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ABSTRACT
Autoregressive models in time series are useful in various areas. In
this article, we propose a skew-t autoregressive model. We estimate
its parameters using the expectation-maximization (EM)method and
develop the influencemethodology based on local perturbations for
its validation. We obtain the normal curvatures for four perturba-
tion strategies to identify influential observations, and then to assess
their performance through Monte Carlo simulations. An example
of financial data analysis is presented to study daily log-returns for
Brent crude futures and investigate possible impact by the COVID-19
pandemic.
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1. Introduction

Autoregressive (AR) modeling is an essential technique in time series data analysis and is
widely applied in biology, economics, finance, health and other areas. Several AR models
and their statistical inference have beenwell established [29,47,48]. Furthermore, influence
diagnostics for statistical modeling is equally important nowadays [13,22,28,35].

The local influence technique [9] examines how aminor perturbation affects the model
fitting and is a powerful tool for statistical diagnostics when identifying potentially influ-
ential observations. Influence diagnostics has been conducted in regressionmodels [45,46]
and time-series analysis [31,32]. Among others, [7,13,20,27,40,49] investigated the sensi-
tivity of estimates for regression parameters with AR disturbances or similar assumptions
employing influence diagnostics. A number of authors, as [17,24,25,30,33,36,51,52], stud-
ied the estimation and its validity with diagnostic methods for time series models and
related structures.

Note that the standard assumption for many circumstances is that all errors mutually
independently follow normal or Student-t (simply t from now) distributions for regression
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and time-series analysis. For example, [26,34] investigated the inference bymaximum like-
lihood (ML) and its stability by influence diagnostic methods for a vector ARmodel under
normal and t distributions, However, certain economic, financial and other data are known
to exhibit errors following skewed distributions. To study such characteristics, distribu-
tions proposed by [2–4], related to the skew-normal (SN) and skew-t (ST) models, have
had a great receptivity by researchers in recent years. Instead of the Student-t and Gaussian
models, they are appealing candidates and can therefore be adopted. As a result, they are
becoming increasingly popular; see, for example, [4,5,21]. Moreover, [6–8,13,14,50] stud-
ied SN partially linear and nonlinear regression models and/or score test statistics. Robust
mixture structures under an ST model have been analyzed by [15,23].

For financial applications, [47,48] discussed the ST distributions for their generalized
autoregressive conditional heteroscedastic (GARCH) models, and [12] advocated and
compared SN and ST distributions. Liu et al. [31] focused on diagnostic analystics for an
AR model with SN errors (SNAR model), while [32] studied estimation and other statis-
tical aspects for an SNAR model and especially made a real-world application of financial
data affected during the COVID-19 pandemic. However, we are not aware of any studies
that have reported results about influence diagnostics measures in an AR model with ST
errors (STAR model).

In the present article, we conduct inference and validation of the STAR model with the
financial data analysis which relates to the COVID-19 pandemic. Our main contributions
are threefold:

(1) we propose the STAR model with a systematic methodology of estimation and diag-
nostics. We consider on likelihood methods to fit the STAR model using the EM
algorithm and conduct its influence diagnostics based on four perturbation schemes
including a brand new one of skewness. The STAR model complements the ST
innovation-based GARCH models discussed in [47,48] and an AR model under the
SN distribution studied in [31,32].

(2) we establish our mathematical results for the STAR model using the standard matrix
differential calculus and examine their statistical implementations using simulations.
We compare the ST with normal, t and skew-normal distributions, especially for
the diagnostics. Our findings demonstrate the ST model is preferred to the other
alternatives which were previously considered in [26,31,32,34].

(3) we conduct an empirical study of real-world financial data to illustrate both the
STAR model and our methodology to be effective in practical applications and data
analytics.

We proceed as follows. In Section 2, we explain the STARmodel and develop an efficient
algorithm for calculating the ML estimates, whereas in Section 3 we present our curva-
ture diagnostics under the four perturbation schemes using the local influence technique.
Section 4 carries out our simulation studies to examine the influence diagnostics, and com-
pare the STmodel with the normal, t, and SNdistributions. Section 5 provides an empirical
example involving an STAR model to show potential applications of the results. Our con-
cluding comments are provided in Section 6. Finally, our matrix results for curvature
diagnostics are derived in the appendix.
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2. Formulation and estimation

In this section, we propose our STAR model, obtain its parameters’ ML estimates, and
establish the corresponding Hessian matrix.

2.1. STAR(p)model

Weassume an STAR(p) time seriesmodel formulated as yt := ut + β1yt−1 + · · · + βpyt−p,
with yt being the response observed at t, for t ∈ {1, . . . ,R}, and p previous values denoted
by y1, . . . , yp; βi if the i-th regression coefficient, for i ∈ {1, . . . , p}; and ut is the t-th inno-
vation following an ST distribution denoted as ut ∼ ST(0, σ 2, λ, ς), with σ 2 > 0 being the
scale, λ being the skewness, and ς being the degrees of freedom. Conveniently, the model
yt := ut + β1yt−1 + · · · + βpyt−p is rewritten as

yt = x�
t β + ut , (1)

where xt = (yt−1, . . . , yt−p)
� andβ = (β1, . . . ,βp)

� are p × 1 vectors. The parameters are
collected by a (p + 3) × 1 vector � = (β , σ 2, λ, ς)�.

Lemma 1 ([47]): Let β(z) = 1 − β1z − · · · − βpzp be a characteristic polynomial, and its
modulus of all zero solutions is greater than one. Then, the associated AR data are stationary.

Lemma 1 is used in the numerical analysis of Sections 4 and 5, and it offers a necessary
and sufficient condition for us to test if our data are stationary. Note that, if Y follows an
ST model with μ, σ 2, λ, and ς being location, scale, skewness, and degrees of freedom
parameters, we denote it as Y ∼ ST(μ, σ 2, λ, ς). Thus, if Y ∼ ST(μ, σ 2, λ, ς), its density,
which we denote by PDF, is established by

fY(y; ς) = 2
σ
tς (η)Tς+1

(
λη

(
ς + 1
η2 + ς

)1/2
)
, t ∈ R, η = y − μ

σ
, (2)

with Tς and tς being the distribution function, CDF in short, and PDF of the Student-t
model. If λ = 0, the PDF of Y stated in (2) corresponds to the t PDF; if ς → ∞, then the
PDF of Y becomes the SN PDF; and if λ = 0 and ς → ∞, then the PDF of Y is the normal
PDF. Observe that the mean of Y and its variance are represented by

E(Y) = σδλ (ς/π)1/2 	((ς − 1)/2)
	(ς/2)

+ μ,

Var(Y) = σ 2
(

ς

ς − 2
− ςδλ

2

π

)(
	((ς − 1)/2)

	(ς/2)

)2
,

with δλ = λ/(1 + λ2)1/2.

Lemma 2 ([23]): Let Y ∼ ST(μ, σ 2, λ, ς). Then, we get

Y|γ , τ ∼ N
(
μ + δλγ , (1 − δλ

2)σ 2/τ
)
, γ |τ ∼ TN

(
0, σ 2/τ ; (0,∞)

)
,

τ ∼ Gamma
(ς

2
,
ς

2

)
,
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where TN(μ, σ 2; (a, b)) represents the truncated normal distribution with N(μ, σ 2) lying
within the interval (a, b).

2.2. EM basedML estimation

In practice, directly maximizing the function associated with the logarithmic likelihood
structure using the MLmethod to find the estimate of� can be a no easy task. Instead, we
implement the ML method based on the EM algorithm with incomplete data proposed by
[11]. Here, ycomplete = (yobserved, ymissing)

� denotes the set of complete data, where ymissing
stands for the set of missing data and yobserved for the set of observed data. Given a starting
estimate �(0), which can be taken from the fit with the normal distribution, we get �(r),
for r ∈ {1, 2, . . . }, iteratively between the E and M steps until reaching convergence as in
[13,32]. To reach convergence, we use ||�(r+1) − �(r+1)|| < ε = 10−5, same as used in
the simulation study.

According to Lemma 2, the model defined as yt := β1yt−1 + · · · + βpyt−p + ut can be
presented hierarchically as

u|γ , τ ∼ N
(

μ + δλγ ,
(1 − δλ

2)σ 2

τ

)
,

γ |τ ∼ TN
(
0,

σ 2

τ
; (0,∞)

)
, τ ∼ Gamma

(ς

2
,
ς

2

)
.

The observed and missing (unobserved) data are {up+1, . . . , uT} and {cp+1, . . . , cT}. Let
yobserved={up+1, . . . , uT} and ymissing={cp+1, . . . , cT}, with ycomplete=(yobserved, ymissing)

being the complete observations. In such conditions, the function related to the logarithmic
likelihood function of the set of complete-data for � = (β , σ 2, δλ, ς) is given by


complete(�;Ycomplete) =
R∑

i=p+1

(
−ς

2
τi − u2i τi

2 (1 − δ2λ)σ
2 + δλuiγiτi

(1 − δ2λ)σ
2 − τ 2i γi

2 (1 − δ2λ)σ
2

− ln(σ 2)− 1
2
ln(1 − δ2λ)+

ς

2
ln
(ς

2

)
−ln

(
	
(ς

2

))
+ ς

2
ln(τi)

)
,

where δλ = λ/(1 + λ2)1/2. For the E step, we obtain, with �̂
(r)
, the Q-function defined as

follows:

Q� = E(
complete(�;Ycomplete)|yo), evaluated at � ≡ �̂
(r)
,

=
R∑

i=p+1

(
−ς

2
ŝ(r)1i − u2i ŝ

(r)
1i

2 (1 − δ2λ)σ
2 + δλuiŝ

(r)
2i

(1 − δ2λ)σ
2 − ŝ(r)3i

2 (1 − δ2λ)σ
2

− ln(σ 2) − 1
2
ln(1 − δ2λ) + ς

2
ln
(ς

2

)
− ln

(
	
(ς

2

))
+ ς

2
ŝ(r)4i

)
, (3)
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with

ŝ(r)1i = E(τi|yobserved, �̂
(r)

) =
(

ς̂ (r) + 1

ς̂ (r) + η̂
2 (r)
i

) Rς̂ (r)+3

(
T̂(r)
i

(
ς̂ (r)+3
ς̂ (r)+1

)1/2)

Rς̂ (r)+1

(
T̂(r)
i

) ,

ŝ(r)2i = E(γiτi|yobserved, �̂
(r)

) = δ̂λ
(r)
ûi(r)ŝ

(r)
1i

+
(
1 − δ̂λ

2 (r))1/2
π f̂ (r)i (ûi(r))

⎛
⎝ η̂

2 (r)
i

ς̂ (r)
(
1 − δ̂λ

2 (r)) + 1

⎞
⎠

− ς̂ (r)+2
2

,

ŝ(r)3i = E(γ 2
i τi|yobserved, �̂

(r)
) = (δ̂

(r)
λ )2(û(r)

i )2ŝ(r)1i +
(
1 − δ̂

2 (r)
λ

)
σ̂ 2 (r)

+ δ̂
(r)
λ

û(r)
i

(
1 − δ̂

2 (r)
λ

)1/2
π f̂ (r)i (û(r)

i )

⎛
⎝ η̂

2 (r)
i

ς̂ (r)
(
1 − δ̂

2 (r)
λ

) + 1

⎞
⎠

− ς̂ (r)+2
2

,

ŝ(r)4i = E(ln(τi)|yobserved, �̂
(r)

) = G

(
ς̂ (r) + 1

2

)

+ ς̂ (r) + 1

ς̂ (r) + η̂
2 (r)
i

⎛
⎜⎜⎝
Rς̂ (r)+3

(
T̂(r)
i

(
ς̂ (r)+3
ς̂ (r)+1

)1/2)

Rς̂ (r)+1

(
T̂(r)
i

) − 1

⎞
⎟⎟⎠− ln

(
η̂
2 (r)
i + ς̂ (r)

2

)

+
δ̂λ

(r)
η̂

(r)
i

(
η̂
2 (r)
i − 1

)
((

ς̂ (r) + 1
) (

ς̂ (r) + η̂
2 (r)
i

)3)1/2

⎛
⎝ tς̂ (r)+1

(
T̂(r)
i

)
Rς̂ (r)+1

(
T̂(r)
i

)
⎞
⎠+ 1

Rς̂ (r)+1

(
T̂(r)
i

)

×
∫ T̂(r)

i

−∞
ĝς̂ (r) (x)tς̂ (r)+1(x)dx,

û(r)
i = yi − x�

i β̂
(r)
, η̂(r)

i = û(r)
i

σ̂ (r) , δ̂λ
(r) = λ̂(r)(

1 + λ̂2 (r)
)1/2 ,

T̂(r)
i = λ̂(r)η̂

(r)
i

(
ς̂ (r) + 1

ς̂ (r) + η̂
2 (r)
i

)1/2

,

f̂ (r)i (û(r)
i ) = 2

σ̂ (r) tς̂ (r)

(
η̂

(r)
i

)
Rς̂ (r)+1

(
T̂(r)
i

)
, G(x) = 	′(x)

	(x)
,

ĝς̂ (r) (x) = G

(
ς̂ (r) + 2

2

)
− G

(
ς̂ (r) + 1

2

)
− ln

(
1 + x2

ς̂ (r) + 1

)
+ x2 − 1

ς̂ (r) + 1 + x2
.
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In the case of the M step, we use Q̇
�̂

(k+1) to update �̂
(r)

using an iterative algorithm, with

Q̈ and Q̇ denoting the Hessian matrix and gradient vector. Now, if �̂
(r+1) − �̂

(r) → 0,
then we get that �̂

(r+1) = �̂
(r) − Q̈−1

�̂
(r)Q̇�̂

(r) . Under mild conditions, and considering

appropriate starting values of �̂
(0)
, which as mentioned can be taken from the fit with

the normal distribution, �̂
(r)

converges to the ML estimate �̂.
Note that there is an alternative approach as taken by reparametrizating and estimating

the parameters in their regressionmodels; see [42]. Thus, we could use a reparametrization
to find closed expressions for the estimators of the parameters of the STAR(p) model as
well.

2.3. Observed informationmatrix

We calculate the observed information matrix −Q̈� starting from


complete(�;Ycomplete) =
R∑

i=p+1

(
−ς

2
τi − u2i τi

2 (1 − δ2λ)σ
2 + δλuiγiτi

(1 − δ2λ)σ
2 − τ 2i γi

2 (1 − δ2λ)σ
2

− ln(σ 2)− 1
2
ln(1 − δ2λ)+

ς

2
ln
(ς

2

)
−ln

(
	
(ς

2

))
+ ς

2
ln(τi)

)

and

Q� = E(
complete(�;Ycomplete)|yo), evaluated at � = �̂,

=
R∑

i=p+1

(
−ς

2
ŝ1i − u2i ŝ1i

2 (1 − δ2λ)σ
2 + δλuiŝ2i

(1 − δ2λ)σ
2 − ŝ3i

2 (1 − δ2λ)σ
2

− ln(σ 2) − 1
2
ln(1 − δ2λ) + ς

2
ln
(ς

2

)
− ln

(
	
(ς

2

))
+ ς

2
ŝ4i
)
, (4)

where ui = yi − x�
i β and

ŝ1i = E(τi|yobserved, �̂) =
(

ς̂ + 1
ς̂ + η̂2i

) Rς̂+3

(
T̂i

(
ς̂+3
ς̂+1

)1/2)
Rς̂+1(T̂i)

, (5)

ŝ2i = E(γiτi|yobserved, �̂) = δ̂λûiŝ1i +
(
1 − δ̂λ

2)1/2
π f̂i(ûi)

(
η̂2i

ς̂ (1 − δ̂λ
2
)

+ 1

)− ς̂+2
2

, (6)

ŝ3i = E(γ 2
i τi|yobserved, �̂)

= ˆδλ
2ûi2ŝ1i + (1 − δ̂λ

2
)σ̂ 2 +

δ̂λui
(
1 − δ̂λ

2)1/2
π f̂i(ûi)

(
η̂2i

ς̂ (1 − δ̂λ
2
)

+ 1

)− ς̂+2
2

, (7)

ŝ4i = E(ln(τi)|yobserved, �̂)
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= G
(

ς̂ + 1
2

)
+ ς̂ + 1

ς̂ + η̂2i

⎛
⎜⎜⎝
Rς̂+3

(
T̂i

(
ς̂+3
ς̂+1

)1/2)
Rς̂+1(T̂i)

− 1

⎞
⎟⎟⎠− ln

(
η̂2i + ς̂

2

)

+ δ̂λη̂i
(
η̂2i − 1

)
((

ς̂ + 1
) (

ς̂ + η̂2i
)3)1/2

(
tς̂+1(T̂i)

Rς̂+1(T̂i)

)
+ 1

Rς̂+1(T̂i)

×
∫ T̂i

−∞
ĝς̂ (x)tς̂+1(x)dx, (8)

with

ûi = yi − x�
i β̂ , η̂i = ûi

σ̂
, δ̂λ = λ̂(

1 + λ̂2
)1/2 ,

T̂i = λ̂η̂i

(
ς̂ + 1
ς̂ + η̂2i

)1/2
, f̂i(ûi) = 2

σ̂
tς̂ (η̂i)Rς̂+1(T̂i),

ĝς̂ (x) = G
(

ς̂ + 2
2

)
− G

(
ς̂ + 1
2

)
− ln

(
1 + x2

ς̂ + 1

)
+ x2 − 1

ς̂ + 1 + x2
.

Theorem1: For the STARmodel, the (p + 3) × (p + 3) observed Fisher informationmatrix
−Q̈

�̂
with �̂ = (β̂ , σ̂ 2, δ̂λ, ς̂ ) is obtained, whose diagonal and off-diagonal submatrices are

provided in the appendix.

3. Diagnostic analysis

We obtain our normal curvatures for the influence diagnostic analysis considering the
following perturbation strategies: case-weights, data, variance and skewness.

3.1. Influence diagnostics

For the STAR model postulated in (1), we use the logarithmic likelihood function of
complete-data, 
(�;Ycomplete), where � is a (p + 3) × 1 parameter vector. We consider
a minor modification denoted by q × 1 perturbation vector ω = (ω1, . . . ,ωq)

� belong-
ing to � ⊂ R

q, and 
(�;ω;Ycomplete) is the function of logarithmic likelihood for the
set of complete data under ω. Consider ω0 as the a q × 1 vector of non-perturbation sat-
isfying 
(�;Ycomplete) = 
(�;ω0;Ycomplete), and this vector can be ω0 = (0, . . . , 0)� or
ω0 = (1, . . . , 1)� or an alternative as properly chosen, and the dimension q depends on
the perturbation strategy adopted. Denote by �̂ and �̂ω the ML estimates for the postu-
latedmodel and perturbedmodel, respectively. Then, as in [13,14], we compare �̂ and �̂ω

using the influence measure named Q-displacement, and derive the normal curvature at
q × 1 vector l (with ||l|| = 1) stated as

Cl = 2|l�(��Q̈−1�)l|, (9)
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with a (p + 3) × (p + 3) matrix Q̈ = ∂2Q�/∂�∂��, evaluated at � = �̂, as well as
a (p + 3) × q matrix � = ∂2Q�;ω/∂�∂ω�, evaluated at � = �̂,ω = ω0. We use the
expression given in (9) for our perturbation strategies proposed, by calculating Q̈ and�, for
which the derivatives are presented in the appendix. Poon and Poon [41] proposed a mea-
sure of conformal normal curvature to classify an observation to be potentially influential.
Note that for linear regression models, but not restricted to these, to assess the influence
ofω, [9] utilized the influence measure named likelihood displacement (LD). Then, a high
value of LD provides us information that ML estimates �̂ and �̂ω to differ significantly.
For details, see [26,27,31,32,34,41].

3.2. Perturbation strategies

3.2.1. Perturbation of case-weights
As in [32], we make a minor perturbation on the residual of the STAR model using
ωiui = ωi(yi − x�

i β) instead of ui = yi − x�
i β , where ωi is the modification. We con-

sider (R − p) × 1 vectors ω = (ωp+1, . . . ,ωT)� and ω0 = 1�. Then, the expression for

complete(�;ω;Ycomplete) is presented as


complete(�;ω;Ycomplete) =
R∑

i=p+1

(
−ς

2
τi − ω2

i u
2
i τi

2 (1 − δ2λ)σ
2 + δλωiuiγiτi

(1 − δ2λ)σ
2 − τ 2i γi

2 (1 − δ2λ)σ
2

− ln(σ 2) − 1
2
ln(1 − δ2λ) + ς

2
ln
(ς

2

)

− ln
(
	
(ς

2

))
+ ς

2
ln(τi)

)
.

Thus, we express the Q-function (perturbed) by means of

Q�;ω = E(
complete(�;ω;Ycomplete)|yo), evaluated at � ≡ �̂,

=
R∑

i=p+1

(
−ς

2
ŝ1i − ω2

i u
2
i ŝ1i

2 (1 − δ2λ)σ
2 + δλωiuiŝ2i

(1 − δλ
2)σ 2 − ŝ3i

2 (1 − δλ
2)σ 2

− ln(σ 2) − 1
2
ln(1 − δλ

2) + ς

2
ln
(ς

2

)
− ln

(
	
(ς

2

))
+ ς

2
ŝ4i
)
, (10)

whereui = yi − x�
i β and ŝ1i, ŝ2i, ŝ3i, ŝ4i are the same as in the formulations given in (5)–( 8).

Theorem 2: For case-weights perturbation strategy, we get the (p + 3) × (R − p) matrix
given by

� = ∂2Q�;ω

∂�∂ω
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(yi−x�
i β̂)ŝ1i−δ̂λ ŝ2i

(1−δ̂λ
2
)σ̂ 2

xi

(yi−x�
i β̂)2 ŝ1i−δ̂λ(yi−x�

i β̂)ŝ2i
(1−δ̂λ

2
)σ̂ 2

−2δ̂λ(yi−x�
i β̂)2 ŝ1i+δ̂λ

2
(yi−x�

i β̂)ŝ2i+(yi−x�
i β̂)ŝ2i

(1−δ̂λ
2
)2σ̂ 2

0

⎞
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evaluated at � = �̂,ω = ω0, where ŝ1i, ŝ2i, ŝ3i, ŝ4i are the same as in the expressions stated
by (5)–(8).

3.2.2. Perturbation of data
As in [32], we make a perturbation to replace yi by ωi + yi. Let ω = (ωp+1, . . . ,ωT)�
and ω0 = 0� be (R − p) × 1 vectors. For the response perturbation yi + ωi = β1(yi−1 +
ωi−1) + · · · + βp(yi−p + ωi−p) + ui, where ui = yi − x�

i β + μ(ωi) and μ(ωi) = ωi −
β1ωi−1 − · · · − βpωi−p, we reach
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Thus, we get the Q-function (perturbed) by means of
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where ui = yi − x�
i β and ŝ1, ŝ2, ŝ3, ŝ4 are the same as in (5) –(8).

Theorem 3: For the data perturbation strategy, we get the (p + 3) × (R − p) matrix given
by

� = ∂2Q�;ω

∂�∂ω
=

⎛
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evaluated at � = �̂,ω = ω0, where ŝ1i, ŝ2i, ŝ3i, ŝ4i are the same as in the formulations given
in (5)–(8).

3.2.3. Perturbation of variance
As in [32], we replace the variance σ 2 by ωi

−1σ 2, that is, ui ∼ ST(0,ωi
−1σ 2, λ, ς).

Consider (R − p) × 1 vectors ω = (ωp+1, . . . ,ωR)
� and ω0 = 1�. Thus, we reach that
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Then, we get the Q-function (perturbed) by means of
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2 (1 − δλ
2)σ 2 + δλωiuiŝ2i
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where ui = yi − x�
i β and ŝ1, ŝ2, ŝ3, ŝ4 are the same as in the expressions stated by (5) –(8).

Theorem 4: For the variance perturbation strategy, we attain the (p + 3) × (R − p)matrix
expressed as

� = ∂2Q�;ω
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where ŝ1i, ŝ2i, ŝ3i, ŝ4i are the same as in the formulations given in (5)–(8).

3.2.4. Perturbation of skewness
In particular, due to the characteristic of skewdistribution of our proposedmodel, we study
its impact by making a small modification in λ, that is, changing δλ by (ωi)

1/2δλ. Consider
(R − p) × 1 vectors ω = (ωp+1, . . . ,ωT)� and ω0 = 1�. Then, we get
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Hence, the Q-function (perturbed) is presented by means of
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where ui = yi − x�
i β and ŝ1, ŝ2, ŝ3, ŝ4 are the same as in the expressions presented in (5)

–(8).
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Theorem 5: For the skewness perturbation strategy, we get the (p + 3) × (R − p) matrix
formulated as

�= ∂2Q�;ω
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,

(17)
where ŝ1i, ŝ2i, ŝ3i, ŝ4i are the same as in (5)–(8).

3.3. Benchmark of influential observations

To assess if a case is influential, we use the benchmark stated as 1/q + c SDM(0), where
q = n−p, n is the sample size, c is a pre-chosen positive constant and SDM(0) is the sample
standard deviation (SD) ofM(0)s, for s ∈ {1, . . . , q}; see [41]. Then, if a diagnostic value is
greater than 1/q + c SDM(0), we identify the corresponding case to be influential.

4. Numerical simulation

We present five simulation studies to examine our estimators and diagnostic results. The
results in Sections 4 and 5 are calculated with the software Matlab [44].

4.1. EM algorithm

The first simulation study uses the results found in Section 3. For the STAR(p) model with
p ∈ {1, 2, 3}), we choose sample sizes n belonging to {250, 500, 1000}, and parameters: λ ∈
{−0.2,−0.15,−0.1} and ς ∈ {3, 4, 5}. The results are presented in Tables 1 and 2. Note that
the mean and median of the estimates are coherent with the values stated. In addition, the
standard errors (SEs) are very small to indicate our estimates are stable. In short, the results
prove our proposal is suitable.

4.2. Influence diagnostic analysis

The second study proceeds the steps as follows:

[S1] The STAR(1) model is yt = ut + βyt−1, where ut ∼ ST(0, σ 2, λ, ς), with ς = 3, λ =
0.2,β = 0.12, σ 2 = 0.1. Observe the stationarity of the AR(1) model according to
Lemma 1.

[S2] The model in [S1] is used to generate 1000 samples of 400 observations each.
[S3] A perturbed scalar ε is added to the 200th observation of each sample obtained in

[S2]. Note that yt is perturbed to be yt∗ = yt + ε, where ε ∈ {0, 0.2, 0.4, . . . , 2} and
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Table 1. Values of the SE, median, and mean with n ∈ {250, 500, 1000}, λ ∈ {−0.1,−0.15,−0.2} and ς ∈ {3, 4, 5} using the STAR model.

n = 250 n = 500 n = 1000
AR(1) AR(2) AR(3) AR(1) AR(2) AR(3) AR(1) AR(2) AR(3)

β1 True value 0.7 1.2 1.2 0.7 1.2 1.2 0.7 1.2 1.2
Mean 0.699716 1.194717 1.217959 0.696163 1.197909 1.202753 0.697856 1.198548 1.199138
Median 0.695115 1.195673 1.19499 0.697693 1.197941 1.195756 0.698182 1.198595 1.198174
SE 0.004683 0.001125 0.007526 0.000747 0.00075 0.003795 0.000528 0.000535 0.001494

β2 True value −0.7 −0.7 −0.7 −0.7 −0.7 −0.7
Mean −0.69658 −0.70258 −0.69883 −0.70167 −0.69904 −0.69833
Median −0.69927 −0.6961 −0.69952 −0.6966 −0.69935 −0.69907
SE 0.001148 0.006692 0.000754 0.003306 0.000527 0.000985

β3 True value 0.3 0.3 0.3
Mean 0.315121 0.30182 0.299715
Median 0.296048 0.295376 0.298898
SE 0.007278 0.003606 0.001228

σ 2 True value 1 1 1 1 1 1 1 1 1
Mean 1.223417 1.011905 3.13048 1.014622 1.004985 1.328867 1.00196 1.003593 1.077917
Median 1.007733 1.008549 0.999283 1.010255 0.997861 0.993306 1.000558 0.997766 0.993737
SE 0.142257 0.005414 0.462487 0.003794 0.003723 0.189371 0.002538 0.002561 0.078571

λ True value −0.1 −0.2 −0.15 −0.1 −0.2 −0.15 −0.1 −0.2 −0.15
Mean −0.09567 −0.20283 −0.12368 −0.10064 −0.20081 −0.15266 −0.10084 −0.19997 −0.15025
Median −0.09534 −0.20194 −0.14357 −0.09962 −0.19678 −0.15325 −0.10119 −0.20154 −0.15074
SE 0.003341 0.002726 0.007334 0.002043 0.001946 0.00351 0.001373 0.001377 0.001895

ς True value 3 3 3 3 3 3 3 3 3
Mean 3.32 3.25 4.005 3.126 3.121 3.227 3.064 3.061 3.104
Median 3 3 3 3 3 3 3 3 3
SE 0.064169 0.029604 0.181245 0.018233 0.01699 0.079194 0.010864 0.010459 0.033531
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Table 2. Values of the SE, median, and mean with n ∈ {250, 500, 1000}, λ = −0.1 and ς ∈ {3, 4, 5} using the STAR model.

n = 250 n = 500 n = 1000
AR(1) AR(2) AR(3) AR(1) AR(2) AR(3) AR(1) AR(2) AR(3)

β1 True value 0.7 1.2 1.2 0.7 1.2 1.2 0.7 1.2 1.2
Mean 0.699716 1.195339 1.208889 0.696163 1.197758 1.197422 0.697856 1.199036 1.200189
Median 0.695115 1.19718 1.19335 0.697693 1.197827 1.1939 0.698182 1.19935 1.19665
SE 0.004683 0.001265 0.007179 0.000747 0.000877 0.003465 0.000528 0.000601 0.002338

β2 True value −0.7 −0.7 −0.7 −0.7 −0.7 −0.7
Mean −0.6961 −0.70825 −0.69906 −0.69632 −0.69966 −0.69814
Median −0.69879 −0.69204 −0.69996 −0.69643 −0.69969 −0.69889
SE 0.001261 0.008366 0.000859 0.001744 0.000607 0.001348

β3 True value 0.3 0.3 0.3
Mean 0.312698 0.298281 0.297918
Median 0.29122 0.297135 0.29783
SE 0.008253 0.001932 0.001328

σ 2 True value 1 1 1 1 1 1 1 1 1
Mean 1.223417 1.010552 1.857743 1.014622 1.006314 1.199542 1.00196 1.003868 1.08478
Median 1.007733 1.001937 0.996755 1.010255 0.999453 1.01 1.000558 0.997315 1.00009
SE 0.142257 0.005104 0.280716 0.003794 0.003565 0.132133 0.002538 0.002454 0.084913

λ True value −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1
Mean −0.09567 −0.10694 −0.08628 −0.10064 −0.10121 −0.09916 −0.10084 −0.10107 −0.09857
Median −0.09534 −0.10444 −0.09286 −0.09962 −0.1001 −0.09892 −0.10119 −0.10088 −0.0972
SE 0.003341 0.002739 0.00464 0.002043 0.001931 0.002573 0.001373 0.001321 0.0018

ς True value 3 4 5 3 4 5 3 4 5
Mean 3.32 4.535 6.359 3.126 4.229 5.565 3.064 4.133 5.21
Median 3 4 5 3 4 5 3 4 5
SE 0.064169 0.051258 0.159133 0.018233 0.031584 0.080946 0.010864 0.019227 0.049034
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Figure 1. Number of correct identifications related to the four perturbation strategies for the STAR(1)
(left) and STAR(2) (right) models.

t = 200 are used to obtain 1000 samples with the 200th observation of each sample
as a possible influential observation.

[S4] Our influence diagnostic is used to detect influential observations for the each of
1000 samples obtained in [S3]. Under each perturbation strategy, 1000 diagnostic
values are calculated inspecting an eigenvector linked to its corresponding largest
eigenvalue. Then, the index of largest element in absolute value of this vector is
registered as an influential observation.

[S5] How well our diagnostics performs is examined in terms of how many diagnos-
tic values of the 1000 samples in [S3] fulfill the above criteria, with ε run from 0
to 2, and the number of diagnostic values of the 200th position is counted. The
number of correct identifications versus ε for the schemes are displayed in Figure 1
(left).

FromFigure 1 (left), we see clearly that the number of sampleswith correct identification
of the influential observation has followed the scale of the perturbed vector to increase in
the four perturbation strategies. When ε = 2, the four strategies are becoming apparent.
Under 1000 samples, the influential observation of the four schemes are 634, 658, 642 and
269 times, respectively. These results are expected.

Next, we further study the STAR(2) model stated as yt = β1yt−1 + β2yt−2 + ut , where
ut ∼ ST(0, σ 2, λ, ς), with β1 = 0.15,β2 = −0.2, σ 2 = 0.1, λ = 0.2, ς = 3. It is easy to
prove that the AR(2) model is stationary. We use the same 5 steps for the AR(1) model
to get Figure 1 (right).

From Figure 1 (right), we note that the number of samples with correct identification of
the influential observation has follewed the scale of the perturbed vector to increase in the
four schemes. When ε = 2, the four schemes become apparent. Under 1000 samples, the
influential observation of the four schemes are 525, 375, 561 and 277 times, respectively.
From both figures, the AR(1) model’s pattern appears stronger than the AR(2) model’s
patter. However, diagnostic ability of the four schemes are different so they should be used
in combination in practice.
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Table 3. Comparison between the ST and normal distributions with ε = 2.

Number of correct outlier detections Case-weights Data Variance

Local influence under the ST distribution 634 658 642
Local influence under the normal distribution 603 596 122

Table 4. Comparison between the ST and t distribu-
tions with ε = 2.

Number of correct outlier detections Case-weights Data

Local influence under ST distribution 634 658
Local influence under t distribution 637 613

4.3. Student-t versus Gaussianmodels

Liu et al.[26] investigated about a methodology to detect influential points in an ARmodel
with the normal distribution. Here, we generate 1000 samples following the procedure
provided in Section 4.2 (with ε = 2 in [3]) based on the ST distribution with β =
0.12, σ 2 = 0.1, λ = 0.2, ς = 3, and thenmake an influence analysis under the ST and nor-
mal distributions to compare our result with those provided in [26]. Using the method
stated in Step 5 of Section 4.2, the comparison is made in Table 3.

There are both similarities and differences. The similarities are obvious in the study
under both distributions as the number of correct outlier detections are all large, that is,
634, 658, 642 and 603, 596, 122 out of 1000. This indicates that the diagnostic results works
well. However, there are also differences. In the case of ε = 2, the number of 1000 samples
with influential points is 634 and 603 under case-weights strategy; the number of 1000
samples with influential points is 658 and 596 under the data strategy; and the number of
1000 samples with influential points is 642 and 122 under the variance strategy. In terms of
diagnostics, the ST model is better than the normal model. Utilizing a correctly specified
model in analyzing data is particularly important.

4.4. Skew-student-t versus student-t models

Liu et al. [34] diagnosed influential points in an ARmodel with the t distribution. We gen-
erate 1000 samples following the procedure provided in Section 4.2 (with ε = 2 in Step
3) based on the ST distribution with β = 0.12, σ 2 = 0.1, λ = 0.2, ς = 3 to evaluate the
performance of local influence analysis under the ST and t distributions. The compari-
son is reported in Table 4. The number of samples where influential observations were
detected are all large in scale, namely, 634, 658 and 637, 613 out of 1000, implying that the
method works well. There are differences in employing the ST and t distributions. In the
case of ε = 2, the number of samples with influential observations is 634 and 658 under
case weights strategy; and the number of samples with influential observations is 658 and
613 under the data strategy; both with a total 1000 samples. The diagnostic effect under
the ST distribution is better than under the t distribution.
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Table 5. Comparison between the ST and SN distributions with ε = 2.

Number of correct outlier detections Case-weights Data Variance Skewness

Local influence under ST distribution 634 658 642 269
Local influence under SN distribution 611 609 124 46

4.5. Skew-student-t versus skew-normalmodels

Liu et al. [31,32] detected influential observations in an SNAR model. We generate 1000
samples following the procedure provided in Section 4.2 (with ε = 2 in Step 3) based on the
ST distribution with β = 0.12, σ 2 = 0.1, λ = 0.2, ς = 3, and then apply a local influence
analysis under the ST and SN distributions. The comparison is provided in Table 5.

The similarities are noticeable in the local diagnostic study under the ST and SN mod-
els as the number of samples with the influential points are most large enough in the most
strategies of perturbation: 634, 658, 642, 269 and 611, 609, 124, 46 out of 1000, meaning
that the diagnostic results are effective. However, there are also differences. In the case of
ε = 2, these can be observed for the variance and skewness perturbation strategies, which
influential observations are 642 and 124 under the variance strategy; and 269 and 46 under
the skewness strategy; both with a total 1000 samples. The local influence analysis perfor-
mance is better assuming a STdistribution that an SNdistribution, as shown in the previous
cases.

5. Empirical analysis

In this section, we use our values stated in Section 3 to analyze financial data and discuss
the performance of our proposed methodology. The Brent crude futures (BIPE hereafter)
daily log-return data from 16 January 2007 to 11 March 2021 are chosen to construct an
STAR model and perform our diagnostic analysis.

5.1. STARmodel for BIPE

Figure 2 (left) shows BIPE daily log-return time series data from 16 January 2007 to 11
March 2021. An exploratory data analysis based on basic statistics of the daily finan-
cial returns is the following: n = 3442 (sample size); minimum and maximum returns of
−0.30856 and 0.15449; first and third quartiles of −0.010586 and 0.011026; sample mean
andmedian of 0.0000669 and 0.00013246; sample coefficient of skewness of−0.93637; and
sample excess kurtosis of 18.812. Figures 2 (right) and 3 present a histogram and a kernel
plot employing the t model of the BIPE daily data. From this exploratory data analysis,
we detect an asymmetrical distributional feature and a high kurtosis level of the data. We
can observe that the adjustment with the t model is unsuitable. Furthermore, we use the
D’Agostino skewness test [10] andAnscombe-Glynn kurtosis test [1] to assess for skewness
and kurtosis of our data, where the D’Agostino statistic is -19.25 and Anscombe-Glynn
statistic is 27.754, with their p-values both significantly less than 0.01. These indicate that
the distribution of BIPE is skewed, with an obvious peak and two fat tails. We first select
an STAR model and determine its order using the following steps as stated as [31,32,47]
for their t and SN models.
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Figure 2. Time-series (left) and histogram with kernel PDF (right) of BIPE daily returns.

Figure 3. BIPE daily returns with t and ST PDFs.

[S1] Consider an AR(p) model

yt = ut + β1yt−1,
...
yt = ut + β1yt−1 + · · · + βpyt−p,
...

(18)

with p ∈ {1, 2, . . . }.
[S2] In the ith equation of (19), that is, the AR(i) model, the ordinary least squares

estimate of βj is β̂
(i)
j , the residual is û(i)

t = yt − β̂
(i)
1 yt−1 − · · · − β̂

(i)
i yt−i, and the estimate

of σ 2
i is

σ̂ 2
i = 1

R − 2i − 1

R∑
t=i+1

(
û(i)
t

)2
.

[S3] The (i − 1)th and ith equations in (19) are used to test if coefficient βi is equal
to zero or not, that is, to compare the AR(i−1) with AR(i) models. For this hypoth-
esis testing the statistic is stated as Ti = −(R − i − 2.5) ln(σ̂ 2

i /σ̂ 2
i−1), which follows an

asymptotic χ2 (1) distribution. Values of Ti for i ∈ {1, . . . , 7} are presented in Table 6.
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Table 6. Empirical values of Ti , with i ∈ {1, . . . , 7} for BIPE daily data.
i 1 2 3 4 5 6 7

Ti 3.863 −1.708 −1.878 3.205 −1.940 −1.675 −1.996

Figure 4. BIPE diagnostics under skewness, variance, case-weights, and data perturbations.

As the 95% quantile of χ2 (1) distribution is 3.841, we use the empirical values of Ti
presented in Table 6 to determine the value of p of the AR(p) model. Hence, p = 1
because Ti = 3.863 > 3.841. Using the EM algorithm, we calculate �̂ = (β̂1, σ̂ 2, λ̂, ς̂ ) =
(−0.07232, 0.000201, 0.024942, 3). Then, as the absolute value of β1 is less than one, we
cannot reject the BIPE data to be stationary. From Figure 3, we find that the ST distribution
fits better than the t distribution. Thus, we fit the STAR(1) model ŷt = −0.07232yt−1 + ût ,
with σ̂ 2 = 0.000201, λ̂ = 0.024942, and ς̂ = 3. According to Lemma 1, the data being
fitted by the STAR(1) model are stationary.

5.2. Diagnostic analysis for BIPE

We conduct the local influence analysis in the STAR(1) model for BIPE under the four
perturbation strategies proposed. Based on the idea given in Section 3.3 and the results in
[31,32], we choose c = 3 and 1/3441 + 3SDM(0) as the benchmark, obtaining the values
of 0.0021, 0.0022, 0.0015 and 0.0012 for the four respective perturbation strategies. In each
plot, the red line symbolizes the benchmark to determine if an observation to be potentially
influential or not, that is, when its value is beyond the red line. The influential observations
are in Table 7 where * denotes the case that is identified as potentially influential for BIPE.
We can observe that these cases aremainly related to the 2008–2009 ‘TheGreat Recession”,
as well as to the 2020-2021 SARS-CoV-2 pandemic, which conducted to a large volatility.
For example, on 3 October 2008, the U.S. government signed a financial rescue plan with
a total of about 700 billion dollars. On 24 February 2020, the global stock markets fell after
the global number of COVID-19 cases increased significantly. In summary, Figure 4 and
Table 7 justify the effectiveness and practicability of the diagnostics methods for an STAR
model.
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Table 7. Summary of the diagnostic analysis by perturbation strategy.

Date Case-weights Data Variance Skewness Date Case-weights Data Variance Skewness Date Case-weights Data Variance Skewness

2008/5/6 2009/2/3 2016/2/18 *
2008/6/10 2009/3/2 2016/8/12 *
2008/9/16 * 2009/3/3 * * 2016/12/1 *
2008/9/17 2009/3/13 2018/11/20
2008/9/23 2009/3/30 2018/12/27 *
2008/10/6 * 2009/3/31 * * 2019/9/17 *
2008/10/7 2009/4/3 * * 2020/2/3
2008/10/10 * 2009/4/10 2020/2/4 *
2008/10/13 2009/4/20 2020/3/3 *
2008/10/16 * 2009/6/2 2020/3/6
2008/10/17 2009/9/1 2020/3/9
2008/10/22 * 2010/2/23 2020/3/10 *
2008/10/23 2011/5/5 2020/3/11 *
2008/10/30 2011/5/6 * * 2020/3/16
2008/11/3 * 2011/12/23 2020/3/17 *
2008/11/5 * 2015/1/5 2020/3/18
2008/11/6 * 2015/1/6 * * 2020/3/19 *
2008/11/7 2015/2/2 * * 2020/3/30
2008/11/20 * 2015/3/19 * 2020/3/31 *
2008/11/21 2015/4/8 * * 2020/4/3 *
2008/11/25 2015/7/6 2020/4/7 *
2008/12/1 * 2015/8/24 2020/4/8 *
2008/12/2 2015/8/25 * 2020/4/15
2008/12/4 * 2015/8/28 * * 2020/4/20 *
2008/12/9 2015/9/1 * * 2020/4/21
2008/12/12 2015/9/2 * * 2020/4/22 *
2008/12/24 * 2015/10/9 2020/4/27
2008/12/25 2016/1/7 * 2020/4/28
2009/1/5 2016/1/12 * 2020/5/7 *
2009/1/6 2016/1/18 * 2020/5/15 *
2009/1/7 * 2016/1/22 * 2020/5/19 *
2009/1/8 2016/1/25 * * 2020/6/11
2009/1/12 2016/1/28 * 2020/6/12
2009/2/2 * 2016/2/4 * * 2020/11/10 *



JOURNAL OF APPLIED STATISTICS 1337

Table 8. Predicted results by the listed structure.

Date BIPE returns AR(1) model STAR(1) model

2021/2/26 −0.0217 0.0002 0.0497
2021/3/1 −0.0206 0.0280 −0.0391
2021/3/2 −0.0110 −0.0096 −0.0133
2021/3/3 0.0216 0.0099 0.0127
2021/3/4 0.0498 −0.0161 0.0953
2021/3/5 0.0355 −0.0278 0.0636
2021/3/8 −0.0228 −0.0095 0.0201
2021/3/9 −0.0121 0.0074 0.0078

Finally, we compare the two models for AR(1) with outliers and STAR(1) without out-
liers in Table 8. The twomodels’ mean square errors of their predicted values are 0.0014874
and 0.0013266, respectively. It can be seen that the prediction resultsmade after the outliers’
removal are better than those made before.

6. Conclusions

In this article, our STAR model was studied with an ML estimation methodology. Its vali-
dation was performed using local diagnostic analysis inspired by the EM algorithm, which
allowed us to obtain normal curvatures for four perturbation strategies of interest. Our
model was compared with the alternative models based on skew-normal, normal, and
Student-t distributions. Our findings showed that the proposed STAR model was more
accurate, applicable, and usable to diagnose longer time data and identify more abnormal
cases.

The curvature results for our STAR(p) model with four perturbation strategies, includ-
ing the newly proposed perturbation of skewness, were presented. Monte Carlo simulation
studies were conducted to asses adequacy of our methodology. Approximate numerical
benchmark values for detecting the possible influential observationswere employed to ana-
lyze the daily log-returns of Brent crude futures for a period of time covering the events
related to 2008 financial crisis and COVID-19 pandemic. Many of the influential observa-
tions with the BIPE data were identified to be related to historical events. Ourmethodology
and findings are evidenced to be effective.

Further works are related to the study of statistical structures generated from settings
associated with data functional, partial least squares, quantile, multivariate, and spatial
regression frameworks [16,38,39,43]. Similarly, considering censored data may also be of
interest to analyze in the context of the current investigation [19]. We are planning to
conduct studies on these issues in the future.
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Appendix

In this appendix, we obtain the matrix derivatives involved in our diagnostic analytics [18,28,37].

A.1 Proof (Theorem 1)

Proof: The Q-function is established as
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ŝ4i
)
.

Its derivatives are expressed as

∂Q�

∂β
=

R∑
i=p+1
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A.2 Proof (Theorem 2)

Proof: The Q-function (perturbed) is stated as
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2 ŝ1i

2 (1 − δλ
2)σ 2 + δλωiuiŝ2i
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Taking the differentials of the Q-function (perturbed) with respect to β , σ 2, δλ, ς and then ωi, for
i ∈ {p + 1, . . . ,R}, the derivatives are calculated as
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2)wiuiŝ2i − δλ ŝ3i(
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A.3 Proof (Theorem 3)

Proof: We get the Q-function (perturbed)
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Taking the differentials of the Q-function (perturbed) with respect to β , σ 2, δλ, ς and then ωi, for
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Noting �̂ = (β̂ , σ̂ 2, δ̂λ, ς̂ ) and ω = (0, . . . , 0)�, we reach the formula given in (13). �

A.4 Proof (Theorem 4)

Proof: We attain Q-function (perturbed)

Q�;ω =
�∑

i=p+1

(
− ς

2
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Taking the differentials of the Q-function (perturbed) with respect to β , σ 2, δλ, ς and then ωi, for
i ∈ {p + 1, . . . ,R}, the derivatives are stated as

∂Q�;ω

∂β
=

R∑
i=p+1

wi
ŝ1iui − δλ ŝ2i(
1 − δλ

2) σ 2 xi
�,

∂Q�;ω

∂σ 2 =
R∑
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(
wi

ui2 ŝ1i − 2δλuiŝ2i + ŝ3i
2
(
1 − δλ

2) σ 4 − 1
σ 2

)
,

∂Q�;ω

∂δλ

=
R∑

i=p+1

(
δλ

1 − δλ
2 + wi

−δλui2 ŝ1i +
(
δλ

2 + 1
)
uiŝ2i − δŝ3i(

1 − δλ
2)2 σ 2

)
,

∂Q�;ω

∂ς
= R − p

2

(
1 − ŝ1i + ŝ4i + ln

(ς

2

)
− G

(ς

2

))
,

and the second derivatives are presented as

∂2Q�;ω

∂β∂ωi
= ŝ1i − δλ ŝ2i(

1 − δλ
2) σ 2 xi

�,
∂2Q�;ω

∂σ 2∂ωi
= ui2 ŝ1i − δλuiŝ2i + ŝ3i

2
(
1 − δλ

2) σ 4 ,

∂2Q�;ω

∂δλ∂ωi
= −δλui2 ŝ1i +

(
δλ

2 + 1
)
uiŝ2i − δλ ŝ3i(

1 − δλ
2)2 σ 2

,
∂2Q�;ω

∂ς∂ωi
= 0.
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Noting �̂ = (β̂ , σ̂ 2, δ̂λ, ς̂ ) and ω = (1, . . . , 1)�, we get the expression formulated in (15). �

A.5 Proof (Theorem 5)

Proof: We obtain the Q-function (perturbed)

Q�;ω =
R∑

i=p+1

(
− ς

2
ŝ1i − ui2 ŝ1i

2 (1 − ωiδλ
2)σ 2 + δλ(ωi)

1/2uiŝ2i
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2
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2
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2

)
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2

))
+ ς

2
ŝ4i
)
.

Taking the differentials of the Q-function (perturbed) with respect to β , σ 2, δλ, ς and then ωi, for
i ∈ {p + 1, . . . ,R}, we obtain the first-order derivatives

∂Q�;ω

∂β
=

R∑
i=p+1
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2) σ 2 x�

i ,
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(
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1/2 ŝ2i + ŝ3i
2
(
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2) σ 4 − 1
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)
,
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∂δλ

=
R∑
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(
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)
,

∂Q�;ω

∂ς
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(
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2

)
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,

and the second derivatives are

∂2Q�;ω
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=
(

δλ
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(
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,
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Using �̂ = (β̂ , σ̂ 2, δ̂λ, ς̂ ) and ω = (1, . . . , 1)�, we get the expression introduced in (17). �
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