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Abstract: Herein, we describe a simple and efficient route to access aniline-derived diselenides and
evaluate their antioxidant/GPx-mimetic properties. The diselenides were obtained in good yields
via ipso-substitution/reduction from the readily available 2-nitroaromatic halides (Cl, Br, I). These
diselenides present GPx-mimetic properties, showing better antioxidant activity than the standard
GPx-mimetic compounds, ebselen and diphenyl diselenide. DFT analysis demonstrated that the
electronic properties of the substituents determine the charge delocalization and the partial charge
on selenium, which correlate with the catalytic performances. The amino group concurs in the
stabilization of the selenolate intermediate through a hydrogen bond with the selenium.

Keywords: organoselenides; GPx; DFT; non-bonding interaction; diselenides; anilines

1. Introduction

In recent years, there has been an increasing interest in synthetic organoselenium
compounds, mainly due to their properties as synthetic intermediates in organic trans-
formations [1–3] and material sciences [4,5], as well as in medicinal chemistry [6–9].
These compounds have been recently described as good antioxidants [10,11], also pre-
senting anti-inflammatory [12,13], antibacterial [14], antiviral [15], anticancer [16–19],
anti-Alzheimer’s [20–23] and other activities [24–28]. Furthermore, in relation to the
current pandemic of COVID-19, there are some interesting studies available that demon-
strate the effectiveness of organoselenium compound (Ebselen) as an antiviral molecule,
Figure 1 [29–31].
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Figure 1. Ebselen.

Among organoselenium compounds, diorganyl diselenides present important an-
tioxidant and anticancer properties mainly because of the ability of these diselenides to
act as mimetics of the enzyme glutathione peroxidase (GPx) [6,8,11]. This selenoenzyme
possesses a residue of selenocysteine in its active site and is responsible for the reduction
of peroxides to water in our organism, protecting it from oxidative stress and related
diseases [32].

Notable among the polyfunctionalized diselenides, the presence of an amino or car-
bonyl group in close proximity to the selenium moiety has some unique biological features
due to non-bonding interactions [33–35]. For example, the bis-2-aniline diselenide is re-
ported to be a good antioxidant, preventing the oxidative stress caused by peroxynitrite
and hydroperoxides [36–38]. Moreover, the aniline-derived diselenides, mainly with an
amino group in the ortho position, give these compounds two possible reactive centers,
Se-Se bond cleavage and the unshared pair of electrons on the nitrogen. This makes this
class of compounds extremely flexible in functional group interconversions, making it
appropriate for several transformations, mainly in the formation of selenium-containing
heterocycles, such as selenamides [39], benzoselenazines [40], benzoselenazoles [41] and
triazole diselenides [42].

Recently, we reported a new robust methodology for the synthesis of o-aniline-derived
diselenides from the reduction of o-nitrobenzene diselenides. As part of our wider research
program aimed at efficient methodologies for the synthesis of organoselenium compounds
and their biological evaluation [43–50], herein, we report the application of o-aniline-
derived diselenides as potential GPx mimics. For this purpose, different physical-chemical
studies were performed to demonstrate their biological properties, i.e., kinetic profile.
Furthermore, DFT studies were also carried out in order to study the electronic properties
of the substituents for determining the charge delocalization on the selenium atom and its
influence on catalytic performance.

2. Results and Discussion

The bis-o-nitrobenzene diselenides were initially prepared through the nucleophilic
aromatic substitution of o-halonitrobenzenes with K2Se2 (generated in situ) from a modified
simple methodology [51]. After this, we carried out the reduction of bis-o-nitrobenzene
diselenides from a well-established procedure described in the literature [52] using low-
cost iron sulfate heptahydrate (FeSO4.7H2O) to synthesize the aniline-derived diselenides
(Scheme 1).
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Scheme 1. Reaction conditions: (i) Se (3.0 mmol), KOH (6.0 mmol), heated until melted for 5 min and H2O (6.0 mL);
(ii) o-halonitrobenzene 1a–f (1.5 mmol) and THF or DMF (1.5 mL), r.t., 2 h; (iii) bis-nitrobenzene diselenide 2a–e (1.5 mmol)
and FeSO4.7H2O (5.0 eq), methanol (25.0 mL) and H2O (25.0 mL), reflux, 1 h. NH4OH (15.0 mL), reflux, 10 min.
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The aniline-derived diselenides 3a–e were evaluated with regard to GPx-like antioxi-
dant activity. The catalytic parameters were obtained using the Tomoda [53] reaction model,
where the synthesized diselenides were applied as catalysts in the formation of diphenyl
disulfide (PhSSPh) through the reduction of hydrogen peroxide (H2O2) in the presence of
thiophenol (PhSH), which is accompanied by an increase in UV/vis absorbance in 305 nm
(Figure 2a). Then, the absorbance was plotted against diphenyl disulfide concentration to
determine the molar absorptivity at 305 nm (Figure 2b).
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[PhSH] = 10 mmol L−1, [3b] = 0.01 mmol L−1 and [H2O2] = 15 mmol L−1, in methanol at 25 ◦C; (b) Absorbance plot-
ted against diphenyl disulfide concentration. The red line represents the linear fit. The coefficient of molar absorptivity in
305 nm was 1415 L mol−1 cm−1 (R2 = 0.9996).

The catalytic parameters were obtained by fitting the kinetic profiles, that is, initial
rate versus initial PhSH concentration, as shown in Figure 3 for diselenide 3b (for other
compounds, see Figures S31–S38, Pg. S22–S25 in Supplementary Materials), with the
Michaelis–Menten equation (Equation (1)).
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Figure 3. Initial rate (V0) plotted against substrate concentration. The initial rates were calculated
from at least two experiments for each concentration of PhSH. The concentrations of 3b and H2O2

were fixed at 1 × 10−5 and 15 × 10−3 mol L−1, respectively. The red line represents the Michaelis–
Menten fit.
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Table 1 shows the catalytic constant (kcat), the Michaelis–Menten constant (Km) and
the catalytic efficiency (η where η = kcat/Km) for the reaction with the aniline-derived dise-
lenides 3a to 3e and, for comparison, the well-known catalysts ebselen [35] and diphenyl
diselenide [53].

Table 1. GPx-like catalytic evaluation of aniline-derived diselenides 3a–e.
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0.00088 0.918 1044.19

The results show that the catalytic efficiency of the aniline-derived diselenides is
structure-dependent, especially regarding the electronic character of the substituents at
the para position related to selenium, with an increase in the catalytic efficiency with the
electron-withdrawal capacity of the substituent (compound 3b), once cleavage of the Se-Se
bond is facilitated. These results suggest that the mechanism of these catalyzed reactions
involves the formation of a zwitterionic form of the selenolate intermediate with a negative
density charge in the selenium atom (Scheme 2a), which is similar to the mechanism
proposed by Tomoda et al. [53].
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The structures 3a–e have been optimized by Density Functional Theory (DFT) at the
BP86-D3/def2-TZVP level of theory, using the zero-order regular approximation (ZORA)
to take the relativistic effects into account. In all the optimized geometries (except 3b), an
intramolecular hydrogen bond (HB) exists between the two amine moieties, with distances
that range from 2.624 (3d) to 3.139 (3a) Å. In the case of 3b, the electron-withdrawing
-CF3 group likely makes the lone pair of the nitrogen less available for HBs. The elec-
tronic effect of the group in the para position influences all the atomic charges of the
diselenide system. Indeed, the atomic charges have been computed through the Natural
Population Analysis (see Computational Details) as implemented in NBO 6.0, and for
the selenium, it ranges from 0.063 to 0.123 e for 3c (the most electron-donating group)
and 3b (the most electron-withdrawing one), respectively. The atomic charge on the se-
lenium qualitatively correlates with η, according to which the best catalysts have a more
positive charge on the selenium and a less negative charge on the nitrogen (Figure 4 and
Supplementary Materials). In addition, a similar correlation can be observed between the
atomic charge of the ammonium-selenolate and η: in this case, the best catalysts have a
less negative charge on the selenium, leading to a larger degree of charge delocalization
and, consequently, a more stable intermediate. This is in agreement with the mechanism
proposed by Tomoda [53]. Furthermore, the hydrogen bonding between the ammonium
protons and the selenolate moiety is quite strong and stabilizes the intermediate, hav-
ing an orbital interaction of 8–9 kcal/mol depending on the substituent (Supplementary
Materials), hence making the catalyst more active.

Tomoda et al. [53] also proposed that another reactive intermediate is formed in
the initial step from the reaction of the diselenide with PhSH, that is, the selenyl sulfide
(Scheme 2b). In the case of the aniline-derived diselenides, it seems that the formation
of this intermediate is destabilized by the inductive electron donor capacity of the amine
groups at the ortho position, reflected in their lower catalytic efficiency when compared
with the diphenyl diselenide (Table 1, entries 3 and 2, respectively).

Of the aniline-derived diselenides, the highest catalytic efficiency was observed for
compound 3b (Table 1, entry 4), which was 5 and 2 times more active than the standards
ebselen and diphenyl diselenide, respectively. It is worth noting that the diselenide 3b
was more effective than ebselen, which is a pre-clinical drug candidate with pronounced
biological activities, including, recently, the inhibition of protease Mpro from COVID-19
(SARS-CoV-2) virus [29–31].

Due to the high antioxidant activity of the diselenide 3b as a mimetic of GPx, we
decided to investigate the effectiveness of this methodology at the gram scale. Thus, we
performed the reaction from 20.0 mmol (5.40 g) of the o-halonitrobenzene 1c to afford the
desired nitro-diselenide 2b, followed by its reduction to obtain the bis-aniline-derived 3b
without a significant decrease in the yields (Scheme 3), proving that this protocol could be
used as a robust method in the larger-scale synthesis of this privileged structure.
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3. Materials and Methods
3.1. GPx-Like Experimental Procedure

The kinetic profile of the oxidation reaction was conducted in a UV-vis Spectropho-
tometer, following the wavelength of diphenyl disulfide formation at 305 nm. Spectroscopic
methanol was used as solvent in the oxidation reaction, and the final volume of cuvettes
was kept at 2000 µL. The H2O2 and catalyst concentration were fixed in 15 × 10−3 mol L−1

and 1 × 10−5 mol L−1 respectively, and the PhSH concentration was varied from 0.5 × 10−3

to 15 × 10−3 mol L−1. The temperature was kept at 25 ◦C, and each experiment was run at
least 2 times.

3.2. Michaelis–Menten Equation

The GPx-like kinetic profiles were treated using the Michaelis–Menten nonlinear
Equation (1):

V =
kcat[cat][PhSH]

(Km + [PhSH])
(1)
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where the V0 was the initial velocity and kcat and Km were the catalytic rate constant and
Michaelis–Menten constant, respectively. The [cat] and [PhSH] represent the concentration
of the catalyst and thiophenol, respectively.

3.3. Computational Details

All geometries were optimized with ORCA 4.1.0, [54] using the BP86 functional in
conjunction with a triple-ζ quality basis set (ZORA-TZVP) and def2/J auxiliary basis. For
heavy elements (such as selenium and bromine), relativistic effects have been accounted
by using the Zeroth Order Regular Approximation (ZORA) scalar correction. The dis-
persion corrections were introduced using the Grimme D3-parametrized correction and
the Becke−Johnson damping to the DFT energy [55]. All the diselenide structures were
confirmed to be local energy minima (no imaginary frequencies). Selenolate species show
an unavoidable imaginary frequency correlated with the rotation of the -NH3 moiety.
The atomic charges have been computed by the Natural Population Analysis (NPA) as
implemented in NBO6 [56].

4. Conclusions

In conclusion, we have developed a short and robust synthetic route for the synthesis
of nitro aryl and aniline-derived diselenides in good overall yields. The aniline-derived
diselenides were evaluated as GPx mimetics and the diselenide 3b substituted with the
CF3 group showed the best results, being 5 and 2 times more effective as a GPx mimetic
than the standard catalysts ebselen and diphenyl diselenide, respectively. Furthermore,
DFT analysis was performed for all the diselenides, which demonstrated non-bonding
interaction. This correlates with the GPx activities of these diselenides.

Supplementary Materials: The following are available online, 1H, and 13C NMR spectra of the
synthesized compounds (3a–e). Figure S1: 1H NMR (200 MHz, CDCl3) Spectrum of compound 2a.
Figure S2: 13C NMR (50 MHz, CDCl3) Spectrum of compound 2a. Figure S3: HRMS spectrum of
compound 2a. Figure S4: 1H NMR (200 MHz, CDCl3) Spectrum of compound 2b. Figure S5: 13C
NMR (50 MHz, CDCl3) Spectrum of compound 2b. Figure S6: HRMS spectrum of compound 2b.
Figure S7: 1H NMR (200 MHz, CDCl3) Spectrum of compound 2c. Figure S8: 13C NMR (50 MHz,
CDCl3) Spectrum of compound 2c. Figure S9: HRMS spectrum of compound 2c. Figure S10: 1H NMR
(200 MHz, CDCl3) Spectrum of compound 2d. Figure S11: 13C NMR (50 MHz, CDCl3) Spectrum
of compound 2d. Figure S12: HRMS spectrum of compound 2d. Figure S13: 1H NMR (200 MHz,
CDCl3) Spectrum of compound 2e. Figure S14: 13C NMR (50 MHz, CDCl3) Spectrum of compound
2e. Figure S15: ESI-MS spectrum of compound 2e. Figure S16:1H NMR (200 MHz, CDCl3) Spectrum
of compound 3a. Figure S17: 13C NMR (50 MHz, CDCl3) Spectrum of compound 3a. Figure S18:
1H NMR (200 MHz, CDCl3) Spectrum of compound 3b. Figure S19: 13C NMR (50 MHz, CDCl3)
Spectrum of compound 3b. Figure S20: HRMS spectrum of compound 3b. Figure S21: 1H NMR
(200 MHz, CDCl3) Spectrum of compound 3c. Figure S22: 13C NMR (50 MHz, CDCl3) Spectrum
of compound 3c. Figure S23: HRMS spectrum of compound 3c. Figure S24: 1H NMR (200 MHz,
CDCl3) Spectrum of compound 3d. Figure S25: 13C NMR (50 MHz, CDCl3) Spectrum of compound
3d. Figure S26: HRMS spectrum of compound 3d. Figure S27: 1H NMR (200 MHz, CDCl3) Spectrum
of compound 3e. Figure S28: 13C NMR (50 MHz, CDCl3) Spectrum of compound 3e. Figure S29:
ESI-MS spectrum of compound 3e. Figure S30: 77Se NMR (76 MHz, CDCl3) Spectrum of compound
3b. Figure S31: Absorbance plotted against diphenyl disulfide concentration. The red line represents
the linear fit. The coefficient of molar absorptivity in 305 nm was 1415 L mol−1 cm−1 (R2 = 0.9996).
Figure S32: Initial rate (V0) plotted against substrate concentration. The initial rates were calculated
from at least two experiments for each concentration of PhSH. The concentrations of ebselen and
H2O2 were fixed at 5 × 10−5 and 15 × 10−3 mol L−1, respectively. The red line represents the
Michaelis-Menten fit. Figure S33: Initial rate (V0) plotted against substrate concentration. The
initial rates were calculated from at least two experiments for each concentration of PhSH. The
concentrations of diphenyl disulfide and H2O2 were fixed at 5 × 10−5 and 15 × 10−3 mol L−1,
respectively. The red line represents the Michaelis-Menten fit. Figure S34: Initial rate (V0) plotted
against substrate concentration. The initial rates were calculated from at least two experiments
for each concentration of PhSH. The concentrations of 3c and H2O2 were fixed at 5 × 10−5 and
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15 × 10−3 mol L−1, respectively. The red line represents the Michaelis-Menten fit. Figure S35: Initial
rate (V0) plotted against substrate concentration. The initial rates were calculated from at least
two experiments for each concentration of PhSH. The concentrations of 3a and H2O2 were fixed
at 5 × 10−5 and 15 × 10−3 mol L−1, respectively. The red line represents the Michaelis-Menten fit.
Figure S36: Initial rate (V0) plotted against substrate concentration. The initial rates were calculated
from at least two experiments for each concentration of PhSH. The concentrations of 3b and H2O2
were fixed at 5 × 10−5 and 15 × 10−3 mol L−1, respectively. The red line represents the Michaelis-
Menten fit. Figure S37: Initial rate (V0) plotted against substrate concentration. The initial rates
were calculated from at least two experiments for each concentration of PhSH. The concentrations of
3d and H2O2 were fixed at 5 × 10−5 and 15 × 10−3 mol L−1, respectively. The red line represents
the Michaelis-Menten fit. Figure S38: Initial rate (V0) plotted against substrate concentration. The
initial rates were calculated from at least two experiments for each concentration of PhSH. The
concentrations of 3e and H2O2 were fixed at 5 × 10−5 and 15 × 10−3 mol L−1, respectively. The red
line represents the Michaelis-Menten fit. Table S1: Atomic charges of nitrogen and selenium according
to NPA. Table S2: Donor-acceptor second order perturbation analysis. Table S3: DFT-computed
energies for optimized geometries (in kcal/mol).
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