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Abstract

Background: Some of the most widely recognized coral reef fishes are clownfish or anemonefish, members of the family
Pomacentridae (subfamily: Amphiprioninae). They are popular aquarium species due to their bright colours, adaptability
to captivity, and fascinating behavior. Their breeding biology (sequential hermaphrodites) and symbiotic mutualism with
sea anemones have attracted much scientific interest. Moreover, there are some curious geographic-based phenotypes
that warrant investigation. Leveraging on the advancement in Nanopore long read technology, we report the first
hybrid assembly of the clown anemonefish (Amphiprion ocellaris) genome utilizing Illumina and Nanopore reads, further
demonstrating the substantial impact of modest long read sequencing data sets on improving genome assembly statistics.
Results: We generated 43 Gb of short Illumina reads and 9 Gb of long Nanopore reads, representing approximate genome
coverage of 54× and 11×, respectively, based on the range of estimated k-mer-predicted genome sizes of between 791
and 967 Mbp. The final assembled genome is contained in 6404 scaffolds with an accumulated length of 880 Mb (96.3%
BUSCO-calculated genome completeness). Compared with the Illumina-only assembly, the hybrid approach generated 94%
fewer scaffolds with an 18-fold increase in N50 length (401 kb) and increased the genome completeness by an additional
16%. A total of 27 240 high-quality protein-coding genes were predicted from the clown anemonefish, 26 211 (96%) of which
were annotated functionally with information from either sequence homology or protein signature searches. Conclusions:
We present the first genome of any anemonefish and demonstrate the value of low coverage (∼11×) long Nanopore read
sequencing in improving both genome assembly contiguity and completeness. The near-complete assembly of the A.
ocellaris genome will be an invaluable molecular resource for supporting a range of genetic, genomic, and phylogenetic
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studies specifically for clownfish and more generally for other related fish species of the family
Pomacentridae.

Keywords: clownfish; long reads; genome; transcriptome; hybrid assembly

Data Description

The clown anemonefish, Amphiprion ocellaris (Fig. 1, NCBI Taxon
ID: 80 972, Fish Base ID:6509), is a well-known tropical marine
fish species among the nonscientific community especially fol-
lowing the Pixar film Finding Nemo and its sequel Finding Dory
[1]. The visual appeal of A. ocellaris due to its bright coloration
and behaviour and ease of husbandry have maintained a strong
global demand for this species in the marine aquarium trade,
driving a fine balance between positive environmental aware-
ness and sustainable ornamental use [1, 2]. Further, given high
survival rates and ability to complete their life cycle in captivity,
captive-breeding programs to partially sustain their global trade
have been successful [3]. For the scientific community,A. ocellaris
or anemonefishes in general are actively studied due to their in-
triguing reproductive strategy, i.e., sequential hermaphroditism
[4–7] and mutualistic relationships with sea anemones [8–12].
Phenotypic body colour variation based on host-anemone use
and geography also pose additional questions regarding adap-
tive genetic variation [13].

In recent years, concurrent with the advent of long read se-
quencing technologies [14], several studies have explored com-
bining short but accurate Illumina reads with long but less ac-
curate Nanopore/PacBio reads to obtain genome assemblies that
are usually more contiguous with higher completeness than as-
semblies based on Illumina-only reads [15–19]. To further con-
tribute to the evaluation of long read technology in fish ge-
nomics [15], we sequenced thewhole genome ofA. ocellarisusing
Oxford Nanopore and Illumina technologies and demonstrate
that hybrid assembly of long and short reads greatly improved
the quality of genome assembly.

Whole-genome sequencing

Tissues for genome assembly and as reference material were
sourced from the collection of the Museum and Art Gallery of
the Northern Territory (NTM). The samples used for DNA ex-
traction and subsequent whole-genome sequencing were from
freshly vouchered captive bred A. ocellaris specimens, repre-
senting a unique black and white colour phenotype found only
in the Darwin Harbour region, Australia (NTM A3764, A4496,
A4497).

Genomic DNA was extracted from multiple fin clip and mus-
cle samples using the E.Z.N.A. Tissue DNA Kit (Omega Bio-tek,
Norcross, GA, USA). For Illumina library prep, approximately 1
μg of gDNA from isolate A3764 was sheared to 300 bp using a
Covaris Focused-Ultrasonicator (Covaris, Woburn, MA, USA) and
subsequently processed using the TruSeq DNA Sample Prep Kit
(Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions. Paired-end sequencing was performed on a sin-
gle lane of HiSeq 2000 (Illumina, San Diego, CA, USA) located
at the Malaysian Genomics Resource Centre Berhad. Two ad-
ditional libraries were constructed from specimen NTM A3764,
and both libraries were sequenced on the MiSeq (2 × 300 bp
setting), located at the Monash University Malaysia Genomics
Facility.

To generate Oxford Nanopore long reads, approximately
5 μg of gDNAwas extracted from isolates NTMA4496 and A4497,

Figure 1: The clown anemonefish (Amphiprion ocellaris). Photo by Michael P.
Hammer.

size-selected (8–30 kb) with a BluePippin (Sage Science, Beverly,
MA, USA), and processed using the Ligation Sequencing 1D Kit
(Oxford Nanopore, Oxford, UK) according to the manufacturer’s
instructions. Three libraries were prepared and sequenced on
3 different R9.4 flowcells using the MinION portable DNA se-
quencer (Oxford Nanopore, Oxford, UK) for 48 hours.

Sequence read processing

Raw Illumina short reads were adapter-trimmed with Trimmo-
matic v.0.36 (ILLUMINACLIP:2:30:10, MINLEN:100; Trimmomatic,
RRID:SCR 011848) [20], followed by a screening for vectors and
contaminants, using Kraken v.0.10.5 (Kraken, RRID:SCR 005484)
[21] based on the MiniKraken DB. Kraken-unclassified reads,
i.e., nonmicrobial/viral origin, were aligned to the complete mi-
togenome ofNTMA3764 (see theMitogenomeAssembly section)
to exclude sequences of organellar origin. This results in a total
of 42.35 Gb of “clean” short reads. Nanopore reads were base-
called from their raw FAST5 files using the Oxford Nanopore
proprietary base-caller, Albacore, version 2.0.1. Applying a min-
imum length cutoff of 500 bp, this study produced a total of 8.95
Gbp in 895 672 Nanopore reads (N50: 12.7 kb). Sequencing statis-
tics are available in Supplementary Table 1.

Genome size estimation

K-mer counting with the “clean” Illumina reads was performed
with Jellyfish v.2.2.6 (Jellyfish, RRID:SCR 005491) [22], generating
k-mer frequency distributions of 17-, 21-, and 25-mers. These
histograms were processed by GenomeScope [23], which esti-
mated a genome size of 791 to 794 Mbp with approximately 80%
of unique content and a heterozygosity level of 0.6% (Supple-
mentary Fig. 1). Given that we had previously excluded adapters
as well as sequences from contaminant or organellar sources,
themax kmer coverage filter was not applied (max kmer coverage:
-1). A separate estimation performed by BBMap [24] estimated a
haploid genome size of 967 Mbp. The genome sizes estimated
from both approaches are within the range of sizes listed for
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other Amphiprion species (792 Mb–1.2 Gb) as reported on the An-
imal Genome Size Database [25].

Hybrid genome assembly

Short reads used for assemblies described in this study were
only trimmed for adapters, but not for quality. Both short-
read-only and hybrid de novo assemblies were performed
with the Maryland Super-Read Celera Assembler v.3.2.2 (Ma-
SuRCA, RRID:SCR 010691) [26]. During hybrid assembly, errors
were encountered in the fragment correction step of the Cel-
era Assembler (CA; Celera assembler, RRID:SCR 010750). To
overcome this, given that the CA assembler is no longer
maintained, we disabled the frgcorr step based on one of
the developer’s recommendations, and the hybrid assem-
bly was subsequently improved with 10 iterations of Pilon
v.1.22 (Pilon, RRID:SCR 014731) [27], using short reads to cor-
rect bases, fix misassemblies, and fill assembly gaps. To
assess the completeness of the genome, Benchmarking Univer-
sal Single-Copy Orthologs v.3.0.2 (BUSCO, RRID:SCR 015008) [28]
was used to locate the presence or absence of theActinopterygii-
specific set of 4584 single-copy orthologs (OrthoDB v9).

The short-read-only and hybrid assemblies yielded total as-
sembly sizes of 851 Mb and 880 Mb, respectively. Statistics for
assemblies for each Pilon iteration are available in Supplemen-
tary Table 2. Inclusion of Nanopore long reads for a hybrid as-
sembly representing approximately ×11 genome coverage led to
a 94% decrease in the number of scaffolds (>500 bp) from 106
526 to 6404 scaffolds and an 18-fold increase in the scaffold N50

length from 21 802 bp to 401 715 bp (Table 1). In addition, the
genome completeness was also substantially improved in the
hybrid assembly, with BUSCO detecting complete sequences of
96.3% (4417/4584) of single-copy orthologs in the Actinopterygii-
specific dataset.

Transcriptome sequencing and assembly

Total RNA extraction from RNAshield-preserved whole-body
and muscle tissues of isolate A4496 used Quick-RNA MicroPrep
(Zymo Research Corpt, Irvine, CA, USA) according to the man-
ufacturer’s protocols. After assessing total RNA intactness on
the Tapestation2100 (Agilent), mRNA was enriched using NEB-
Next Poly(A) mRNA Magnetic Isolation Kit (NEB, Ipwich, MA,
USA) and processed with NEBNext Ultra RNA Library Prep Kit
for Illumina (NEB, Ipwich, MA, USA). Libraries from both whole-
body and muscle tissues were sequenced on a fraction of MiSeq
V3 flowcell (1 × 150 bp). Single-end reads from both libraries
in addition to 2 publicly available A. ocellaris transcriptome se-
quencing data (SRR5253145 and SRR5253146, Bioproject ID: PR-
JNA374650) were individually assembled using Scallop v0.10.2
[29] based on HiSat2 [30] alignment of RNA-sequencing reads to
the newly generated A. ocellaris genome. The transcriptome as-
semblies were subsequently merged using the tr2aacds pipeline
from the EvidentialGene [31] package and similarly assessed for
completeness using BUSCO, version 3 [28]. The final nonredun-
dant transcriptome assembly, which was subsequently used to
annotate the A. ocellaris genome, contains 25 264 contigs/isotigs
(putative transcripts) with an accumulated length of 68.4Mb and
BUSCO-calculated completeness of 92.8% (Table 1).

Genome annotation

Protein-coding genes were predicted with the MAKER v.2.31.9
genome annotation pipeline (MAKER, RRID:SCR 005309) [32]. A

Table 1: Genome and transcriptome statistics of the clownfish (Am-
phiprion ocellaris) genome

Illumina Illumina +
(≥500 bp) Nanopore

(≥500 bp)

Genome assembly

Contig statistics
Number of contigs 133 997 7810
Total contig size, bp 851 389 851 880 159 068
Contig N50 size, bp 15 458 323 678
Longest contig, bp 204 209 2051 878

Scaffold statistics
Number of scaffolds 106 526 6404
Total scaffold size, bp 852 602 726 880 704 246
Scaffold N50 size, bp 21 802 401 715
Longest scaffold, bp 227 111 3111 502
GC/AT/N, % 39.6/60.2/0.14 39.4/60.5/0.06

BUSCO genome completeness
Complete 3691 (80.5%) 4417 (96.3%)
Complete and single copy 3600 (78.5%) 4269 (93.1%)
Complete and duplicated 91 (2.0%) 148 (3.2%)
Fragmented 534 (11.6%) 63 (1.4%)
Missing 359 (7.9%) 104 (2.3%)

Transcriptome assembly
Number of contigs 25 364
Total length, bp 68 405 796
Contig N50 size, bp 3670

BUSCO completeness
Complete 4253 (92.8%)
Complete and single-copy 4128 (90.1%)
Complete and duplicated 125 (2.7%)
Fragmented 127 (2.8%)
Missing 204 (4.4%)

Genome annotation
Number of protein-coding genes 27 420
Number of functionally

annotated proteins
26 211

Mean protein length 514 aa
Longest protein 29 084 aa

(titin protein)
Average number (length) of exon

per gene
9 (355 bp)

Average number (length) of
intron per gene

8 (1532 bp)

total of 3 passes were run with MAKER2; the first pass was
based on hints from the assembled transcripts as RNA-seq ev-
idence (est2genome) and protein sequences from 11 fish species
downloaded from Ensembl (Ensembl, RRID:SCR 002344) [33] (pro-
tein2genome), whereas the second and third passes included gene
models trained from the first (and then second) passes with
ab initio gene predictors SNAP (SNAP, RRID:SCR 002127) [34] and
Augustus (Augustus: Gene Prediction, RRID:SCR 008417) [35]. In
the final set of genes predicted, sequences with annotation edit
distance (AED) values of less than 0.5 were retained. A small
AED value suggests a lesser degree of difference between the
predicted protein and the evidence used in the prediction (i.e.,
fish proteins, transcripts). This resulted in a final set of 27 240
protein-coding genes with an average AED of 0.14 (Table 1). A
BUSCO analysis on the completeness of the predicted protein
dataset detected the presence of 4259 (92.9%) single-copy or-
thologs from the Actinopterygii-specific dataset.

https://scicrunch.org/resolver/RRID:SCR_010691
https://scicrunch.org/resolver/RRID:SCR_010750
https://scicrunch.org/resolver/RRID:SCR_014731
https://scicrunch.org/resolver/RRID:SCR_015008
https://scicrunch.org/resolver/RRID:SCR_005309
https://scicrunch.org/resolver/RRID:SCR_002344
https://scicrunch.org/resolver/RRID:SCR_002127
https://scicrunch.org/resolver/RRID:SCR_008417
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Figure 2: Mapping of MinION long reads, Illumina-assembled scaffolds, and RNA-sequencing reads of male and female A. ocellaris to the genomic region containing

the cyp19a1a gene. Transcripts per million (TPM) values were calculated using Kallisto, version 0.43.1 [46].

Further, to infer the putative function of these predicted pro-
teins, NCBI’s blastp v.2.6.0 (-evalue 1e-10, -seg yes, -soft masking
true, -lcase masking; BLASTP, RRID:SCR 001010) [36] was used to
find homology to existing vertebrate sequences in the nonre-
dundant (NR) database. Applying a hit fraction filter to include
only hits with ≥70% target length fraction, the remaining unan-
notated sequences were subsequently aligned to all sequences
in theNR database.With thismethod, 20 107 proteins (74%)were
annotated with a putative function based on homology. Addi-
tionally, InterProScan v.5.26.65 (InterProScan, RRID:SCR 005829)
[37] was used to examine protein domains, signatures, and mo-
tifs present in the predicted protein sequences. This analysis de-
tected domains, signatures, or motifs for 26 211 proteins (96%).
Overall, 96% of the predicted clownfish protein-coding genes
were functionally annotated with information from at least 1 of
the 2 approaches.

Mitogenome recovery via genome skimming

Genome skimming [38, 39] was performed on 3 additional
A. ocellaris individuals from known localities (Supplementary
Table 3). Mitogenome assembly was performed with MITObim,
version 1.9 (MITObim, RRID:SCR 015056) [40], using the complete
mitogenome of A. ocellaris (GenBank: NC009065.1) as the bait for
read mapping. The assembled mitogenomes were subsequently
annotated with MitoAnnotator [41]. Consistent with the original
broodstock collection from northern Australia, the captive-bred
black and white A. ocellaris NTM A3764 exhibits strikingly high
whole-mitogenome nucleotide identity (99.98%) to sample NTM
A3708 as a wild collection from Darwin Harbour, Australia. In
addition, the overall high pair-wise nucleotide identity (>98%) of
NTM A3764 to newly generated and publicly available A. ocellaris
whole mitogenomes further supports its morphological identi-
fication as A. ocellaris (Supplementary Table 3).

Identification of the cyp19a1a gene associated
with sexual differentiation

The validated cyp19a1a enzyme of Danio rerio (Uniprot: O42145)
was used as the query (E-value = 1e-10) for blastp search
against the predicted A. ocellaris proteins. The top blast hit,

AMPOCE 00 012675-RA (71.5% protein identity to O42145), was
searched (tblastn) against the NCBI TSA database (Taxon:
Amphirion) and showed strikingly high protein identity (99%)
to a translated RNA transcript from Amphiprion bicinctus
(c183337 g1 i2: GDCV01327693) [5]. The cyp19a1a gene codes for
a steroidogenic enzyme that converts androgens into estrogens
[42] were recently shown to be instrumental during sex change
in Amphiprion bicinctus, as evidenced by significant correlation
and differential expression of this gene between males and ma-
ture females [5]. We also observed a similar profile based on
mapping of RNA reads from the publicly available male and fe-
male transcriptomes of A. ocellaris to the cyp19a1a gene region
as visualized using the Integrative Genomics Viewer (Fig. 2) [43].
The A. ocellaris cyp19a1a gene is located on a 419-kb scaffold and
is spanned by multiple Minimap2-aligned Nanopore reads [44].
It is noteworthy that in the Illumina-only assembly, this gene is
fragmented and located on 3 relatively short scaffolds (Fig. 2).

Conclusion

We present the first clownfish genome co-assembled with
high-coverage Illumina short reads and low-coverage (∼11×)
Nanopore long reads. Hybrid assembly of Illumina and
Nanopore reads is one of the new features of the MaSuRCA
assembler, version 3.2.2, which works by constructing long
and accurate mega-reads from the combination of long and
short read data. Although this is a relatively computationally
intensive strategy with long run times, we observed substantial
improvement in the genome statistics when compared with
Illumina-only assembly. As Nanopore technology becomesmore
mature, it is likely that future de novo genome assembly will
shift toward high-coverage long read–only assembly, followed
bymultiple iterations of genome polishing using Illumina reads.

Availability of supporting data

Data supporting the results of this article are available in the
GigaDB repository [45]. Raw Illumina and Nanopore reads gen-
erated in this study are available in the Sequence Read Archive
(SRP123679), whereas the Whole Genome Shotgun project has

https://scicrunch.org/resolver/RRID:SCR_001010
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https://scicrunch.org/resolver/RRID:SCR_015056


Genome sequence of Amphiprion ocellaris 5

been deposited at DDBJ/EMBL/GenBank under the accession
NXFZ00000000, both under BioProject PRJNA407816.

Abbreviations

bp: base pair; CDS: coding sequence; Gb: giga base; kb: kilo base;
Mb: mega base; SRA: Sequence read archive; TE: transposable
elements; TSA: transcriptome shotgun assembly.
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