of

mating between

subspecies

The relative probability that a female has offspring with a male of a

different subspecies to her own (k < 1)

0.01 [25] (or see

[66])

αij Lotka-Volterra

competition between

subspecies

The relative effect on subspecies X of a member of a different

subspecies Y taking up its resources (and thus larval carrying

capacity), as compared to a conspecific

α11 = α22 = 1, α12 = α21 = 0.4 [25]

Genetics

kc Probability of cleavage 0.995 [16]

kj Probability of non-homologous repair 0.02 [16]

kn Probability nuclease gene lost during homing 10−4 [16]

hn Dominance coefficient for nuclease expression 0.5 [16]

sn Cost of nuclease expression 0.05 [16]

Larval carrying capacity

Km(x) Larval carrying capacity Details in text (Larval carrying

capacity) and below parameters

α0(x) Permanent larval site population 0 (no permanent sites) [21]

α1 Contribution to breeding from rainfall 200,000 [21]

α2 Larval sites associated with rivers and lakes 200,000 [21]

ϕ Rate of carrying capacity population increase with rainfall 0.03 per mm rain per week [21]

κ Rate of carrying capacity population increase with water bodies 0.8 per km water [21]

δ Replenishment rate of intermittent water sites with rainfall 0.03 per mm rain per week [21]

Model details

X(0, x) Initial condition Details in text (Initial conditions)

A V(t, x) Advection Details in text (Wind advection in

Materials and Methods, Wind

advection in Results)

[32]

t Time domain for integration 2005–2015

https://doi.org/10.1371/journal.pcbi.1009526.t001
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Note that for readability, we only use subscripts when referring to mosquito population

classes (i.e. Xa,s,g,m) and refer to parameters which differ by population class as functions of the

offspring classes. Note that we do not include parental classes (i.e. gM, gF, mM, mF) in the func-

tion names, also for brevity, and that these are only defined explicitly in the function

definitions.

In Eq 2, the first term (−dJ X0,s,g,m) describes mortality of newborns, while the second

(−b X0,s,g,m) describes aging into the youngest age-bracket of larvae (or adults for Nage = 2).

The final term describes the birth of newborn larvae of a given sex s, genotype g and subspecies

m, given all possibilities of the mother’s and father’s genotype and subspecies (gM, gF, mM and

mF; described in more detail later). For brevity, we describe it as the product of functions

describing the relevant biological mechanisms:

Bðs; g;mÞ ¼ lmax 0; 1 �
CðmÞ
KmðxÞ

� �

�

X

gM ; gF ;
mM ;mF

JðmÞOðs; gÞRðgF; gMÞ XNage� 1;F;gF ;mF

ð4Þ

where the baseline fecundity rate is λ, the expected number of larvae per clutch of eggs per

female per day, assumed produced by a mating of wildtype mosquitoes. The J and O terms rep-

resent subspecies inheritance and genotype inheritance (including sex) respectively, and are

described below. In our main results, we keep the relative fecundity function R(gM, gF) con-

stant at R = 1, but this can readily be varied to represent reduced fecundity due to inviability of

a gene drive construct—see S3 Fig for an example.

The max 0; 1 �
CðmÞ
KmðxÞ

� �
term models the effect of Km(x), the (spatially varying) larval carry-

ing capacity for subspecies m, on the fecundity of that subspecies using a logistic function. The

inclusion of a max term is to keep the model biologically plausible: without it, C(m)> Km(x)

would mean that negative newborns are produced. Here C(m) is the competition that a new-

born of subspecies m experiences from all larval populations:

CðmÞ ¼
XNsubspecies� 1

m0¼0

am;m0
Xmaxð0;Nage� 2Þ

a¼0

X

s2fM;Fg

X

g2G

Xa;s;g;m0 ð5Þ

where αm,m0 represents the effect of competition of subspecies m on subspecies m0, and the

max term is here used to ensure that where Nage = 1, the larval carrying capacity instead applies

to the adult population.

The function J(m) returns the probability that a male adult of genotype gM and subspecies

mM successfully mates with a female adult of genotype gF and subspecies mF to produce new-

borns of subspecies m:

JðmÞ ¼
HðmM;mF;mÞ WðgM;mM;mFÞ

X

g02G

XNsubspecies� 1

m0¼0

Wðg 0;m0;mFÞ
; ð6Þ

where the number of available males of a subspecies and genotype is

WðgM;mM;mFÞ ¼ SðmM;mFÞGðgMÞXNage � 1;M;gM ;mM
:

The numerator is the relative number of expected matings between a male of subspecies mM
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(through S) and genotype gM (through G) and the given female, while the denominator nor-

malises the probability.

The relative probability of mating based on subspecies S(mM, mF) = 1 if mM = mF and k oth-

erwise. The relative fitness based on genotype is:

GðgÞ ¼

1 g 2 fww;wr; rrg

ð1 � hnsnÞ g 2 fwc; crg

ð1 � snÞ g ¼ cc

8
>>><

>>>:

ð7Þ

where hn and sn are adapted from the [16] model (see Table 1).

We compare two different scenarios for subspecies inheritance H(mM, mF, m); maternal

inheritance and equal inheritance. For maternal inheritance, the proportion of offspring born

of a mating between subspecies H(mM, mF, m) = 1 if mF = m and 0 if mF 6¼m (mother is always

the same subspecies as her offspring). For equal inheritance, the proportion of offspring born

of a mating between subspecies H(mM, mF, m) = 0.5 if mM 6¼mF (parents are different subspe-

cies, i.e. cross-species offspring are equally split between subspecies). In both scenarios, H(mM,

mF, m) = 1 if mM = mF = m (both parents and offspring same subspecies) and 0 if mM 6¼m and

mF 6¼m (both parents different subspecies to offspring). Where there are more than two sub-

species, we also need to specify that H = 0 when mM 6¼mF, mF 6¼m and m 6¼mM (i.e. parents

and offspring are all of different subspecies).

The function O(s, g) gives the probability of sex s and genotype g for the offspring. This

probability depends on the genotypes of the parents such that

Oðs; gÞ ¼ iðgM; gF; gÞ pðgM; gF; sÞ : ð8Þ

The first term i(�) describes the probability of an offspring inheriting genotype g given parents

of genotypes gM and gF. We again adapt the [16] model to our target genotypes, including the

effect of the gene drive construct, and using their parameter values (see Table 1). However,

instead of assuming full random mixing of alleles as in their model, we directly model geno-

types of each parent (see Table 2).

The second term p(�) describes the proportion of male offspring (and thus sex bias mecha-

nisms). In the results presented in the main paper, we keep p constant at p = 0.5, though this

can be readily varied to model constructs that induce sex bias in viable offspring (see S4 Fig for

an example). The sex ratio is kept constant between subspecies [67].

Diffusion. Diffusion is modelled by using the nearest-neighbour finite-difference approx-

imation to the Laplacian. That is, with timestep size Δt and cell length Δx, the fraction of diffus-

ing mosquitoes removed from one cell is 4DΔt/(Δx)2, where Δx is the cell-size. One quarter of

Table 2. Possible values for each offspring g0 in inheritance table i(gM, gF, g0), with probability of occurrence given by the number in parentheses, where allele proba-

bilities w = 1/2 − kc/2, c = 1/2 + kc(1 − kj)(1 − kn)/2 and r = kc(kn + kj(1 − kn))/2. Table is symmetric, so cells marked with � have the same values as their transposes.

Female

Genotype wc ww wr cc cr rr
Male wc ww(w2), wc(2wc), wr(2wr), cc(c2), cr(2cr), rr(r2) � � � � �

ww ww(w), wc(c), wr(r) ww(1) � � � �

wr ww w
2

� �
, wc c

2

� �
, wr wþr

2

� �
, cr c

2

� �
, rr r

2

� �
ww 1

2

� �
;wr 1

2

� �
ww 1

4

� �
, wr 1

2

� �
, rr 1

4

� � � � �

cc wc(w), cc(c), cr(r) wc(1) wc 1

2

� �
;wr 1

2

� �
cc(1) � �

cr wc w
2

� �
, wr w

2

� �
, cc c

2

� �
, cr cþr

2

� �
, rr r

2

� �
wc 1

2

� �
, wr 1

2

� �
wc 1

4

� �
;wr 1

4

� �
, cr 1

4

� �
, rr 1

4

� �
cc 1

2

� �
; cr 1

2

� �
cc 1

4

� �
, cr 1

2

� �
, rr 1

4

� � �

rr wr(w), cr(c), rr(r) wr(1) wr 1

2

� �
, rr 1

2

� �
cr(1) cr 1

2

� �
, rr 1

2

� �
rr(1)

https://doi.org/10.1371/journal.pcbi.1009526.t002
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this amount is added to each of the 4 neighbours. If the neighbours happen to be inactive

(such as on the model boundary) those mosquitoes are assumed to die instantly.

Wind advection. Wind advection is expected to occur over very short time periods (over-

night, as mosquitoes are not believed to travel during daylight; see [32]) and potentially very

large distances (hundreds of kilometres, passively carried by the wind with negligible resis-

tance; see [32]). As such, we explicitly trace the trajectories of mosquitoes from each cell during

each timestep (1 day), as advected by the wind vector field V(t, x). We use the Cross-Calibrated

Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses dataset [68] to define this vec-

tor field; the data is available at the required daily timesteps over the time period required. We

interpolate their vector field, given at 0.25 degree intervals (approximately 28 km at the equa-

tor), to fit our grid. In their own modelling, [32] set up two different scenarios, where mosqui-

toes mosquitoes travel either 2 hours or 9 hours a night. We explore both scenarios here, and

also a third scenario with no wind advection.

Larval carrying capacity

Total abundance. We apply the method of [21] to estimate larval carrying capacity for

both species combined. Specifically, we use Eq 1 from their paper:

Kðt;xÞ ¼ a0ðxÞ þ a1ð1 � e� �rðt;xÞÞ

þa2ð1 � e� k½WpðxÞþWnðxÞð1� e� drðt;xÞÞ�Þ:
ð9Þ

with parameters as estimated in their paper using Markov Chain Monte Carlo simulation with

population data (see Table 1). The model incorporates rainfall (r(t, x) in mm per week), as well

as the availability of nearby rivers and lakes; these may be either permanent or intermittent

(Wp(x) and Wn(x) respectively; details in their paper). It also has scope for modelling perma-

nent larval sites (α0(x)) but we set this to be zero for our model. Whereas [21] uses settlements

as their sites for mosquito populations, we are calculating populations across a square grid, so

we assume that each cell contains a settlement as modelled in their paper if and only if there is

a human population present in the cell. An implicit assumption in this approach is that areas

without human settlements yield zero carrying capacity. This assumption is explored for a

sparsely populated region as follows. To calculate K(t, x) at each cell at each required timestep

using Eq 9, we estimate human presence or absence by using data produced by [69] and pub-

licly available from the Humanitarian Data Exchange (HDX; https://data.humdata.org/),

except in Sudan, South Sudan and Somalia where these data are not available. There we

assume human presence in all cells, which as an extreme case would facilitate the spatial spread

of populations by local dispersal or advection. The other extreme, assuming human absence, is

explored in S7 Fig: it was found to have minimal effect outside of these countries, which take

up a relatively small area near the edges of the species range.

We use inland water data from the Digital Chart of the World (DCW) as in their paper, and

obtain monthly rainfall data from NASA’s Land Data Assimilation System (https://ldas.gsfc.

nasa.gov/fldas). We also set the mosquito population and carrying capacity to zero for each

subspecies in locations outside their range as estimated by the Malaria Atlas Project (see [3],

updated by the Malaria Atlas Project, accessed 25 May 2021 from https://malariaatlas.org/ and

available for use under a Creative Commons Attribution 3.0 Unported License, https://

creativecommons.org/licenses/by/3.0/legalcode).

Relative abundance. Once we have a measure of the combined larval carrying capacity

K(t, x), we need to separate this for two subspecies K1(t, x) and K2(t, x), which requires knowl-

edge of the relative abundance of the two subspecies at each site. We use available field data

collated by [27] on the number of captures of both subspecies at various locations across Africa
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to flexibly predict a spatially-varying but temporally-constant relative abundance. We call this

relative abundance Kr(x) = K1(t, x)/K(t, x), or the proportion of An. gambiae s.s. at a site.

We first attempt to replicate the results of the [27] logistic regression model by indepen-

dently sourcing the predictors that they used in their final model: these are Latitude, Distance

to Coast, Annual Mean Temperature, Mean Temperature of Wettest Quarter, Mean Elevation,

Annual Normalized Vegetation Difference Index (NVDI) and Annual Variation in NVDI. We

then apply a logistic regression model to the (slightly different) predictors, as they did. As well

as providing an independent verification of the results in their paper, sourcing the predictors

ourselves allows us to use more data sources across sub-Saharan Africa, allowing us to extrapo-

late and test different modelling approaches.

Using our independently sourced version of the predictors, we then apply a dense feed-for-

ward neural network to flexibly model the relative abundance function Kr(x) (see S2 Appendix

for details), using the likelihood from a binomial statistical model as our loss function (equiva-

lent to cross-entropy in the Results). We perform leave-one-out cross-validation (jackknifing)

on each of these models, comparing the replicated logistic regression model and the original

[27] model with the neural network model, to test whether there is an increase in performance

by incorporating nonlinear effects on the same set of variables.

The [27] model uses only allopatric sites (those where only one subspecies was detected) to

train their models, as did our replication model and initial neural network model. As we are

interested specifically in subspecies overlap, we include sympatric sites (where both subspecies

were detected), including three new sites [70, 71] publicly available from VectorBase [54]. We

also add further predictors of potential interest to the described neural network model: mean

annual precipitation (BIO12) and precipitation of wettest quarter (BIO16), which were also of

interest to their model but excluded by their model selection process, along with salinity [25]

which was discussed in detail by [27] but not included as a model predictor. We then apply

forward selection to select the model variables in the final model (see S2 Appendix for details).

To ensure convergence in the larger range of scenarios, we here use a 50:50 training-testing

split on the data, but otherwise keep the same network topology and approach. Once this pro-

cess is complete, we then have our final estimate of Kr(x), which we can then apply to the previ-

ously calculated K(t, x) to obtain results for both K1(t, x) and K2(t, x).

Parameters

Where possible and reasonable, we take parameter estimates from literature for our model (see

Table 1), while checking that multiple sources give similar results.

Wind advection. We use estimates from [32] to indirectly estimate the probability of adult

mosquitoes being advected by wind. They estimate that 6 million An. coluzzii mosquitoes cross

a 100 km line perpendicular to the prevailing wind direction every year. Over the course of a 2

or 9 hour flight (the two night-time flight times tested in their Methods) their calculated trajec-

tories give displacements of 3–69 km and 47–270 km respectively (means 38.6 and 154.1; 95%

mean CIs 37–41 and 140–168). If we assume that each migrating individual completes just one

2 or 9 hour overnight flight each way and are only counted once, the mosquitoes that will cross

the imaginary 100 km line will largely come from a rectangle bounded by this line on one side,

and another 100 km line positioned either 38.6 or 154.1 km upwind on the other side. So the

area over which mosquitoes will cross this line will be roughly 100 km × 38.6 km = 3, 860 km2

or 100 km × 154.1 km = 15, 410 km2, within which 6 million An. coluzzii migrating mosquitoes

are estimated to cross. This gives us a density of 1.55 × 10−3 or 3.89 × 10−4 migrating mosqui-

toes per square metre per year: converting to relevant units gives us 106.39 and 26.65 mosqui-

toes per 5 km × 5 km cell per daily timestep. If we can then estimate the overall density of

PLOS COMPUTATIONAL BIOLOGY Spatial modelling for population replacement of mosquito vectors at continental scale

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009526 June 1, 2022 11 / 27

https://doi.org/10.1371/journal.pcbi.1009526


mosquitoes at their capture sites, we can then estimate the daily migration rate. Using the total

abundance model from [21], the average carrying capacity for larvae at coordinates 14˚N,

6.7˚W (located in between the capture sites in Mali) across the simulation period (2005–2015)

is 41, 526. Given the other parameters dJ = 0.05 d−1, dA = 0.1 d−1 and b = 0.1 d−1, at equilibrium

we would expect approximately the same number of adults as larvae at carrying capacity. This

gives a daily migration rate of 106.39/41, 526� 2.6 × 10−3 (or 1 in 390) for 2 hour migration;

and 26.65/41, 526� 6.4 × 10−4 (or 1 in 1558) for 9 hour migration.

Initial conditions. As we expect similar numbers of larvae and adults, we set the initial

conditions of the model for each age a, sex s, genotype g and mosquito subspecies m to

Xa;s;g;mð0;xÞ ¼

1

2
KmðxÞ for g ¼ ww

0 for g 6¼ ww

8
><

>:

In cells where both subspecies exist, there will initially be competitive effects reducing numbers

of one or both subspecies. In addition, advection and diffusion will affect the equilibrium. For

these reasons, we run the model once from the initial condition described for the 11-year time

period from 1 January 2005 to 31 December 2015 as a “burn-in” period, in order for the popu-

lation to approximately reach a dynamic equilibrium that might be encountered in the wild.

Once the burn-in period is complete, we simultaneously introduce 10,000 male mosquitoes of

each subspecies (An. gambiae s.s. and An. coluzzii that are heterozygous with the construct (geno-

type wc) in 15 separate locations, and run the model for another 11-year period. We choose het-

erozygous mosquitoes to introduce as these have less fitness cost than homozygous mosquitoes

(see Eq 7), increasing the chance of spread. The first five of these are placed on islands off the Afri-

can mainland at the nearest suitable location (see below) to assess the potential for incursion of

the genetic construct onto the mainland. The island sites chosen as illustrative examples are:

1. the Bijagós islands (off Guinea-Bissau),

2. Bioko (off Cameroon),

3. Zanzibar (off Tanzania),

4. Comoros (off Mozambique), and

5. Madagascar.

The other ten sites (numbered 6–15) were chosen to be as evenly spaced as possible across

the range of An. gambiae s.s. where at least 10,000 mosquitoes of either subspecies is available

year-round (the algorithm is described in S1 Appendix).

Scenario tests

As mentioned in Wind advection above, we use the two scenarios from [32] that mosquitoes

are passively advected with the wind for either 2 hours or 9 hours a night. We also add a third

scenario of no wind advection at all, to fully explore the effect of wind on mosquito movement.

These three scenarios are then combined with the two scenarios of subspecies inheritance

(maternal and fifty-fifty) described in Eq 6 to make six total scenarios modelled.

Results

Larval carrying capacity

Relative abundance. To compare the effectiveness of the modelling approaches on the

jackknifed mosquito data from [27] and VectorBase [54, 70, 71], where the model probability
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of the subspecies being An. coluzzii at site i of N sites is pi, and the true probability is si (either 0

or 1 depending on subspecies present), we use four measures:

• the actual misclassification rate or “error rate”, where the subspecies at site i is predicted to

be An. coluzzii if pi> 0.5, otherwise An. gambiae s.s.;

• the cross-entropy, which is equivalent to the binomial statistical model used to fit the neural

network model, calculated as

−∑i[si log(pi) + (1 − si) log(1 − pi)]

• the expected number of misclassifications or errors,

∑i abs(pi − si)/N

• and the root mean square (RMS) error,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

iðpi � siÞ
2
=N

q

Table 3 shows that our neural network model performs as well (error rate), slightly better

(expected error rate and RMS error) or much better (cross-entropy) on all of the measures. Its

much better performance on cross-entropy is likely due to the fact that it is trained specifically

to minimise cross-entropy, which may not directly correlate with lower error rates—for exam-

ple, compared to the other measures, cross-entropy will much more harshly penalise a model

for assigning a very low probability to an event which then occurs in the testing data.

Fig 1 illustrates the forward selection process. The chosen variables are Mean Annual Tem-

perature, Latitude, Elevation and Distance to Coast—after this point, even the best chosen vari-

able added to the model only increases the mean validation loss.

Note that the NVDI Coefficient of Variation (CV) actually had the lowest mean validation

loss in the second round, but Latitude was instead selected for four reasons:

• The two had mean validation losses that were statistically indistinguishable even after 500

model runs, based on the bootstrap 95% confidence intervals,

• Comparing the results of the forward selection process where either the NVDI CV or Lati-

tude is chosen in the second round, the latter gives much better mean validation loss results

in subsequent rounds, demonstrating that the forward selection process is sub-optimally

choosing the NVDI CV,

• Data for the NVDI CV is much harder to source, and the variable is a less directly biologi-

cally relevant predictor than Latitude, and

• The NVDI CV becomes a much less desirable predictor after Latitude is selected, suggesting

that it has little to contribute to the model that is unique to it, and not already contributed by

Latitude.

Table 3. Comparison of modelling approaches using four different measures of accuracy. The “Original” model is

that of [27], the “Replication” is our attempt to replicate their model with available data for predictors, and “NN” is our

neural network model as described in this paper, but using their predictors. The models are compared with the dataset

described in their paper [27] and from VectorBase [54, 70, 71]).

Original Replication NN

Error rate 0.1051 0.1018 0.1051

Cross-entropy 170.06 172.43 158.30

Expected error rate 0.1595 0.1610 0.1513

RMS error 0.2839 0.2839 0.2728

https://doi.org/10.1371/journal.pcbi.1009526.t003
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Fig 2 shows the final estimated relative abundance as a mean of 100 neural network model

runs using the chosen variables, alongside the standard deviation of these runs. The relative

abundance follows a similar pattern to that of [27], with An. gambiae s.s. mostly dominant

except in some coastal areas and towards the Sahel. As expected, the variance between model

Fig 1. The forward selection process for the neural network model that estimates the relative abundance of the

two subspecies. For each round of selection, the validation loss (a measure of how well the model predicts to novel

data—lower is better) is shown with a different colour for each predictor. The width of the violin plots reflect the

frequency of the validation loss across the 500 individual neural network runs, with the mean shown as a large dot. The

forward selection process begins (Round 1) by calculating the validation loss for ten models that each include just a

single different predictor. The predictor leading to the “best” model with the lowest mean validation loss is then

accepted (Round 1: Mean Annual Temperature). The selection process continues (Round 2), calculating validation loss

for nine models including Round 1’s accepted predictor, and one new predictor. Similarly, the predictor leading to the

best model is then accepted (Round 2: Latitude). This process is repeated until accepting a new predictor no longer

improves the model. In our analysis, the selection process stopped after Round 4.

https://doi.org/10.1371/journal.pcbi.1009526.g001

Fig 2. Summary statistics of relative abundance based on 100 neural network model runs. Mean relative abundance (a) is given as the proportion of

An. gambiae s.s. (as opposed to An. coluzzii) in the local mosquito population, with low proportions given as white and high proportions as green.

Circles represent data points on which the model is trained, filled with colour representing the proportion measured at the given site. The

corresponding results from [27] are given for the purposes of direct comparison (b). The standard deviation of relative abundance (c) between model

runs is shown in greyscale, with white as low and black as high uncertainty of model estimates at a given site. The rectangle denotes the area of study

used in [27]. Note that the relative abundance estimates cover areas where neither subspecies are expected to exist (see later figures). Base map from

Natural Earth: https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/.

https://doi.org/10.1371/journal.pcbi.1009526.g002
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runs is mostly low around the data points in western sub-Saharan Africa upon which the

model was trained, with much higher variance around central and southern Africa. Interest-

ingly the model runs also yield low variance around Ethiopia in particular, where they predict

An. gambiae s.s. to be dominant.

Total abundance. Fig 3 demonstrates the resulting estimated larval carrying capacity for

each subspecies across the first year of modelling given the relative abundance model above

and the [21] total abundance model, combined with information on human presence and the

known distributions of each subspecies.

Scenario tests

The choice of subspecies inheritance made no noticeable difference to the results for any of the

three wind scenarios. Results shown use the maternal inheritance model.

Within the three wind scenarios, the zero-advection scenario experiences no noticeable

mosquito transport on a continental scale, demonstrating that with the current selected

parameters, advection is far more important than diffusion. We thus show figures for the

9-hour case below, contrast the 2-hour results in text, and present the full 2-hour and zero-

advection results in Supporting Information.

Fig 4 shows the location and spread of the construct from the 15 introduction sites of the

genetic construct (labelled 1–15) for the highest wind advection scenario (9 hours).

All of the islands were able to maintain a population with the genetic construct (Fig 5), with

all except for Madagascar (Site 5) then invading the African mainland in subsequent years.

There appears to be a barrier to dispersal in central Africa, with most introductions either

remaining in western Africa (sites 1, 2, 7, 9, 14 and 15) or eastern Africa (sites 3, 4, 6, 8, 10–13).

When advection was reduced to 2 hours, only the Bijagós (Site 1) and Zanzibar (Site 3) intro-

ductions were able to reach the mainland (see S6 Fig).

Fig 5 shows more detail about the introductions at each site. At all sites, the construct allele

completely takes over from the original wildtype allele in a matter of months. Once the con-

struct is established in the population, resistance builds slowly but surely: the heterozygous

resistant genotype cr becomes noticeable after a couple of years, and is beginning to overtake

the wildtype by the end of the 11-year simulation period, with the homozygous resistant geno-

type (rr) starting to become noticeable in the population. All sites show a similar pattern,

despite differences in scale, subspecies composition and seasonality. Only An. gambiae s.s. per-

sists in Sites 3, 4, 5, 7, 8, 11 and 12, and conversely only An. coluzzii persists in Sites 9 and 14.

The two coexist in the remaining sites (1, 2, 6, 10, 13 and 15). All sites show a regular seasonal

pattern to abundance based on rainfall (the only seasonal driver in the model, other than

wind), with the possible exceptions of Sites 4, 6 and 8, which show slightly more variable sea-

sonality patterns. Why this might be is unclear, though these sites are all in central to eastern

Africa.

Full colour animations of all process model outputs are available in Supporting

Information.

Discussion

This study is the first continental scale model of population dynamics for two of the dominant

malaria vector species in the Anopheles gambiae sensu lato species complex. The transient

spread and persistence of a population replacement gene drive was predicted for the two hybri-

dising subspecies An. gambiae sensu stricto and An. coluzzii. The two major factors that deter-

mine the spread of the gene drive at the continental scale were 1) potential wind-driven

dispersal and 2) spatially and temporally varying carrying capacities for the two subspecies
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Fig 3. Estimated larval carrying capacity of An. gambiae s.s. (left) and An. coluzzii (right), for 2005 (the first year of

modelling) in January (Southern Hemisphere summer), April (autumn), July (winter) and October (spring) from top

to bottom. Base map from Natural Earth: https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-

coastline/.

https://doi.org/10.1371/journal.pcbi.1009526.g003
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with both intraspecific and interspecific density dependence occurring at the larval stage. Our

presented results are intended to demonstrate the plausibility of wide-scale spread of gene

drive and structurally evaluate hypotheses of relevant life history strategies for these two domi-

nant malaria vectors. The spatially explicit process model is designed to support more specific

scenario-based assessments of both genetic and conventional vector control strategies.

Fig 4. The invasion front of the construct (defined as having at least two alleles, e.g. one cc or two wc mosquitoes, in a cell) from a selection of

starting points, with a separate colour given for each year. The island introductions are (1) the Bijagós islands (off Guinea-Bissau), (2) Bioko (off

Cameroon), (3) Zanzibar (off Tanzania), (4) Comoros (off Mozambique) and (5) Madagascar. Base map from Natural Earth: https://www.

naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/.

https://doi.org/10.1371/journal.pcbi.1009526.g004
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Vertical gene transfer among the investigated subspecies is complicated by the spatially het-

erogeneous population structure, where introgression rates between An. gambiae s.s. and An.
coluzzii vary with geographic location [25, 34, 35], and perhaps also over time [66]. In [25],

they suggest that the rate of hybridisation between these subspecies depends on their relative

frequency in the population. The model therefore tracks the relative number of available males

by subspecies, and two alternative choices for species assignment of the first generation

Fig 5. The time series abundance of male mosquitoes at each introduction point (the sub-figure number corresponds to the release site; see Fig 4),

separated by species, genotype and age (female mosquitoes occur in identical numbers to males in this model). The colours correspond to genotype

and the line thickness to age class.

https://doi.org/10.1371/journal.pcbi.1009526.g005
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hybrids was investigated. The model results were found to be robust to species assignment via

maternal descent when compared to equal proportions of species among the first generation

hybrids.

The home range of An. gambiae s.l. is typically believed to be less than 5 square kilometres,

although there is evidence for long-range dispersal [32]. Spatial dispersal was modelled

through two different mechanisms: a local diffusive process, which may be mediated by the

presence of An. gambiae s.l. between human settlements [58], versus wind-driven advection.

More generally, wind-driven dispersal events have been observed for mosquitoes including

over ocean, although it is not understood whether or not wind-driven dispersal is a deliberate

life history strategy for some species [56]. For genetic vector control strategies, the possibility

of long range dispersal events are an important consideration that should be incorporated into

the selection of field sites [12, 72]. Unsurprisingly our results indicate that passive wind-driven

advection, if present, can greatly increase the speed and spatial footprint of the invasion front

for a near-neutral population replacement gene drive (Fig 4, Scenario tests).

The importance of wind-driven advection as a dispersal strategy for An. gambiae s.l. will

likely be a key uncertainty in future risk assessments for genetic control strategies. The large

difference in the dispersal between the 9 hour (Fig 4) and 2 hour results (S5 and S6 Figs) have

important implications for regional (trans-national) governance arrangements, the scope of

stakeholder engagement activities and the degree of geographic containment that islands

might provide during a staged-release strategy. In our simulated releases of the gene drive on

islands, only Madagascar was sufficiently distant to prevent spread to the mainland under the

9 hour wind-assisted dispersal. Even when reducing wind-assisted dispersal to 2 hours, two of

the five island releases resulted in spread to the mainland. Simulated introductions onto

islands such as Bioko (32 km from the mainland) spread to the mainland, but only under the 9

hour scenario. Hence, only this result is consistent with recent genomic analysis that shows

mosquito populations on this island are not isolated from the mainland [73]. Although our

results make the potential scale of wind-mediated spread of gene drive clear, exactly how and

where this spread occurs in the relevant mosquito taxa, and the mosquito behaviour that helps

drive it, is still being studied [32, 74]. In addition, while data on previous wind patterns is read-

ily available, predicting future wind patterns can only be done in very general terms, especially

given the added complications and uncertainties caused by anthropogenic climate change.

These issues together mean that future predictions of gene drive spread will likely involve high

levels of uncertainty.

Environmental carrying capacity is another key factor that determines the spread and per-

sistence of the simulated gene drive releases, as well as the wild-type population abundance.

The introgression of the gene drive tended to initially follow seasonal patterns of carrying

capacity driven by precipitation (Fig 5). Later, however, the importance of resistance gradually

overcame the drive within 11 years despite the spatio-temporal variability of the population

abundances and a relatively mild genetic load imposed by the construct. Resistance is a recog-

nised challenge for gene drive systems (e.g. [13, 14, 75]) for which various counter-strategies

have been proposed [16, 24, 76, 77]. Our simulations assume resistance alleles arise with fre-

quency r (Table 2) determined by the probability of cleavage (kc), the probability of non-

homologous repair (kj) and the probability that the nuclease gene becomes non-functional due

to mutation of the target site during homologous repair (kn) [16]. Our model, however, does

not account for pre-existing resistance in wild type populations caused by sequence variation

in the target locus. Hence the (nonetheless rapid) progression of resistance in hybridising and

spatially heterogeneous populations shown here could be underestimated, further emphasising

the importance of managing drive resistance.
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Our characterisation of environmental carrying capacities and abundance for the wild-type

populations can accommodate alternative functional forms and parametrisation. Moreover,

the functional forms and parametrisation of carrying capacity may be expected to change with

time as climate [78, 79] and land use [80, 81] changes. The current lack of quantitative, spe-

cies-specific, data on mortality and dispersal within the An. gambiae s.l. complex, however,

limits our ability to parametrise relationships such as the larval carrying capacity (Eq 9) in a

species-specific fashion [21], beyond a few, spatially limited, empirical studies (e.g. [38]). We

anticipate that as data from entomological surveys, coupled with species differentiation

through genetic methods (e.g. [34, 35, 54]) is increasingly centralised, then more detailed para-

metrisations will become possible at the subspecies level.

A lack of data also constrains our ability to compare alternative hypotheses of how An. gam-
biae s.l. populations persist in marginal habitat zones such as the Sahel, where observed pat-

terns of seasonal abundance can be explained by either aestivation, permanence of larval

microhabitats (i.e., non-zero carrying capacities during the dry season) or long range dispersal

[21]. Although persistence in the Sahel can be explained without an explicit aestivation model

(see Figs 3 and 5), aestivation may nevertheless be an important life history strategy for some

species within the An. gambiae s.l. complex in the Sahel [60]. As for wind-driven dispersal, the

relative importance of aestivation suffers from limited data.

The process model allows for the scenario-based testing of genetic and conventional vector

control strategies. For genetic vector control, the sex-differentiated compartment model allows

for both population replacement and population suppression gene drives. For the latter, the

relative frequency of males and females may be an important component of the gene drive sys-

tem [9] and also for sex-biased, self-limiting forms of genetic vector control strategies [4–6];

the model has the flexibility to accommodate sex bias from either maternal or paternal descent

(Newborns and Nage = 1 model above). Conventional control strategies that target adult

females or larval stage mosquitoes can be accommodated by increasing mortality rates in loca-

tions and times dependent on the intervention scenario (sensu [38]), or by reducing carrying

capacity for interventions where larval habitat is removed.

Vector control is a key component in strategies developed to combat mosquito-borne and

vector borne diseases [82]. The deployment of vector control strategies, whether genetic or

conventional, into hybridising spatially heterogeneous populations will require the develop-

ment of spatially explicit models. These models should be constructed at a spatial and temporal

scale that is commensurate with the intervention and include the possibility of resistance,

which is not only a feature of genetic methods such as gene drive systems but is also an

expected development for conventional strategies such as insecticide applications [24, 83].

Numerical simulation based scenario assessments can be used to investigate alternative eco-

logical hypotheses in concert with proposed vector control intervention strategies. The spatio-

temporal model developed here shows the importance of resistance, vertical gene transfer

among hybridising subspecies, long range dispersal, spatio-temporal variability in larval mos-

quito habitats and deployment strategies at the continental scale.

Supporting information

S1 Fig. Closed population plot. Time series plot of Site 6 (as in Fig 5) but with a closed popu-

lation, i.e. no diffusion or advection. The colours correspond to genotype and the line thick-

ness to age class.

(PDF)

S2 Fig. Age classes plot. Time series plot of Site 6 as in S1 Fig but with 6 age classes, keeping

overall larval emergence period and mortality constant. This result is more closely analogous
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to a fixed larval emergence time than to the exponentially-distributed version in the main

model. The first five age classes combined are plotted here under “larvae”. The colours corre-

spond to genotype and the line thickness to age class.

(PDF)

S3 Fig. Reduced fecundity plot. Time series plot of Site 6 as in S1 Fig but with R(gM, gF) =

0.05 where gM 6¼ ww or gF 6¼ ww. The colours correspond to genotype and the line thickness to

age class.

(PDF)

S4 Fig. Male sex bias plot. Time series plot of Site 6 as in S1 Fig but with p(gM, gF, s) modified

so that any presence of the genetic construct in the father (wc, cc or cr) results in a 95% male

sex bias in offspring. Dashed lines represent males, solid lines females. The colours correspond

to genotype and the line thickness to age class.

(PDF)

S5 Fig. 2 hours advection time series plot. The time series abundance of male mosquitoes at

each introduction point as in Fig 5, but using 2 hours instead of 9 hours advection, separated

by species, genotype and age (female mosquitoes occur in identical numbers to males in this

model). The colours correspond to genotype and the line thickness to age class.

(PDF)

S6 Fig. 2 hours invasion front plot. The invasion front of the construct at each introduction

point as in Fig 4, but using 2 hours instead of 9 hours advection. A separate colour is given

for each year. The island introductions are (1) the Bijagós islands (off Guinea-Bissau), (2)

Bioko (off Cameroon), (3) Zanzibar (off Tanzania), (4) Comoros (off Mozambique) and (5)

Madagascar. Base map from Natural Earth: https://www.naturalearthdata.com/downloads/

10m-physical-vectors/10m-coastline/.

(PDF)

S7 Fig. Human absence invasion front plot. The invasion front of the construct as in Fig 4

for Site 6, but assuming human (and thus mosquito) absence in Sudan, South Sudan and

Somalia (national boundaries given in red, as defined by the UN Office for the Coordination

of Humanitarian Affairs). Base map from Natural Earth: https://www.naturalearthdata.com/

downloads/10m-physical-vectors/10m-coastline/.

(PDF)

S1 Video. 9 hours Anopheles gambiae s.s. animation.

(GIF)

S2 Video. 9 hours Anopheles coluzzii animation.

(GIF)

S3 Video. 2 hours Anopheles gambiae s.s. animation.

(GIF)

S4 Video. 2 hours Anopheles coluzzii animation.

(GIF)

S1 Appendix. Algorithm for placing introduction sites.

(PDF)

S2 Appendix. Neural network details.

(PDF)
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S3 Appendix. Description of illustrative animations.

(PDF)
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polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West

Africa. Parassitologia. 1998; 40(4):477–511. PMID: 10645562

44. Wondji C, Simard F, Petrarca V, Etang J, Santolamazza F, Torre AD, et al. Species and populations of

the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular

forms of Anopheles gambiae s.s. Journal of Medical Entomology. 2005; 42(6):998–1005. PMID:

16465741

PLOS COMPUTATIONAL BIOLOGY Spatial modelling for population replacement of mosquito vectors at continental scale

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009526 June 1, 2022 24 / 27

https://doi.org/10.1016/j.meegid.2008.06.003
http://www.ncbi.nlm.nih.gov/pubmed/18640289
https://doi.org/10.1111/eva.12242
http://www.ncbi.nlm.nih.gov/pubmed/25926878
https://doi.org/10.1186/s12936-016-1187-8
http://www.ncbi.nlm.nih.gov/pubmed/26945997
https://doi.org/10.1016/j.jtbi.2019.110072
https://doi.org/10.1016/j.jtbi.2019.110072
http://www.ncbi.nlm.nih.gov/pubmed/31706913
https://doi.org/10.1371/journal.pcbi.1008121
https://doi.org/10.1371/journal.pcbi.1008121
http://www.ncbi.nlm.nih.gov/pubmed/32797077
https://doi.org/10.1038/s41586-019-1622-4
https://doi.org/10.1038/s41586-019-1622-4
http://www.ncbi.nlm.nih.gov/pubmed/31578527
https://doi.org/10.1186/1756-3305-4-153
http://www.ncbi.nlm.nih.gov/pubmed/21798055
https://doi.org/10.1038/nature24995
https://doi.org/10.1101/864314
https://doi.org/10.1186/1756-3305-5-69
https://doi.org/10.1186/1756-3305-5-69
http://www.ncbi.nlm.nih.gov/pubmed/22475528
https://doi.org/10.1186/s13071-018-3158-0
https://doi.org/10.1186/1475-2875-10-303
http://www.ncbi.nlm.nih.gov/pubmed/21999664
https://doi.org/10.1186/1475-2875-12-28
http://www.ncbi.nlm.nih.gov/pubmed/23342980
https://doi.org/10.1046/j.1365-2583.2001.00235.x
http://www.ncbi.nlm.nih.gov/pubmed/11240632
https://doi.org/10.1126/science.1078170
https://doi.org/10.1126/science.1078170
http://www.ncbi.nlm.nih.gov/pubmed/12364784
http://www.ncbi.nlm.nih.gov/pubmed/10645562
http://www.ncbi.nlm.nih.gov/pubmed/16465741
https://doi.org/10.1371/journal.pcbi.1009526
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