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Epithelial–mesenchymal transition (EMT) is a highly dynamic process that occurs under
normal circumstances; however, EMT is also known to play a central role in tumor
progression and metastasis. Furthermore, role of tumor immune microenvironment (TIME)
in shaping anticancer immunity and inducing the EMT is also well recognized.
Understanding the key features of EMT is critical for the development of effective
therapeutic interventions. Given the central role of EMT in immune escape and cancer
progression and treatment, we have carried out a pan-cancer TIME analysis of The
Cancer Genome Atlas (TCGA) dataset in context to EMT. We have analyzed infiltration of
various immune cells, expression of multiple checkpoint molecules and cytokines, and
inflammatory and immune exhaustion gene signatures in 22 cancer types from TCGA
dataset. A total of 16 cancer types showed a significantly increased (p < 0.001) infiltration
of macrophages in EMT-high tumors (mesenchymal samples). Furthermore, out of the 17
checkpoint molecules we analyzed, 11 showed a significant overexpression (p < 0.001) in
EMT-high samples of at least 10 cancer types. Analysis of cytokines showed significant
enrichment of immunosuppressive cytokines—TGFB1 and IL10—in the EMT-high group
of almost all cancer types. Analysis of various gene signatures showed enrichment of
inflammation, exhausted CD8+ T cells, and activated stroma signatures in EMT-high
tumors. In summary, our pan-cancer EMT analysis of TCGA dataset shows that the TIME
of EMT-high tumors is highly immunosuppressive compared to the EMT-low (epithelial)
tumors. The distinctive features of EMT-high tumors are as follows: (i) the enrichment of
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tumor-associated macrophages, (ii) overexpression of immune checkpoint molecules,
(iii) upregulation of immune inhibitory cytokines TGFB1 and IL10, and (iv) enrichment of
inflammatory and exhausted CD8+ T-cell signatures. Our study shows that TIMEs of
different EMT groups differ significantly, and this would pave the way for future studies
analyzing and targeting the TIME regulators for anticancer immunotherapy.
Keywords: epithelial–mesenchymal transition (EMT), The Cancer Genome Atlas (TCGA), tumor immune
microenvironment (TIME), immune checkpoints, cytokines
INTRODUCTION

Epithelial cells are specialized cells that line the outer and inner
surfaces of various organs throughout the body. They maintain
the apico–basal axis of polarity and remain in close contact with
each other. Conversely, mesenchymal cells are unspecialized cells
capable of differentiating into any cell type in the body at any
time. They do not have a polarity and are hence loosely
organized in the extracellular matrix (ECM) (1). Under
appropriate conditions, these two types of cells can transform
into each other through complex biological processes, namely,
epithelial–mesenchymal transition (EMT) and mesenchymal–
epithelial transition (MET). EMT is a highly dynamic process
that occurs during embryogenesis, tissue regeneration, and
wound healing under normal circumstances. However, several
studies have identified the role of EMT in causing tumor
progression and metastasis (2). Tumor cells undergoing EMT
have increased motility and invasiveness, which help them
disseminate to distant sites and metastasize. In addition, they
become resistant to apoptosis and anticancer drugs, contribute to
immunosuppression, and act as cancer stem-like cells (1, 3).

EMT is not always complete in tumor cells, i.e., these cells can
be in multiple transitional states and express mixed epithelial and
mesenchymal markers (4). Such hybrid cells with incomplete
EMT can be more aggressive than those with complete EMT and
move in clusters (5–7). These transitional cells are considered to
be primary mediators of therapy resistance, making the EMT
process a promising target for therapeutic intervention to
prevent these effects (8). Tumor immune microenvironment
(TIME) acts as a significant stimulant in inducing the EMT in
a tumor. The five main classes of stimuli that induce the EMT are
as follows: hypoxia and low pH, innate and adaptive immune
responses, mechanical stress, altered ECM, and treatment with
antitumor drugs (1). Furthermore, the EMT-inducing
microenvironment can also cause epigenetic changes and
heritable effects that maintain the mesenchymal state even
when the EMT-initiating microenvironment is no longer
present (1).

The development of novel immune checkpoint inhibitors
(ICIs) has provided patients of several different cancer types
with treatment options that demonstrate better overall survival
(OS) and progression-free survival (PFS) as compared to the
standard of care therapies. In melanoma, tumors innately
resistant to anti-Programmed cell death 1 (PD-1) therapy
(IPRES or innate anti-PD-1 resistance) have an upregulation of
the signature genes involved in EMT, cell adhesion, ECM
2

remodeling, angiogenesis, and wound healing. Interestingly,
treatment-resistant tumors show downregulation of epithelial
marker gene CDH1, upregulation of mesenchymal transition
genes, and upregulation of T cell-suppressive cytokine
interleukin (IL)10 (9).

EMT plays a central role in shaping the TIME and immune
escape, and its role has been analyzed in several cancer types
individually, including melanoma and lung cancer (9, 10).
However, the role of EMT has not been explored comprehensively.
Given the central role of EMT in cancer progression and
treatment, we have carried out a pan-cancer TIME analysis of
TCGA dataset—including infiltration of various immune cells,
expression of multiple checkpoint molecules and cytokines, and
gene signatures—in context to EMT.
MATERIALS AND METHODS

Study Cohort and Calculation of Epithelial–
Mesenchymal Transition Scores
Scaled (z-scores) gene expression data of The Cancer Genome
Atlas (TCGA) samples was downloaded from the Broad
Institute's Genome Data Analysis Center (GDAC) (http://
gdac.broadinstitute.org/) for 23 cancer types. Solid tumors
having sufficient samples (n >100) were included in this study.
For EMT score calculation, we included 16 canonical markers
as described elsewhere (10). EMT score was calculated by
subtracting the mean z-scores of “Epithelial markers” (CDH1,
DSP, and TJP1) from the mean z-scores of “Mesenchymal
markers” (VIM, CDH2, FOXC2, SNAI1, SNAI2, TWIST1, GSC,
FN1, ITGB6, MMP2,MMP3, MMP9, SOX10). The code used for
EMT score calculation is available at the following link: https://
github.com/snizam001/EpiMesen-ImmuneFilteration. Thyroid
Carcinoma (THCA) cancer type was excluded because it did
not have gene expression data of the CDH1 gene, which was
required for EMT score calculation. Therefore, we included a
total of 22 solid tumor types from TCGA data (Figure 1 and
Supplementary Table S1). Tumor samples for each cancer type
were categorized into three groups based on their EMT scores:
the top 25 percentile samples having the highest EMT scores
were classified as EMT-high (“mesenchymal” phenotype), the
middle 26–75 percentile samples with medium EMT scores were
classified as EMT-intermediate, and the lowest 75–100 percentile
samples having the least EMT scores were classified as EMT-low
(“epithelial” phenotype). Samples of all the three EMT groups
were analyzed for the infiltration of various immune cells,
January 2022 | Volume 11 | Article 793881
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expression of multiple checkpoint molecules and cytokines, and
inflammatory and immune exhaustion gene signatures.

Analysis of Immune Cell Infiltration,
Expression of Immune Checkpoint Molecules,
Inhibitory Cytokines, and Gene Signatures
The TIMEs of the samples categorized as EMT-high and EMT-
low were analyzed for the infiltration of various immune cells.
We chose 17 distinct immune cell types of both innate and
adaptive immune systems to compare their infiltration in
different cancer types (Supplementary Table S2). Precalculated
enrichment scores for these immune cells were downloaded from
the xCell website (https://xcell.ucsf.edu/) (11). The xCell
enrichment scores for each immune cell were compared across
the three EMT groups.

TIME of EMT-high and EMT-low samples was further
analyzed for the gene expression of various immune
checkpoints and inhibitory cytokines. Gene expression levels
were compared between “mesenchymal” and “epithelial” groups
for 17 immune checkpoint molecules (PD1, PD-L1, PD-L2,
CTLA4, LAG3, KIR, TIM3, VISTA, NOX2, SIGLEC5, SIGLEC7,
SIGLEC15, FASLG, ICOS, GITR, TNFRSF4, and TNFRSF9)
(Supplementary Table S3) and 17 cytokine molecules (IFNA1,
IFNB1, IFNG, TNFA, TGFB1, IL1A, IL1B, IL2, IL3, IL4, IL5, IL6,
CXCL8, IL10, IL12A, IL12B, and STAT6) in all the 22 cancer
Frontiers in Oncology | www.frontiersin.org 3
types (Supplementary Table S4). We also analyzed various gene
signatures (Supplementary Table S5) in all the three EMT group
samples. Violin plots were prepared using the ggplot2 package in
R. Kolmogorov–Smirnov (KS) test (from dgof package in R)
compared EMT-high and EMT-low samples, whereas one-way
ANOVA was used to compare the three EMT groups.

Principal Component and Survival Analysis
Principal component analysis (PCA) was performed on the
median values of each TIME marker (immune cell enrichment,
expression of checkpoint molecules and cytokines, and gene
expression signatures) for each EMT group in each cancer type
(Supplementary Table S6) using the prcomp function in R. The
contribution of each TIME marker in PCA was calculated by R
package factoextra, and conditional probabilities of high
expression of the top 4 markers in PCA were calculated, given
it belongs to a particular EMT group. Another PCA was carried
out using the differences in the median values of each TIME
marker between EMT-high and -low groups for each cancer type
(Supplementary Table S6). Furthermore, the K-means
clustering algorithm (R package factoextra) was used to
ascertain the optimum number of clusters.

The OS and PFS data were downloaded from TCGA. We used
the survival and survminer packages in R to plot the Kaplan–Meier
survival curves. Statistical significance for OS and PFS was
determined using the log-rank test.
RESULTS

Distribution of Epithelial–Mesenchymal
Transition Scores in Various Cancer Types
In the current study, we analyzed 7,968 tumor samples
representing 22 distinct cancer types from TCGA dataset
(Figure 1 and Supplementary Table S1). Among all cancer
types, Skin Cutaneous Melanoma (SKCM) showed the lowest
median value, whereas Kidney Renal Clear Cell Carcinoma
(KIRC) showed the highest median value (Figure 2). The EMT
score in Prostate Adenocarcinoma (PRAD) had maximum
dispersion [interquartile range (IQR) = 1.275], whereas
Pheochromocytoma and Paraganglioma (PCPG) had the least
dispersion (IQR = 0.51).

Monocytes, Macrophages, and
Some Other Immune Cells Were
Enriched in Epithelial–Mesenchymal
Transition-High Tumors
Comparison of enrichment scores of immune cell infiltration
between EMT-low and EMT-high samples showed that several
tumor types with high EMT score (mesenchymal phenotype)
had a significantly increased infiltration of monocytes and
macrophages (Figure 3A). A total of 16 cancer types showed a
significantly increased (p < 0.001) enrichment of macrophages in
EMT-high samples compared to EMT-low. Enrichment of
macrophages showed a significantly positive correlation with
EMT score for all the cancer types (Figure 4A), and when all
three EMT groups were compared, all the cancer types showed
FIGURE 1 | Overview of the study: A total of 22 cancer types (7,968
samples) were included in the study. Epithelial–mesenchymal transition (EMT)
score was calculated for each of these 22 cancer types, and different aspects
of tumor immune microenvironment (TIME) were analyzed between EMT-high
and EMT-low samples.
January 2022 | Volume 11 | Article 793881
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significant differences (Figure 5A). Several tumor types showed
significantly higher enrichment of Type 1 helper T cells (Th1) in
EMT-high tumors. On the other hand, Type 2 helper T cells
(Th2) showed significantly higher enrichment (p < 0.001) in
Testicular Germ Cell Tumor (TGCT) and mild enrichment in
Frontiers in Oncology | www.frontiersin.org 4
EMT-low samples of some other cancer types except for
Esophageal Carcinoma (ESCA). As opposed to EMT-high
tumors, only a few immune cell types showed enrichment in
EMT-low tumors: regulatory T cells (Tregs) were moderately
enriched in several tumor types with low EMT scores (p < 0.001
A

B

FIGURE 3 | Pan-cancer immune cell infiltration and immune checkpoint expression landscape: The colored squares represent the difference between: (A) the
medians of immune cell enrichment score of epithelial–mesenchymal transition (EMT)-high (mesenchymal) and EMT-low (epithelial) samples of each cancer type and
(B) the medians of expression of immune checkpoints in EMT-high and EMT-low samples of each cancer type. The larger sized and darker blue or red shaded
squares correspond to a greater difference. Grayscale squares on the right side represent the corresponding p-values for differences between EMT-high and EMT-
low groups of tumors.
FIGURE 2 | Divergent dot plots for the distribution of epithelial–mesenchymal transition (EMT) scores across 22 cancer types: The plots are arranged in increasing
order of median values. The black dashes represent the end of the first quantile (25% mark) and the beginning of the fourth quantile (75% mark), respectively. The
white diamond point corresponds to the median of EMT scores of all samples per cancer type. Skin Cutaneous Melanoma (SKCM) tumor samples have the lowest
median EMT score, whereas Kidney Renal Clear Cell Carcinoma (KIRC) tumor samples have the highest median EMT score.
January 2022 | Volume 11 | Article 793881
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in 9 tumor types) (Figure 3A). Similarly, CD8+ T cells were
mildly enriched in EMT-low samples of some cancer types.

Most Checkpoint Molecules, Including
SIGLEC7, TNFRSF4, LAG3, and TIM3,
Showed Significantly Higher Expression in
Epithelial–Mesenchymal Transition-High
Tumors
Except for SKCM, we observed a consistent trend of positive
correlation between EMT score and expression of checkpoint
molecules regardless of cancer type (Figure 3B). Of the 17
checkpoint molecules we analyzed, 11 showed a significant
overexpression (p < 0.001) in EMT-high samples of at least 10
cancer types compared to EMT-low samples. Interestingly,
Frontiers in Oncology | www.frontiersin.org 5
mesenchymal tumor samples of all cancers, except TGCTs,
showed a significantly higher (p < 0.05) expression of SIGLEC7
(Figure 3B). Similarly, the expression of TNFRSF4 was
significantly higher (p < 0.001) in EMT-high samples of all
cancer types, except for SKCM and Glioblastoma. Even LAG3
showed a significantly higher expression (p < 0.05) in EMT-high
tumors of all cancers, except SKCM, TGCT, and Sarcoma
(SARC). Furthermore, it was noticed that SKCM mesenchymal
tumors showed little or no significant enrichment of any
checkpoint marker, whereas Bladder Urothelial Carcinoma
(BLCA) and Colorectal Adenocarcinoma (COADREAD) were
enriched in all checkpoint markers. Correlation analysis of EMT
score with SIGLEC7 showed a significantly positive correlation
for all cancer types except SKCM (Figure 4B), and TIM3
A

B

FIGURE 4 | Pan-cancer correlation analysis of EMT Score with (A) xCell enrichment score of Macrophages and (B) gene expression values of immune checkpoint
gene SIGLEC7, in all three EMT groups.
January 2022 | Volume 11 | Article 793881
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expression showed a significantly positive correlation for most
cancer types (Supplementary Figure S1). Comparing these
checkpoint genes among the three EMT groups showed a
highly significant difference for almost all cancer types, with
EMT-high samples having the highest expression (Figures 5B–E).

Though many cancer types showed a consistent trend of
increased expression of most checkpoints with an increase in
EMT score, mesenchymal Lung Adenocarcinoma (LUAD)
tissues were significantly enriched in all immune checkpoint
markers (except KIR3DL1) (Figure 3B). Similarly, in
mesenchymal Lung Squamous Cell Carcinoma (LUSC) tumors,
all except GITR (TNFRSF18) and PD-L1 (CD274) genes were
significantly high. Surprisingly, in more than half of the cancer
Frontiers in Oncology | www.frontiersin.org 6
types, PD-L1 expression did not show any association with
EMT score.

Immunosuppressive Cytokines TGFB1
and IL10 Showed Significantly Higher
Expression in Epithelial–Mesenchymal
Transition-High Tumors
Immunosuppressive cytokine markers TGFB1 and IL10 were
significantly enriched in the EMT-high group of almost all
cancer types compared to those in the EMT-low (Figure 6A).
These genes showed a highly significant positive correlation with
EMT score, and this difference remained significant when all
three EMT groups were considered for comparison
A

B

D

E

F

G

C

FIGURE 5 | Violin plots comparing expression of various TIME markers among all three EMT groups across all cancer types: Violin plots of (A) Macrophages, (B)
SIGLEC7, (C) TNFRSF4, (D) LAG3, (E) TIM3, (F) Activated Stroma and (G) 9-Gene Exhausted CD8+ T-cells are represented. One-way anova was used to compare
the expression of these TIME markers. Asterisks (*) indicate significance based on p-values. *** represents p-value < 0.001, ** represents p-value between 0.001 to
<0.01, * represents p-value between 0.01 <0.05, and finally NS represents non-significant p-value.
January 2022 | Volume 11 | Article 793881
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(Supplementary Figures S2E, F); In contrast, for IL3, IL4, IL5,
and IFNA1, there was no discernible pattern of altered
expression in either mesenchymal or epithelial type tumors
(Figure 6A). Similar to our observation in checkpoint
molecules, SKCM tumor samples showed no significant
expression for any cytokine to be associated with EMT score.

In addition to TGFB1 and IL10, gene expression of IFNG, IL6,
and CXCL8 were all significantly increased (p < 0.05) in
mesenchymal samples for more than half of the cancer types
(Figure 6A). We also observed a strong association of IL12A
expression with low EMT score in Brain Lower-Grade Glioma
(LGG, p < 0.001) and Glioblastoma Multiforme (GBM, p < 0.01)
cancer types. Moreover, only STAT6 showed significantly higher
expression (p < 0.05) in epithelial samples of most cancer types.

Epithelial–Mesenchymal Transition-High
Tumors Are Enriched in Inflammation,
Exhausted CD8+ T Cells, and Activated
Stroma Signatures
Analysis of gene signatures showed a trend toward increased
inflammation and exhaustion in EMT-high tumors. EMT-high
tumors showed enrichment of 6-gene interferon gamma (IFNG)
and 13-gene inflammatory signatures (Figure 6B). As compared
to EMT-low, EMT-high samples of at least 16 cancer types
showed significantly increased enrichment of activated stromal
signature, especially COADREAD, Stomach Adenocarcinoma
(STAD), Ovarian Serous Cystadenocarcinoma (OV), ESCA,
and LUSC. Exhausted CD8+ T cells were also enriched in
EMT-high tumors, with at least 16 cancer types showing a
Frontiers in Oncology | www.frontiersin.org 7
highly significant enrichment (p < 0.001) of 9-gene exhausted
CD8+ T cells (Figure 5G) and 13 cancer types showing a highly
significant enrichment of 3-gene exhausted CD8+ T cells
(Figure 6B). Additionally, 16 EMT-high tumors showed
enrichment of Cytolytic activity signature (p < 0.001). Most
tumor types showed enrichment of Hypoxia signature in EMT-
high samples except for TGCT, which showed increased Hypoxia
signature in EMT-low tumors (p < 0.01). Gene signature analysis
also confirmed the enrichment of macrophages in EMT-high
tumors, as observed in the enrichment analysis by xCell
(Figures 3A, 6B). Most of the gene signatures showed a
significantly positive correlation with EMT score (Supplementary
Figure S3), and when all three EMT groups were compared, a
significant difference was observed for almost all cancer types
(Figures 5F, G).

Clustering Different Cancer Types by
Tumor Immune Microenvironment
PCA using median expression values of each TIME marker
showed coclustering of EMT-high, -intermediate, and -low
samples of most cancer types (Figure 7). Interestingly, samples
of the three EMT groups of SKCM cluster together, while for
COADREAD, they were far apart, recapitulating the results of
individual TIMEmarkers. The 13-gene inflammatory and 9-gene
exhausted CD8+ T-cell signatures, TIM3, and SIGLEC7 were the
top contributing factors in PCA (Supplementary Table S7). The
conditional probability of high expression of 13-gene
inflammatory signature or TIM3, given it belongs to a
particular EMT group, showed a similar probability for the
A

B

FIGURE 6 | Pan-cancer cytokines expression and gene expression signatures landscape. The colored squares represent the difference between: (A) the medians of
expression of cytokines in EMT-high and EMT-low samples of each cancer type and (B) the medians of gene expression signatures in EMT-high and EMT-low
samples of each cancer type. The larger sized and darker blue or red shaded squares correspond to the greater difference. Greyscale squares on the right side
represent the corresponding p-values for differences between EMT-high and EMT-low groups of tumors.
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three EMT groups of SKCM. In contrast, for COADREAD, the
probability matched with the EMT group, i.e., it was low,
intermediate, and high for low, intermediate, and high EMT
groups, respectively (Figure 7B). For the 9-gene exhausted CD8+
T cells, the EMT-intermediate samples of SKCM had the highest
probability, while for COADREAD, the probability matched with
the EMT group. For SIGLEC7, the probabilities in EMT-high and
EMT-intermediate groups of SKCM were similar, while for
COADREAD, it matched with the EMT group (Figure 7B).

To classify cancers based on the inhibitory TIME, the
differences in the median values of each TIME marker between
EMT-high and -low groups were used. The Silhouette method
showed that the cancers could be optimally classified into two
(K = 2) groups (Supplementary Figure S4). Based on the
Principal Component 1 (PC1) in PCA and K-means clustering,
the clusters were confirmed: (a) cancer types in which TIME was
highly inhibitory in EMT-high tumors as compared to EMT-low
and (b) cancer types in which TIME was not highly inhibitory in
EMT-high tumors as compared to EMT-low samples of the same
cancer type (Figure 8).
Frontiers in Oncology | www.frontiersin.org 8
Survival of Patients of Different Epithelial–
Mesenchymal Transition Groups
Comparison of patient survival from EMT-high and EMT-low
groups of different cancer types showed a significantly better OS of
EMT-low (epithelial) patients of LGG, Head and Neck Squamous
Cell Carcinoma (HNSC), and KIRC (Supplementary Figure S5A).
Similarly, analysis of progression-free interval (PFI) showed
significantly better PFI of EMT-low patients of PRAD, LGG,
HNSC, Kidney Renal Papillary Cell Carcinoma (KIRP), and KIRC
(Supplementary Figure S5B). Interestingly, all these cancers
grouped to a Low inhibitoryTIMEgroup inPCAanalysis (Figure 8).

When patients of all three EMT groups were considered, a
significant difference in OS was observed for LGG, OV, LIHC,
and KIRC (Supplementary Figure S6A). Analysis of PFI showed
significant differences for PRAD, BLCA, LGG, HNSC, SARC,
and KIRC (Supplementary Figure S6B). Of these observations,
the differences were highly significant for LGG and KIRC.
Interestingly, OS and PFI of EMT-intermediate LGG patients
were significantly better than those of the other two groups, while
EMT-intermediate patients of KIRC had moderate survival.
A

B

FIGURE 7 | Principal component and conditional probability analysis: (A) Principal component analysis (PCA) of tumor immune microenvironment (TIME) markers
across all cancer types in all three epithelial–mesenchymal transition (EMT) groups. Skin Cutaneous Melanoma (SKCM) patients belonging to the three EMT groups
cluster together, whereas for COADREAD, they are far apart. (B) Conditional probabilities of high expression of top 4 TIME markers in PCA given it belongs to a
given EMT group.
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DISCUSSION

We have comprehensively analyzed the differences in TIME of
patients of three EMT groups of 22 cancer types in TCGA data.
Apart from its role in embryonic development and tissue fibrosis,
EMT plays a pivotal role in tumor immunosuppression and
immune evasion (12). Our analysis of infiltrating immune cells in
TIME showed significantly increased enrichment of Th1 cells,
monocytes, and macrophages in EMT-high samples of several
tumor types. Among these cell types, enrichment of
macrophages was consistent across all tumor types. The gene
signature analysis confirmed the enrichment of tumor-associated
macrophages (TAMs) in EMT-high tumors compared to other
EMT groups. TAMs are considered key cells that promote
inhibitory TIME by producing inhibitory cytokines,
chemokines, and growth factors and trigger inhibitory immune
checkpoint protein release in T cells (13). Recent studies have
suggested that TAMs involved in the regulation of EMT and
macrophages recruited at the tumor site promote tumor growth
by enhancing EMT progression (13–15). Infiltration of CD8+ T
cells was mildly reduced from the TIME of EMT-high tumors of
several cancer types, which is in line with the previous study on
lung cancer (10). This study also showed decreased infiltration of
CD4+ T cells in mesenchymal lung cancer (10); however, we did
not see decreased CD4+ T-cell infiltration in the EMT-high
tumors of most cancer types we analyzed.

The T helper (Th) CD4+ T cells and the cytotoxic (Tc) CD8+
T cells are the key players that mediate the adaptive anticancer
immune response and, along with TAMs, are the most abundant
cells present in the TIME of several cancer types (16, 17). Upon
antigen encounter, both CD4+ and CD8+ T cells differentiate
into committed subgroups of cells. The helper cells differentiate
into various lineages—Th1, Th2, and Th17—depending upon
the type of cytokines released at the site of activation. Similarly,
Frontiers in Oncology | www.frontiersin.org 9
CD8+ T cells can also differentiate into T cytotoxic cell type 1
(Tc1) and T cytotoxic cell type 2 (Tc2) depending upon type 1 or
type 2 cytokine response (16, 18). Transforming growth factor
(TGF)b and IL6—responsible for the above differentiation
processes—were found to be significantly high in several EMT-
high tumors. After encountering cancer antigens, T cells get
activated and migrate to the TIME and CD8+ T cells evolve into
cytotoxic T lymphocytes (CTLs) and exert their antitumoral
activity, resulting in the destruction of tumor cells (19). The
antitumoral response is supported by CD4+ Th1 cells via
secretion of pro-inflammatory cytokines [i.e., interferon
(IFN)g, tumor necrosis factor (TNF)a and IL2], inducing T-
cell activation and CTL cytotoxicity, as well as the antitumoral
activity of natural killer (NK) cells and macrophages (20). In our
analysis, several tumor types showed significantly higher
enrichment of Th1 cells in EMT-high tumors. On the other
hand, Th2 cells showed significantly higher enrichment in TGCT
and mild enrichment in EMT-low samples of some other cancer
types (Figure 3A). Th1 cells are known to produce IFNg and
TGFb which activate macrophages (21). Our data indicate that
EMT-high tumors lack CTL cytotoxic activity and hence tumor
clearance due to limited support of IFNg, TNFa, and IL2 and
abundance of suppressive IL10 and TGFb cytokines.

As tumors progress, recruitment of Tregs takes place in
TIME. Tregs suppress the development, activation, and
cytotoxicity of effector immune cells, such as Th1, CTLs,
macrophages, and NK cells (22). Tregs regulate immune
response by several mechanisms including immunoregulatory
cytokines IL10 and TGFb and cytolysis of effector cells by
production of perforin and granzyme (23). We noticed
significantly higher expression of Tregs in EMT-low tumors of
nine tumor types (Figure 3A) as compared to EMT-high tumors,
whereas TAMs and Th1 cells were significantly higher in several
EMT-high tumors. These observations indicate that the TIMEs
FIGURE 8 | Principal component analysis (PCA) of differences in the median values of each tumor immune microenvironment (TIME) marker between epithelial–
mesenchymal transition (EMT)-high and EMT-low groups of each cancer type: Cancer types in blue are classified as having high inhibitory TIME in EMT-high tumors
as compared to EMT-low, while cancer types in red are classified as having not-highly inhibitory TIME in EMT-high tumors as compared to EMT-low.
January 2022 | Volume 11 | Article 793881

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tiwari et al. Pan-Cancer EMT Analysis
of EMT-high and EMT-low tumor display distinct subsets of
suppressive immune cells.

Previous studies on non-small cell lung cancer and Pancreatic
Adenocarcinoma (PAAD) have shown the association of
Forkhead box P3 (FOXP3) expression (marker of Tregs) with
poor survival (24, 25). In our analysis, we noted mild enrichment
of Tregs in EMT-low patients of PAAD and LUAD, but LUSC
did not show any difference. Survival analysis of different EMT
groups of these cancer types did not show a significant difference
(Supplementary Figures S5, S6). These findings should be
experimentally verified, as our immune cell enrichment results
are based on the xCell algorithm, which utilizes gene expression
values to predict enrichment of various immune cells.
Nevertheless, the survival analysis of some other cancer types
especially KIRC and LGG showed highly significant difference in
both OS and PFI; in both of these cancer types, EMT-high
patients showed worse survival (Supplementary Figures S5, S6),
which is in line with previous studies (26–28).

There was a general trend toward higher expression of
checkpoint molecules in EMT-high tumors, and several
checkpoint molecules showed significantly higher expression in
EMT-high tumors. In our analysis, immune inhibitory
checkpoint genes, LAG3, SIGLEC7, PD-1, PD-L2, TIM3, and
others, showed significantly higher expression in EMT-high
samples of several cancer types. A previous report on LUAD
has shown higher expression of immune inhibitory checkpoint
molecules PD-L1, PD-L2, PD-1, TIM-3, B7-H3 (CD276), BTLA,
and CTLA-4 in EMT-high tumors (29). Our findings corroborate
these results in several other cancer types, even though the genes
used for the EMT signature in both of these studies are different
(29). Another report on LUAD has shown similar findings (10).
In addition, we have noted the overexpression of immune
stimulatory checkpoint genes ICOS, TNFRSF4, and TNFRSF9
in EMT-high samples. These findings are also in agreement with
the earlier study (10).

Analysis of cytokines showed that the IL10 and TGFB1
(TGFb) were overexpressed in EMT-high tumors of most
cancer types, and both of these are known to suppress
antitumor immunity in TIME. TAMs, anti-inflammatory
macrophages, and Tregs are the key source of highly
suppressive cytokines IL10 and TGFb (30). Both of these
cytokines induce Tregs and inhibit dendritic cell function to
present tumor antigens to activate CD4+ and CD8+ T cells (31,
32). TGFb is the central inflammatory cytokine in TIME, and its
role in mediating EMT in different types of cancer has been
extensively studied and well-established (33–35). Moreover, it
has been shown that both TGFB1 and IL-10 together, but not
alone, can suppress B-cell activation induced by toll-like receptor
(TLR) stimulation (36). The production of inflammatory
cytokines in TME plays an active role in supporting
inflammation and meditating tumor progression and EMT
(37). Previous in vitro study on epithelial cancer cells has
shown that cancer cell lines of different origins—when
incubated with either supernatant derived from a mixed
lymphocyte population or a mix of inflammatory cytokines
(TNFa, TGFb and IFNg)—undergo a series of changes typical
Frontiers in Oncology | www.frontiersin.org 10
of the EMT. These cell lines show notable enhancement of snail1
and snail2 gene transcription and downregulation of CDH1 (E-
cadherin) expression, accompanied by an upregulation of VIM
(Vimentin) (38). This and other studies have demonstrated that
various inflammatory cytokines—including TNFa IL6, CXCL8
(IL8), and most importantly TGFb—are the main determinants
of EMT induction (37, 39). In our pan-cancer analysis, we found
a strong and significant correlation between inflammatory (IL6,
CXCL8, IL12, TGFb) and suppressive cytokines (IL10) with
EMT score (Figure 6A and Supplementary Figures S1B, S2F).
Altogether, our analysis further substantiates the key role of
inflammatory cytokines in EMT and align well with in vitro and
experimental findings of previous studies.

Analysis of gene signatures showed EMT-high tumors have
increased inflammation and exhaustion. Although immune cell
infiltration analysis showed mildly reduced CD8+ T cells in
EMT-high tumors (Figure 3A), exhausted CD8+ T cell signature
was significantly higher in several EMT-high tumors
(Figure 6B). In addition, EMT-high tumors also showed
increased activated stromal and hypoxia signatures. In
Pancreatic Ductal Adenocarcinoma (PDAC), activated stroma
signature has previously been associated with the worst outcome
and macrophages (40). Furthermore, hypoxia can increase the
expression of EMT-promoting transcription factors and is
known to activate several pathways, including TGFb, nuclear
factor (NF)kB, and Notch signaling pathways, that promote
EMT (41).

In SKCM, the expression of almost all cytokines and
checkpoint molecules did not show a significant difference
between EMT-high and EMT-low tumors. Furthermore,
infiltration of macrophages was only moderately higher in
“mesenchymal” SKCM. Even in EMT-high SKCM tumors,
immune inhibitory cytokine expression was not significantly
different from EMT-low counterparts. These differences of
SKCM from other tumor types suggest that TIME of EMT-
high SKCM tumors are not as inhibitory as in some other tumor
types, such as LUAD and COADREAD, and may account for a
high success rate of immunotherapy in SKCM (42).

Clustering analysis of different cancer types by TIME markers
showed coclustering of most cancer types by EMT group.
Furthermore, cancers could be classified into two groups based
upon the differences in the median values of each TIME marker
between EMT-high and -low groups (Figure 8). Previous studies
analyzing TCGA data of various platforms (gene expression,
methylation, reverse phase protein arrays, etc.) have shown
coclustering of tumors with the tissue of origin. For example,
coclustering was observed for gastrointestinal tumors including
(COADREAD, STAD, and ESCA), kidney cancers (KIRP and
KIRC), and squamous histology cancers (LUSC, HNSC, CESC,
ESCA, and BLCA) (43–45). Our PCA did not show similar
clustering; for example, lung cancers (LUSC and LUAD), head
and neck cancers (HNSCC), and esophageal cancers (ESCA)
were not clustering together in our analysis. Gastrointestinal
tumors (COADREAD and STAD) were also not clustered
together in our PCA (Figure 8). However, we did observe the
coclustering of gynecological cancers (UESC and CESC).
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These observations suggest that the changes of the TIME
composition, consisting of change in proportions, phenotype,
and function of infiltrating immune cells along with the presence
of suppressive (high TGFb and IL10) or exhausted immune cells
(TIM3, LAG3, PD-1 expressing CD4+ and CD8+ T cells), might
be required or facilitate the process of EMT. Indeed, an altered
innate and adaptive immune response is known to play a pivotal
role in enhancing tumor growth via selection of aggressive
clones, induction of immunosuppression, and stimulation of
cancer cell proliferation and metastasis (46). Overall, the
crosstalk between enriched TAMs along with significant
presence of naive and memory CD4+ T cells, cytotoxic CD8+
T cells, B cells, and Tregs may induce series of biochemical and
molecular changes leading to generation of immune inhibitory
components and creating permissive state of EMT.

In conclusion, our pan-cancer EMT analysis of 22 cancer
types in TCGA dataset shows that the distinctive features of the
EMT-high (mesenchymal) tumors are: (i) the enrichment of
TAMs, (ii) overexpression of immune checkpoint molecules, and
(iii) overexpression of immune inhibitory cytokines TGFB1 and
IL10. The role of TIME in anticancer immunity and immune
checkpoint blockade failure is well recognized (47, 48). We have
comprehensively analyzed the TIME of multiple cancer types in
context to EMT and showed that TIME of the three EMT groups
differs significantly. These findings will be helpful for future
studies investigating the TIME and targeting TIME regulators for
anticancer immunotherapy.
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