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Throughout the first years of the twenty-first century, neurotechnologies such as motor

cortex stimulation (MCS), transcranial magnetic stimulation (TMS), and transcranial direct

current stimulation (tDCS) have attracted scientific attention and been considered as

potential tools to centrally modulate chronic pain, especially for those conditions more

difficult to manage and refractory to all types of available pharmacological therapies.

Interestingly, although the role of the motor cortex in pain has not been fully clarified,

it is one of the cortical areas most commonly targeted by invasive and non-invasive

neuromodulation technologies. Recent studies have provided significant advances

concerning the establishment of the clinical effectiveness of primary MCS to treat

different chronic pain syndromes. Concurrently, the neuromechanisms related to each

method of primary motor cortex (M1) modulation have been unveiled. In this respect,

the most consistent scientific evidence originates from MCS studies, which indicate the

activation of top-down controls driven by M1 stimulation. This concept has also been

applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in

the brain, including cortical and subcortical structures, has been reported with both

invasive and non-invasive methods and the participation of major neurotransmitters (e.g.,

glutamate, GABA, and serotonin) as well as the release of endogenous opioids has been

demonstrated. In this critical review, the putative mechanisms underlying the use of MCS

to provide relief from chronic migraine and other types of chronic pain are discussed.

Emphasis is placed on the most recent scientific evidence obtained from chronic pain

research studies involving MCS and non-invasive neuromodulation methods (e.g., tDCS

and TMS), which are analyzed comparatively.

Keywords: chronic pain, headache, migraine, motor cortex stimulation, neuromodulation, transcranial direct

current stimulation, transcranial magnetic stimulation

INTRODUCTION

Pain is clinically identified as an early and disabling symptom, extremely frequent and
common to various diseases. However, rather than simply a sensory phenomenon, pain is
better characterized as a complex experience extending beyond the sensory-discriminative
component of pain, or the individual capacity to identify the nature (e.g., intensity,
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location, and duration) of a particular noxious stimuli.
The affective-emotional aspect of pain (e.g., unpleasantness),
as well the involvement of attention, memory of previous
experiences, and anticipation, termed the cognitive-evaluative
pain dimension, are fundamental pieces of this still challenging
and complex puzzle (Melzack and Casey, 1968; Merskey et al.,
1994; McMahon, 2013).

According to a widely applied definition, pain can be
differentiated into either acute or chronic. Acute pain is produced
by tissue injury and concurrent activation of local nociceptive
transducers. Usually related to trauma, invasive procedures, or
as a symptom occurring during the course of some pathological
process, acute pain characteristically lasts for only a limited
amount of time and resolves as soon as its primary source
ceases. While chronic pain may also be initiated by local injury
or disease, it usually persists for a longer period of time and
tends to be maintained by factors not directly linked to the
original event (Fishman et al., 2010). In fact, the International
Association for the Study of Pain (IASP) defines chronic pain
as pain experienced every day for 3 months over a period of
6 months (Merskey et al., 1994). Chronic pain is not only
a clinical struggle but also a social burden, with enormous
economic costs to healthcare systems across the globe (Patel
et al., 2012). Due to its high prevalence (Verhaak et al., 1998;
Elliott et al., 1999, 2002; Breivik et al., 2006) and deleterious
impact on patients’ quality of life (Patel et al., 2012), chronic
pain receives considerable attention from both clinicians and
researchers worldwide. Most of this attention is focused on better
comprehending the multifaceted biological aspects of chronic
pain and developing novel therapies that will permit more
adequate relief from such an incapacitating condition. In this
respect, recent years have seen an increased research interest
in the study of different methods to modulate the activity of
neurocircuits with the purpose of treating chronic pains. These
methods include both surgical and non-invasive approaches,
and their treatment effects have been studied alone and when
combined with pharmacological therapies. While the clinical
application of brain stimulation techniques dates back to the
last century, the related technologies have evolved considerably
as scientific evidence accumulated within the field (Kumar
and Rizvi, 2014). Furthermore, the efficacy and reliability of
different neuromodulatory methods, with stimulation delivered
to distinct cortical/subcortical and even peripheral zones,
have been tested in the treatment of several chronic pain
disorders. Intriguingly, when retrospectively analyzing the
scientific evidence accumulated throughout the last 25 years, the
stimulation of motor cortical areas, mainly the primary motor
cortex (M1), either non-invasively or by implanted electrodes
has been consistently reported as an effective analgesic strategy
to provide chronic pain relief, especially those of predominantly
neuropathic origins (Tsubokawa et al., 1991a; Hosomi et al., 2013;
Hagenacker et al., 2014; Ngernyam et al., 2015; Radic et al., 2015).

The advent of neuroimaging has allowed for the identification
of an intricate network of brain structures that contributes to the
pain experience and their specific roles in each dimension of the
whole phenomenon. Most of those brain areas are multimodal,
responding to both noxious and salient non-noxious stimuli

(Mouraux et al., 2011). It has been recognized that this network
includes the primary and secondary somatosensory cortices (SI
and SII), the cingulate cortex, the posterior parietal cortex, and
the pre-frontal cortex. Also taking part in this network are the
thalamus, insula, and several brainstem structures, in addition
to other interconnected brain areas. Not surprisingly, there is
relatively scarce information regarding the contribution of the
motor cortex to this process. Although the effects of pain on
motor function have been well-documented, the participation of
motor brain areas in the mechanisms that lead to chronic pain
is still not completely understood (Farina et al., 2003). Therefore,
one question remains unsolved: Why and how is motor cortex
stimulation, in particular M1 stimulation, effective in treating
chronic pain patients?

Based on scientific evidence currently available, this paper
provides a critical review on the topic by exploring the putative
mechanisms that explain the effectiveness of two methods
of non-invasive neuromodulation, transcranial direct current
stimulation (tDCS) and transcranial magnetic stimulation
(TMS), when applied to the motor cortex for the treatment of
chronic pains. To this purpose, the scientific evidence obtained
with the invasive procedure, termed motor cortex stimulation
(MCS), is always used as a reference.

ARE THEY EFFECTIVE?
STATE-OF-THE-ART NON-INVASIVE
NEUROMODULATORY TECHNOLOGIES
AVAILABLE TO AMELIORATE CHRONIC
PAIN

Given the clinical challenges that chronic pain management
presents, scientific pain researchers have directed their focus
toward the development of novel technologies and enhancement
of known strategies that permit the modulation of cortical
excitability in humans through non-invasive or minimally
invasive procedures. Over the past years, several studies
have investigated the analgesic effects of epidural/subdural
MCS, especially in refractory or intractable neuropathic pain
(Meyerson et al., 1993; Tsubokawa et al., 1993; Nguyen et al.,
1999, 2008, 2009; Saitoh et al., 2003; Nuti et al., 2005; Rasche
et al., 2006; Velasco et al., 2008; Fontaine et al., 2009; Lefaucheur
et al., 2009). Regarding non-invasive procedures, the first study
demonstrating the analgesic effects of high-frequency rTMS of
the motor cortex was performed in neuropathic pain patients
(Lefaucheur et al., 2001). Later, the analgesic effects of anodal
tDCS applied to the motor cortex was again reported in patients
with neuropathic pain due to spinal cord injury (Fregni et al.,
2006a) and also in fibromyalgia patients (Fregni et al., 2006b).
In the following years, substantial data has emerged suggesting
that distinct chronic migraine and pain syndromes can be
successfully treated by tDCS (Antal et al., 2010, 2011; Mendonca
et al., 2011; DaSilva et al., 2012; Jensen et al., 2013; Kim et al.,
2013; Viganò et al., 2013; Villamar et al., 2013;Wrigley et al., 2013;
Hagenacker et al., 2014; Schabrun et al., 2014; Bolognini et al.,
2015; Donnell et al., 2015) and/or TMS (Lefaucheur et al., 2010b;
Picarelli et al., 2010; Mhalla et al., 2011; Lee et al., 2012; Hosomi
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et al., 2013; Tzabazis et al., 2013; Hasan et al., 2014). Moreover,
the value of rTMS to predict the long-term effects of MCS has
been reported (Lefaucheur et al., 2004, 2011; André-Obadia et al.,
2006, 2014; Hosomi et al., 2008).

Nevertheless, findings from systematic reviews of the
methodology and results of studies investigating the role of
non-invasive neuromodulation for pain control suggest that
more clinical trials with rigorously designed protocols and
larger samples sizes are still necessary to draw more accurate
conclusions (Klein et al., 2015; Table 1). As reported in a recent
meta-analysis, low or very low-quality evidence indicate that
prefrontal low-frequency repetitive TMS (rTMS) is not effective
for pain control, while a single dose of high-frequency motor
cortex TMS provides short-term pain improvement. Conversely,
according to an international group of experts, in cases of
neuropathic pain the production of analgesic effects by high-
frequency (≥5Hz) rTMS of the motor cortex contralateral to
the pain side has a level A of evidence (Lefaucheur et al., 2014).
However, this statement cannot be extended to other stimulation
settings, targets, or pain conditions. In addition, it is important to
highlight the importance of long-term effects of rTMS protocols
in pain therapy. Because of the short-lasting duration of the
analgesic effects produced, it is still necessary to define and
optimize maintenance protocols before considering rTMS as a
valuable technique for the treatment of neuropathic pain in
routine practice. So far, only a few studies have shown clinical
improvement lasting several months from rTMS in patients
with chronic pain syndromes (Mhalla et al., 2011; Hodaj et al.,
2015).

Regarding tDCS, low-quality evidence does not yet suggest
that it is effective for chronic pain control (O’connell et al.,
2014). On the other hand, it is imperative to consider the
high heterogeneity of the research protocols evaluated, including
important differences with respect to the cortical targets chosen
for stimulation [e.g., motor cortex and dorsolateral prefrontal
cortex (DLPFC)]; differences in the number of stimulations
per subject, with the presence of single and multiple-dose
studies; application of low (≤1Hz) or high frequency (≥5Hz)
stimulation, in the case of TMS; differences in the current
intensity (usually 1 or 2mA), in relation to tDCS; and of
particular relevance, the type of pain disorder evaluated (e.g.,
nociceptive or neuropathic).

Indeed, chronic pain does not represent a single entity but
a spectrum of disorders, triggered, and maintained by complex
mechanisms (Basbaum et al., 2009). Therefore, it is possible
to infer that TMS or tDCS could produce differential effects
on each type of chronic pain disorder. For example, one
systematic review focused on clinical research protocols that
investigated the effects of low and high frequency (LF and
HF, respectively) TMS and anodal tDCS (at intensities of 1
or 2mA) in patients diagnosed with fibromyalgia. The review
concluded that HF rTMS as well as anodal tDCS stimulation of
M1 (M1-tDCS) offer similar pain improvements when compared
to the FDA-approved fibromyalgia pharmaceuticals. The authors
advocate that rTMS and tDCS should be considered when
treating fibromyalgia patients, especially those individuals who
are refractory to other (pharmacological) therapies or who do not T
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tolerate their side effects (Marlow et al., 2013). Likewise, another
meta-analysis supported that anodal M1-tDCS significantly
reduces pain levels (represented by an average of nearly 15%
pain reduction, measured with the visual analog scale—VAS
of pain) in chronic pain patients (Vaseghi et al., 2014). Thus,
despite the mounting evidence supporting the analgesic effects
of non-invasive MCS, it is evident that additional clinical trials
with standardized protocols and more robust data are needed
to establish the extent to which tDCS and TMS can contribute
to chronic pain management. Concurrently it is necessary to
scrutinize the neurophysiological mechanisms as well as the
neurochemical mediation associated with non-invasive brain
stimulation.

HOW DO THEY ACT? PUTATIVE
MECHANISMS OF NON-INVASIVE MOTOR
CORTEX STIMULATION

Despite the large number of studies exploring the clinical
efficacy of non-invasive methods of neuromodulation, their
neurophysiological fundaments are largely unknown and
numerous uncertainties remain. For example, is it possible
to revert ingrained neuroplastic changes with MCS? Do non-
invasive methods of neuromodulation elicit a significant placebo
effect? What scientific evidence has been obtained from basic
sciences and neuroimaging studies and what does this evidence
indicate? Although some of these questions have been at least
partially addressed, one of the most elementary and intriguing
questions persists: How does the stimulation of the motor cortex
grant significant chronic pain relief?

An indication of one possible role of the motor cortex in
pain arose many years ago when in 1971 a published report
revealed cortical removals of both postcentral and precentral
facial representations resulted in facial pain relief (White
and Sweet, 1969; Lende et al., 1971). Yet, the role of the
motor cortex only truly started receiving special attention from
clinicians and researchers after Tsubokawa’s work with MCS
in 1991 (Tsubokawa et al., 1991a,b). Afterwards, this cortical
region became a common target for neuromodulation when
intended to treat pain (Meyerson et al., 1993; Nguyen et al.,
1997; García-Larrea et al., 1999; Saitoh et al., 2000, 2003).
Interestingly, a study using navigation-guided rTMS examined
if significant pain improvement could also be achieved by
stimulating cortical areas other than the precentral gyrus (M1)
in patients with intractable deafferentation pain (Hirayama et al.,
2006). Specifically, the other areas evaluated were the postcentral
gyrus, the supplementary motor area and the premotor cortex
(Hirayama et al., 2006). Confirming previous works, results of the
study found that M1 stimulation produced significant pain relief.
Conversely, stimulation of the adjacent areas was not effective
in the cohort evaluated, corroborating the prominent role of
the primary motor cortex in pain relief, and more precisely the
importance of stimulation over the anterior bank of the central
sulcus for pain treatment. Similarly, an experimental study
involving healthy subjects who volunteered to receive capsaicin
application reported significantly higher analgesic effects of

rTMS over M1 when compared to the stimulation of the DLPFC
and occipital cortex (Sacco et al., 2014). In fact, it has been
described that, at least with MCS, optimal analgesic effects can
be accomplished when the electrodes are positioned over the
somatotopic representation (within M1) of the painful territory.
To this purpose, it is mandatory to work on a detailed functional
and anatomical mapping of the cortical representation of the
painful zone prior to the stimulation (Nguyen et al., 2011).

The neurobiological machinery activated when the motor
cortex is stimulated is a matter of intense debate. The first
studies investigating the mechanisms of MCS pointed to a
decrease in chronic pain-induced thalamic hyperactivity related
to the stimulation (Tsubokawa et al., 1991a, 1993), which led to
the conclusion that antidromic modulation of thalamocortical
pathways could play a role in the analgesia induced by M1
stimulation (Nguyen et al., 2011). In this regard, there are special
features in the structural and functional organization of the
motor cortex that determine the effects following its electrical
stimulation (Amassian and Stewart, 2003). It seems that cathodal
electrical stimulation applied directly to the motor cortex (MCS)
is associated with a preferential activation of the interneurons
that run parallel to the cortical surface and an indirect stimulation
of the pyramidal tract, generating indirect waves (I-waves) at
the spinal cord. On the other hand, anodal electrical cortical
stimulation of the motor cortex would preferentially activate
the pyramidal cell axons, represented by the fibers that run
perpendicularly to the cortical surface, and thus result in a direct
stimulation of the pyramidal tract, producing early direct waves
(D-waves) (Amassian et al., 1987; Amassian and Stewart, 2003;
Nguyen et al., 2011). It has been described that the activation
of the axons that run parallel to the cortical surface and the
indirect generation of I-waves, accomplished through cathodal
precentral gyrus stimulation, optimizes MCS analgesic effects
(Lefaucheur et al., 2010a; Nguyen et al., 2011). Studies have
confirmed that the most effective MCS electrode configuration
for pain control is the one that generates I-waves (Lefaucheur
et al., 2010a). Such findings could indicate that that MCS acts
though the activation of top-down controls associated with
intracortical horizontal fibers, instead of direct stimulation of the
pyramidal tract (Nguyen et al., 2011). The same fundament can
be transposed to rTMS. Similar to cathodal electrical stimulation,
rTMS produces I-waves, and significant pain decrease when its
coil is positioned in an anteroposterior orientation, whereas D-
waves are formed when its coil is positioned in a lateromedial
orientation (André-Obadia et al., 2008; Lefaucheur et al., 2010a;
Nguyen et al., 2011). It has been proposed that the activation of
the fibers that run parallel to the cortical surface in the precentral
gyrus would lead to both orthodromic activation of corticofugal
pathways as well as antidromic activation of thalamocortical
pathways. Thus, it would influence pathways and structures
that are distant from the side of stimulation (Nguyen et al.,
2011).

The general view that the analgesic effects observed with M1
stimulation derives from the activation of areas far beyond the
cortical zone where the stimulus is applied has been confirmed
by neuroimaging studies (García-Larrea et al., 1999; Peyron
et al., 2007). Some of those studies proved the ability of MCS
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to activate adjacent outer brain areas (e.g., orbitofrontal cortex—
OFC, DLPFC) as well as remote inner brain structures, such as
the insula and anterior, middle and posterior cingulate cortex,
the putamen, the thalamus, and portions of the brainstem,
including the periaqueductal gray matter (PAG) and the pons
(García-Larrea et al., 1999; Peyron et al., 2007). Other studies
have proved that rTMS can also influence the activity of a
network that comprises cortical areas (M1, S1, supplementary
motor cortex, dorsal premotor cortex, cingulate cortex, and
insula), as well as the thalamus and basal ganglia (Strafella et al.,
2003; Bestmann et al., 2004). It is important to highlight that
all of those aforementioned elements of the human brain are
largely recognized by their direct or indirect involvement in pain
processing (Peyron et al., 2000; Zubieta et al., 2001). Remarkably,
M1-rTMS consistently interferes with the activity of brain areas
related to the emotional aspects of pain, including the cingulate
cortex and insula, which explains the effects of M1 stimulation on
the affective-emotional dimension of pain (Passard et al., 2007;
Picarelli et al., 2010).

Changes in motor cortex excitability have also been explored
for the purpose of understanding the neurophysiological
aftereffects of M1 stimulation. Single- and paired-pulse TMS
paradigms are important tools to assess motor cortex excitability
parameters, including the resting motor threshold (RMT), the
motor evoked potential (MEP) amplitude, the intracortical
inhibition (ICI), the intracortical facilitation (ICF), and the
electromyographic cortical silent period (CSP) (Ziemann et al.,
1996; Sanger et al., 2001). It has been described that non-
invasive MCS, achieved by tDCS or TMS, is associated with both
immediate and long-lasting changes in motor cortex excitability
(Wassermann et al., 1998; Nitsche and Paulus, 2000, 2001;
Schambra et al., 2003; Jung et al., 2008). Noteworthy, it has
been shown that changes in cortical excitability elicited by rTMS
differ in healthy subjects (Wu et al., 2000; Romero et al., 2002)
and chronic pain patients (Lefaucheur et al., 2006), suggesting
that rTMS effects depend on the degree of cortical excitability
present before the period of stimulation (Lefaucheur et al., 2006).
Furthermore, previous studies have documented both increased
(Schambra et al., 2003) and decreased (Wassermann et al., 1998)
motor cortex excitability in theM1 contralateral to the stimulated
side, which possibly indicates a role of TMS in the modulation of
interhemispheric connections (Schambra et al., 2003).

Surprisingly, similar results could not be replicated with
M1-tDCS. There is also evidence that tDCS does not act on
glutamatergic transcallosal neurons, though it does influence
the activity of ipsilateral inhibitory interneurons that receive
transcallossal projections and that mediate transcallosal
inhibition (Lang et al., 2004).

The results just presented suggest the functional effects of
tDCS have a higher specificity, even though neuroimaging and
computational modeling studies indicate conventional tDCS
montages generate widespread electrical current that flows
throughout outer brain regions and deeper structures (Faria
et al., 2011; DaSilva et al., 2012; Neuling et al., 2012; Antal
et al., 2014). In fact, it has been supported that reinforcement
of both anatomical selectivity (e.g., guiding the electrical current
to specific targets in the brain) and functional selectivity (e.g.,

activity and input selectivity) are required to promote a rational
advancement of tDCS research (Bikson et al., 2013). In order to
enhance the anatomical specificity and possibly its effectiveness
in pain control, novel high-definition (HD)-tDCS montages that
use ring instead of large electrodes have been tailored (DaSilva
et al., 2015). In addition, the evaluation of the electrical current
distribution through computational models have permitted the
development of HD-tDCS montages (e.g., 2 × 2-HD) with the
purpose of targeting specific areas of the motor cortex (e.g.,
head and face homuncular region of M1), thus reproducing the
MCS parameters and principles (DaSilva et al., 2015; Donnell
et al., 2015). However, further studies are necessary to establish
the clinical relevance of enhancing anatomical specificity for
tDCS-induced analgesia.

In addition to the mechanisms previously reported, the
neurochemical mediation associated with the clinical outcomes
of different neuromodulatory techniques has just started to be
unveiled. The involvement of the endogenous opioid system, one
of the most prominent analgesic mechanisms and target of the
majority of opiates in this whole process, was initially indicated
by a study that reported increased release of endogenous opioids
in different pain-related brain areas after MCS (Maarrawi et al.,
2007). Furthermore, it has been verified that the density of opioid
receptor binding in the brain can predict the postoperative pain
relief obtained with MCS in chronic pain patients (Maarrawi
et al., 2013). Similarly, significant endogenous opioid release,
confirmed by decreased binding potential of the selective
µ-opioid receptor agonist [11C]carfentanil in pain-related
regions (e.g., precuneus, PAG, prefrontal cortex, thalamus,
anterior cingulate cortex, and insula), has been associated with
a single session of anodal M1-tDCS in both healthy subjects
(DosSantos et al., 2014) and in a single case of postherpetic
neuralgia (DosSantos et al., 2012). These findings clearly indicate
the contribution of the endogenous opioid system, most likely
exerted through activation of the µ-opioid neurotransmission,
in the analgesic effects induced by non-invasive stimulation
of the motor cortex. Supporting this concept, a TMS study
reported that intravenous administration of the opioid receptor
antagonist naloxone significantly reduces the analgesia achieved
by M1-rTMS. Remarkably, in that particular study naloxone
administration did not impact the analgesic effects of rTMS
when applied to the DLFC (de Andrade et al., 2011), suggesting
that specific neuromechanisms can be elicited when distinct
cortical regions are stimulated. Nevertheless, this conclusion
needs to be explored in depth since another study found naloxone
treatment performed prior to TMS resulted in a significant
decrease of DLFC rTMS-induced analgesia (Taylor et al., 2012).
It is important to emphasize that both naloxone studies were
performed in healthy volunteers and the inclusion of chronic
pain patients might have produced different findings.

It has also been postulated that mechanisms other than the
activation of opioid receptors might contribute to the pain
relief observed with different methods of neuromodulation
(Lefaucheur et al., 2006; Nguyen et al., 2011; Foerster et al.,
2015). Those mechanisms can be associated with the activation
of inhibitory (GABAergic) as well as excitatory (glutamatergic)
pathways. Remarkably, both pathways can be examined through
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the evaluation of some parameters of cortical excitability (e.g.,
ICI, ICF, and CSP) (Ziemann et al., 1996; Sanger et al., 2001).
The scientific evidence currently available indicates that high
frequency (10Hz) rTMS can restore a defective ICI, which
represents an impaired GABAergic neurotransmission present
in chronic neuropathic pain patients (Lefaucheur et al., 2006).
Moreover, according to the data available, the restoration of the
defective ICI by rTMS correlates to the degree of pain relief
(Lefaucheur et al., 2006).

One evidence that supports the involvement of the
glutametergic neurotransmission in the analgesic effects
driven by M1 stimulation is the focal release of dopamine in the
putamen associated with M1-rTMS, an effect possibly induced
by glutamatergic corticostriatal projections, originating in the
stimulated motor cortex (Strafella et al., 2003). In fact, it has
been described that the activation of descending mechanisms of
pain control induced by M1 stimulation in experimental models
of neuropathic pain presumably involves striatal dopamine D2
receptors (DRD2) (Viisanen et al., 2012). Additionally, it has
been recently reported that the genetic regulation of DRD2 by
957C>T polymorphis affects the susceptibility for neuropathic
pain and also pain modulation by rTMS (Jääskeläinen et al.,
2014).

The participation of glutamate N-methyl-D-aspartate
(NMDA) receptors in TMS-induced analgesia has also been
explored. The establishment of this link has its origins in animal
model studies (Ambriz-Tututi et al., 2012) and was confirmed in
a study that showed a decrease in the analgesic effects induced by
both M1 and DLPFC/PFC stimulation after the administration
of the noncompetitive NMDA antagonist ketamine (Ciampi de
Andrade et al., 2014). Such findings also point to the association
between rTMS-induced analgesia and long-term potentiation-
or long-term depression-like mechanisms, since NMDA exerts
predominant control over synaptic plasticity and memory
(Tsien, 2000; Li and Tsien, 2009). NMDA receptors could also
be associated with tDCS-induced neuroplasticity (Liebetanz
et al., 2002). The presence of long-term analgesic effects induced
by rTMS (Lefaucheur et al., 2004) and its dependence on the
frequency of stimulation (André-Obadia et al., 2006) support
the presence of neuroplastic changes associated with rTMS.
Indeed, the dependence on the frequency of stimulation used
to induce synaptic plasticity and the duration exceeding the
stimulation period, are characteristics of long-term potentiation
and long-term depression (Cooke and Bliss, 2006). The ability
of the NMDA-receptor antagonist dextromethorphan (DMO) to
suppress the effects of both anodal and cathodal tDCS on cortical
excitability also supports the contribution of NMDA receptors
and synaptic plasticity to the tDCS effects (Liebetanz et al., 2002).

The results of clinical and experimental studies point to
the participation of GABAergic mechanisms in the analgesia
associated with MCS and M1-TMS (Bestmann et al., 2004;
Lucas et al., 2011; Pagano et al., 2012; Cha et al., 2013).
It has been proposed that such effect could be related to
the thalamic modulation produced by M1 stimulation, which
would act through GABA neurotransmission (Moisset et al.,
2015). Moreover, the participation of the reticular formation
components and monoaminergic projections in the analgesia

induced by M1 stimulation has been examined. There is
evidence from experimental models of neuropathic pain that
the antinociception induced by the electrical stimulation of
M1 possibly involves the rostroventromedial medulla as well as
descending serotoninergic pathways (Viisanen and Pertovaara,
2010b). On the other hand, it has been reported that
coeruleospinal noradrenergic pathways are not essential for
this process (Viisanen and Pertovaara, 2010a). Nevertheless,
considering the still limited scientific evidence, further studies
will be necessary to expand the current knowledge regarding the
neurotransmitters involved in MCS and M1 tDCS.

Recently, studies have also been explored the possible
neurochemical actions of tDCS. Proton magnetic resonance
spectroscopy (1H-MRS) studies demonstrated increases in Glx,
a combined marker of glutamine and glutamate, and N-
acetylaspartate (NAA), which is considered to be a measure of
neuronal integrity, in the parietal cortex underneath the anode
(Clark et al., 2011). Another study reported a significant decrease
in Glx levels in the anterior cingulate cortex, related to active
M1-tDCS (when compared to sham stimulation), in a cohort
of fibromyalgia patients. There was also a trend toward an
increase of GABA levels in the anterior insula when comparing
active tDCS to baseline. Interestingly, the same study found
a significant increase in NAA in the posterior insula when
comparing sham tDCS vs. baseline, suggesting the presence
of a placebo effect associated with M1-tDCS (Foerster et al.,
2015).

Placebo is a factor that must always be considered when
analyzing the effects of chronic pain therapies. Although several
clinical trials involving non-invasive brain stimulation for pain
relief have found significant differences between active and sham
stimulation (Fregni et al., 2006a,b; Lee et al., 2012), considering
the major role of the placebo effect for analgesia (Zubieta and
Stohler, 2009) it is certainly possible that placebo might also
play a role in the benefits of M1 stimulation for chronic pain
treatment. This hypothesis has been recently evaluated with TMS
(André-Obadia et al., 2011). The results suggest that the relative
timing of sham and active TMS is an important factor to the
placebo effect driven by this method. It has been demonstrated
that placebo rTMS produces significant analgesia when applied
after a successful active TMS session. Nevertheless, when
following an unsuccessful active TMS session, placebo TMS tends
to worsen pain. Interestingly, pain scores remained unaltered
only when placebo TMS was applied before an active TMS
session. Taken together, those results could reflect an unconscious
conditioned learning related to placebo TMS. Regarding tDCS,
considering that conventional montages produce widespread
electrical current flow, a reasonable hypothesis that has emerged
is that tDCS could reinforce the same brain networks that are
usually activated by the expectations of clinical improvements
(Schambra et al., 2014). This hypothesis would provide an
alternative explanation for the beneficial effects observed with
tDCS in depression studies, especially when a concurrent training
(e.g., cognitive behavioral therapy) was not adopted and therefore
activity-specificity was absent (Brunoni et al., 2012, 2013). In
a recent study, we were able to demonstrate the presence of
changes in the µ-opioid neurotransmission during both active
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FIGURE 1 | Activation of µ-opioid receptors demonstrated with both

sham (A–C) and real (D–F) tDCS (DosSantos et al., 2014).

and sham tDCS in humans. Surprisingly, we found concurrently
(e.g., precuneus and PAG) as well as unrelated (e.g., PFC in
active tDCS and thalamus during sham stimulation) µ-opioid
activation (Figure 1), indicating that both shared and dissimilar
mechanisms can drive the effects of sham and active tDCS in
human subjects (DosSantos et al., 2014). These findings support
the view that an earlier sham stimulation can build-up the effects
of a subsequent active stimulation (DosSantos et al., 2014) and
that heightening patients expectations with a placebo prior to
active stimulation should also be considered (Schambra et al.,
2014).

CONCLUDING REMARKS

Since the serendipitous observation that M1 stimulation
produces significant clinical improvements in chronic
neuropathic pain patients, this cortical region became the
main target of several neuromodulatory techniques devoted
to ameliorating chronic pain in human subjects. In fact, it has

been reported that the stimulation of cortical regions adjacent
to the primary motor cortex fail to produce similar analgesic
effects, confirming the prominent role of M1 stimulation for
pain control. Nevertheless, the intricate neurophysiological
mechanisms that explain the clinical efficacy of M1 stimulation
for pain relief are not completely understood. Evidence from
MCS studies indicates that its analgesic mechanisms involve
the activation of top-down controls related to the excitation
of intracortical horizontal fibers. This concept can also be
applied to TMS. However, results of neuroimaging studies
also suggest that MCS and TMS act through modulation of
deeper and remote brain structures related to pain, such as the
insula, anterior, cingulate cortex, basal ganglia, thalamus, and
brainstem. Interestingly, enhanced current flow in the same

areas has also been demonstrated with tDCS. In addition, the
neurochemical mediation driven by M1 stimulation has been
recently unveiled in studies involving MCS, TMS, and tDCS.
Opioidergic, glutamatergic, GABAergic and serotoninergic
neurotransmissions are now considered components for the
whole process. Nevertheless, there are still questions that must
be answered, including those regarding the participation
of other mechanisms of endogenous pain control, the
clinical relevance of increasing anatomical and functional
specificity in non-invasive procedures, and the presence
and significance of a placebo effect. The answers to these
questions are expected to be among the future perspectives of
the field.
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