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Abstract: Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal
disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a
major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration
of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering
suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These
treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point
where the number of viable cells decreases, and the structural integrity of the disc begins to collapse.
However, there are many biological, biomechanical, and clinical challenges that must be overcome
before the clinical application of these IVD regeneration therapies can be realized. This review
summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD
regenerative therapies and outlines the important role of these strategies in regenerative treatment
for IVD degenerative diseases, especially disc herniation.

Keywords: intervertebral disc degeneration; regenerative therapy; biomaterial; cell transplantation;
disc herniation

1. Introduction

Intervertebral disc (IVD) degeneration is a common cause of low back pain that affects
the daily life of afflicted individuals and is the cause of most spinal disorders [1–4]. Surgical
treatments, such as discectomy, arthroplasty, and spinal fusion, have been widely used
for the treatment of IVD diseases, including disc herniation, spinal canal stenosis, and
spinal deformities. However, these methods limit spine mobility and fail to maintain the
function of the treated IVD for extended periods of time [5]. Furthermore, the appearance
of postoperative adjacent intervertebral disorders and reports of functional impairment
are widely recognized. Meanwhile, conservative treatments for low back pain, such as
the administration of analgesics, are only symptomatic therapies and do not focus on the
underlying etiology [4]. In other words, there is currently no clinical treatment that can
prevent or reverse IVD degeneration. Fortunately, recent tissue engineering approaches
have revealed the molecular cascade involved in IVD degeneration, and treatments aimed
at the regeneration of degenerated or damaged IVDs have been attempted [5]. Specifically,
cell-based therapies and biomaterial-based regenerative therapies have recently attracted
attention as therapeutic methods to prevent or repair IVD degeneration.

IVDs consist of an inner gel-like structure, nucleus pulposus (NP), and external annu-
lus fibrosus (AF) [6]. The extracellular matrix (ECM) of gelatinous NP is composed of gly-
cosaminoglycans, proteoglycans (PG), and type II collagen, which are highly hydrated [7,8].
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The function of the NP is to distribute the hydraulic pressure under compressive loads [7,8].
IVD degeneration is characterized by a loss of hydration and degradation of the ECM
of the NP with NP degeneration leading to overall changes in the biomechanics of the
spine [5,7–9]. Therefore, regenerative therapy of the NP is a promising strategy to restore
the function of IVDs that exhibit less advanced deformities [4,7,10,11].

Since the degree of IVD degeneration generally reflects the regenerative capacity
of the disc, treatment strategies for IVD regeneration are also based on the severity and
stage of IVD degeneration [12]. In the early stages of disc degeneration, the structural
integrity of the disc is preserved, and there are many surviving native disc cells; therefore,
biomolecular and genetic engineering interventions may have a regenerative effect [12]. In
the intermediate stages of degeneration, the number of surviving native disc cells decreases,
and the structural integrity of the disc begins to disintegrate [12]. Among the potential
interventions, biomaterial-based therapies that maintain the disc structure and activate
the remaining cells are expected to be applicable to degenerative disc diseases, such as
lumbar disc herniation, which typically affects relatively young people up to the age of
40 years (Figure 1). In degenerative disc diseases, such as lumbar disc herniation combined
with lumbar spinal canal stenosis, which tends to occur in people over 50 years of age,
the number of remaining cells is further reduced. Therefore, cell-based therapies that
repopulate the disc with healthy cells that may restore normal tissue homeostasis, in
addition to the combination of biomaterials with cell therapies, are expected to be effective
in these situations (Figure 1). Multiple clinical trials have been conducted to investigate
cell-based and biomaterial-based therapies to treat IVD degeneration, with each trial being
supported by numerous preclinical animal studies and basic science experiments [12].

Figure 1. Biomaterial-based and cell-based intervertebral disc regeneration treatment strategies based
on the stage of disc degeneration.

In this article, we review the strategies for disc regeneration/repair therapy for IVD
degeneration, with a focus on cell-based therapy and soft biomaterial-based approaches.
This includes

1. cell-based IVD regeneration therapy,
2. biomaterial-based IVD regeneration therapy, and
3. disc regeneration/repair treatment for IVD herniation.

To prepare this review, 231 English-language articles were extracted from PubMed
searches using the keywords “intervertebral disc degeneration” AND “regenerative ther-
apy” without a date limitation (start of the database through October 2021). Additional
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keywords (biomaterials, cell transplantation, disc herniation, biomechanical, biological)
were used to narrow down the papers to the topics most relevant to this review. Moreover,
additional papers were obtained by analyzing papers containing excellent reviews.

2. Cell-Based IVD Regeneration Therapy: Cell Transplantation

Apoptosis of the NP cells is a characteristic phenomenon that occurs in the early stages
of IVD degeneration [4,11,13,14]. NP cells play an important role in the synthesis of ECM
proteins that maintain IVDs. Aging and degeneration of the IVD result in a decrease in
the number of NP cells and a reduction in the production of ECM [4,13,15–18]. As the
number of viable NP cells is reduced in the early to intermediate stages of disc degeneration,
intradiscal cell therapy (e.g., stem cells or chondrocytes) can be used to restore normal
tissue homeostasis to the disc and repopulate the disc with healthy cells (Figure 1).

There is increasing evidence that supports the use of biological and cell-based therapies
for IVD degeneration. Several cell sources, including IVD-derived cells (NP-derived cells),
chondrocyte-like cells, mesenchymal stem cells (MSCs), induced pluripotent stem cells,
and embryonic stem cells, have been proposed and evaluated for disc regeneration therapy
via cell transplantation [12,19,20] (Table 1). Several clinical trials have also been conducted
using these cells for IVD degeneration [12,19,21–24] (Table 2).

Table 1. Candidate cell sources for intervertebral disc (IVD) regeneration therapy.

Cell Sources References

Differentiated Cells
IVD-derived cells (nucleus pulposus (NP)-derived cells) [25–38]

Chondrocyte-like cells (including chondrocytes derived articular cartilage) [39–41]

Stem Cells

Mesenchymal stem cells (MSCs)
Bone marrow-derived MSCs [26,41–59]

Adipose-derived MSCs [34,60–66]
Synovial-derived MSCs [67]

Nucleus pulposus-derived MSCs [68]
Induced pluripotent stem (iPS) cells [69–74]

Embryonic stem (ES) cells [75–77]
Bone marrow aspirate concentrate (BMAC) [78–80]

2.1. Autologous IVD-Derived Cells as Therapy for IVD Regeneration

Transplantation of autologous NP-derived cells is physiologically more natural than
allogenic transplantation, and autologous transplantation can avoid graft-versus-host
reactions [25]. NP cells have the ability to survive in the harsh, bloodless environment of
the IVD and are able to produce IVD-specific ECM [12]. However, harvesting autologous
cells from a patient’s disc is invasive, and the cell yield is relatively low because the
tissue source is compromised [19]. Furthermore, the ability of NP cells isolated from
degenerated NPs alone is insufficient to delay further disc degeneration [25]. The co-
culture of NP cells with MSCs, which allows for direct cell-to-cell contact, has been shown
to significantly improve the viability of NP cells [26,27]. In a pilot clinical trial, these
co-cultured cells were transplanted into a degenerated lumbar disc at a level adjacent
to the fusion surgery segment. Three years post-surgery, there was no progression of
disc degeneration and no back pain, suggesting the minimal efficacy needed to slow the
further degeneration of human IVDs [25]. In the EuroDISC study in which percutaneous
transplantation of autologous disc cells was investigated, disc chondrocytes harvested at
the time of discectomy were grown in vitro and then injected into patient discs at three
months postoperatively [28]. In the 2-year analysis, patients had significantly less back
pain compared with that of the control patients, and NP fluid levels on magnetic resonance
imaging (MRI) remained higher at the treated and adjacent discs [28].
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Table 2. Clinical trials on cell-based intervertebral disc (IVD) regeneration therapy.

Cell Type Mode Carrier Administration
Method Indication n Outcome References

Differentiated
Cells

Intervertebral
disc cells Autologous None Percutaneous

injection

Lumbar disc
herniation at

12 weeks
postoperatively

112

Improvement in
pain, disc
hydration

improved on MRI

[28,36]

Activated
nucleus

pulposus cells
Autologous None Percutaneous

injection

Disc degeneration
adjacent to
fused disc

9 No progression of
disc degeneration [25]

Juvenile
articular

chondrocytes
Allogenic Fibrin Percutaneous

injection

Degenerative disc
disease with low

back pain
15

Improvement in
pain and clinical

indices, and
on MRI

[39]

Stem Cells

Bone marrow
MSCs Autologous Collagen

sponge
Percutaneous

injection
Lumbar spinal
canal stenosis 2

Vacuum
phenomenon and
motion segment

instability
improved on
radiograph,
hydration

improved on MRI

[51]

Bone marrow
MSCs Autologous None Percutaneous

injection
Chronic low back

pain 10

Rapid
improvement in

pain and disability,
hydration

improved on MRI

[52]

Bone marrow
MSCs Autologous None Percutaneous

injection

Degenerative disc
disease with low

back pain
5

Self-reported
overall

improvement,
improvement in

strength and
mobility

[58]

Bone marrow
MSCs Allogenic None Percutaneous

injection

Degenerative disc
disease with low

back pain
24

Improvement in
pain and disability,

and on
quantitative MRI

[59]

Adipose-
derived
MSCs

Autologous Hyaluronic
acid

Percutaneous
injection

Chronic discogenic
low back pain 10

Improvement in
pain and

clinical indices
[64]

Bone marrow
concentrate Autologous None Percutaneous

injection
Discogenic low

back pain 26
Improvement in

pain and
clinical indices

[79,80]

2.2. MSC Therapy for IVD Regeneration

MSCs are the most common clinically evaluated cell type for disc regeneration therapy.
MSCs are undifferentiated somatic cells that are capable of self-renewal and have the potential
to differentiate into any lineage of mesenchymal origin, including chondrogenic and IVD-cell
lineages, owing to their ability to differentiate into a variety of mesodermal lineages [12,81,82].
MSCs are thought to resemble perivascular and pericyte cells and are found almost everywhere
in the body where vascularity is abundant [81,83]. Accordingly, autologous MSCs can be easily
harvested from the bone marrow or adipose tissue [12]. Numerous studies have demonstrated
that MSCs promote tissue repair and reduce inflammatory damage, while multiple preclinical
animal models have been used to demonstrate the ability of MSCs to differentiate into NP
cells, restore disc height and hydration, and inhibit the inflammatory cascade, leading to
disc regeneration [12,26,50,67,84–86]. Various sources of MSCs have been identified and
studied, including the bone marrow, synovial membrane, and adipose tissues [87] (Table 1). A
systematic review of the safety and efficacy of MSCs for treating IVD degeneration has shown
that three types of MSCs can successfully inhibit IVD degeneration, bone marrow-derived,
synovial-derived, and adipose tissue-derived MSCs [87].
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Both autologous and allogenic MSCs are being investigated for their ability to re-
generate discs by transplanting them into degenerated discs [81]. The use of autologous
MSCs as an injectable therapy has been investigated in several completed or ongoing
clinical trials [12,81]. Two preliminary clinical studies have reported that transplantation
of autologous bone marrow stem cells into the human lumbar disc can improve pain and
other clinical outcomes, raise the level of disc stability, and increase disc hydration on
MRI [51,52]. In several subsequent clinical trials, patients treated with autologous cul-
tured bone marrow-derived MSCs for IVD degeneration showed significant improvements
in pain, function, and overall subjective improvement with minimal adverse events at
4 to 6 years after treatment [58,88]. These studies have demonstrated the long-term effi-
cacy of autologous bone-marrow-derived mesenchymal stromal cell (BM-MSC) therapy in
inhibiting disease progression. However, no conclusions have been drawn regarding the
optimal conditions of culturing and administrating of MSCs [24]. Although autologous
cell transplantation has the lowest risk of immunogenic reactions, it has several limitations
for clinical application, including a lack of shelf availability, the need to harvest tissues
from patients, the time and expense of cell growth, differentiation, and selection, and the
potential risk of infection [19,60,89].

On the other hand, allogeneic MSCs are typically harvested from young, healthy
donors and can solve the problem of shelf availability and may produce better long-term
functional outcomes as they are not subject to age-related changes and other effects based on
the patient’s protoplasm that may occur with autologous cells [22,89]. Animal studies have
shown that allogeneic MSCs injected into the NP region of IVDs can survive and proliferate,
producing beneficial effects on IVD degeneration [48,57,59,67,89–92]. In addition, a phase
I/II randomized controlled trial examining the therapeutic efficacy of allogeneic BM-MSCs
for IVD degeneration confirmed the feasibility and safety of this approach for patients
with IVD degeneration [59]. This trial reported rapid improvement in pain and disability
for the cell therapy group compared with that for the control group, and improvement in
degeneration was observed on MRI. As noted above, MSC transplantation to treat IVD
degeneration is able to repair IVD degeneration in patients with low back pain, providing
pain relief and functional recovery. However, MSC therapy to treat musculoskeletal disor-
ders has not yet been approved for clinical use by the U.S. Food and Drug Administration
(FDA) [78,93].

2.3. Use of Bone Marrow Aspirate Concentrate (BMAC) for IVD Regeneration Therapy

The use of BMAC has been approved by the FDA to treat musculoskeletal diseases,
and its application as an IVD regeneration therapy has been reported [78–80]. In an animal
study in which a bioresorbable alginate gel containing BMAC was implanted into rabbits
of a discectomy model, the BMAC demonstrated regenerative effects on disc degeneration,
comparable to that of BM-MSCs [78]. In addition, a prospective clinical trial in which
BMAC was injected percutaneously into patients with lumbar disc degeneration showed
that disc-derived low back pain can be reduced and disc hydration sporadically increased,
demonstrating the usefulness of this treatment [79,80]. Furthermore, BMAC produced
using autologous non-cultured cells can be obtained in a single step, which has the potential
of cost and time-saving advantages, reduced risk of infection, and a lower chance of sample
confusion compared with that of cultured autologous or allogeneic cells [78].

2.4. Problems of IVD Regeneration Therapy Using Cell-Only Transplantation

The challenges of IVD regeneration therapy using cell-only transplantation include
problems of the transplanted cells adapting to the environment, cell survival, and leakage
of the transplanted cells from the injection site. The environment of degenerated IVDs
is unsuitable for cell viability and survival, with low oxygen levels, limited nutrition,
acidic pH, and high osmolarity, which adversely affect the function and survival of the
transplanted cells [65,94–96]. Furthermore, the risk of MSCs injected into the IVD leaking
from the injection site and causing osteophyte formation has been reported in in vivo
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studies [45,97]. In a systematic review of MSC-based therapies for IVD degeneration,
MSC-related complications were found in 2.7% of all animal models, including osteophyte
formation associated with cell leakage [45,87,98].

The usefulness during cell transplantation of combining soft biomaterials as cell
carriers and scaffolds, such as alginate, fibrin, atelocollagen, and hyaluronic acid, has been
reported [5,26,64,68,92,99–102]. Hydrogels and other soft biomaterials are expected to not
only serve as carriers to hold cells transplanted into IVDs but also act as sealants to prevent
cell leakage, thereby improving biomechanical function, protecting the transplanted cells,
and even activating the remaining native cells.

3. Biomaterial-Based IVD Regeneration Therapy: Soft Biomaterials Used to
Regenerate Biological and Biomechanical Function

Although a number of stem cell-based therapies focusing on progenitor cell expansion
and transplantation have been investigated as a means of disc regeneration therapy, there
are many challenges to their clinical application, including immune rejection, pathogen
infection, potential tumor formation, and host tissue engraftment [7,103–106]. On the
other hand, matrix-based medicine using soft biomaterials may provide an alternative
single-step process using biomaterials amenable to long-term storage, which can be used
for on-demand treatment [7,107].

One goal of disc regeneration therapy is to restore the biomechanical disc function that
supports the trunk and maintains mobility. In a healthy IVD, the NP compresses when an
axial load is applied to the IVD and transmits the load radially to the AF [81]. Laminated
AF has a high tensile strength and can expand radially in response to the added load [81].
There are few cells in the NP (4×103 cells per mm3), with NP cells accounting for only
approximately 1% of the volume of IVD tissue [81,108–110]. The ECM produced by the
NP cells is mostly composed of PG, which provides cushioning to the NP by retaining
water [81]. As the IVD degradation process progresses, a decrease in PG of the NP reduces
the swelling pressure of the disc, resulting in a decrease in the aggregate and instantaneous
shear modulus [109,111,112]. In addition, the nucleus loses water and becomes fibrous, with
the mechanical properties of the ECM being further impaired [81]. This deterioration leads
to reduced flexibility of the NP and alters the loading pattern within the disc, leading to AF
delamination [81,109] (Figure 2). Since the initial degeneration of IVD occurs primarily in
the nucleus, gelatinous NP appears to be a promising target for therapeutic intervention
(Figure 2) [109]. Therefore, tissue engineering using hydrogels and other soft biomaterials
may be an alternative to current treatments.

3.1. Soft Biomaterials for NP Repair and/or Regeneration

Ideally, biomaterials for NP repair should accommodate both the biological and mechani-
cal aspects of IVD repair and regeneration [109]. The objectives required for a soft biomaterial-
based NP repair approach in terms of the biological response include the soft biomaterial

1. being biocompatible, non-toxic, and safe in vivo;
2. support cell survival;
3. promote ECM formation;
4. reduce inflammation; and
5. inhibit pathological fibrosis [113].

In terms of biomechanics, the soft biomaterial should (1) remain within the disc under
in vivo loading conditions and (2) improve biomechanical disc function and spinal stability.

The concept of using biomaterials that can be injected into IVDs began in the 1960s
when Nachemson et al. [114] proposed a method of injecting vulcanized silicone into
degenerated discs for nucleus augmentation. Over the subsequent decades, IVD substitutes
have been developed to restore disc function [115]. NP replacement using injectable, in situ
curable materials can maintain immediate disc height and mechanical disc weight-bearing
capacity [116–120] but is restricted by the risk of complications, such as implant dislocation
and endplate damage, and by the limited potential for biological repair [116,117].
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Figure 2. Normal to degenerated lumbar intervertebral discs in rabbits. The initial degeneration
of intervertebral discs occurs primarily in the nucleus, making the gelatinous nucleus pulposus a
promising target for therapeutic approaches using soft biomaterials.

3.2. Biological NP Repair and/or Regeneration Using Soft Biomaterials

Many polymeric materials have been experimentally investigated for use as NP-regenerative
soft biomaterials. Biomaterials are hydrogels or solid scaffolds and can be divided into syn-
thetic biopolymers and natural biomaterials [121] (Table 3). Synthetic materials include poly
(D,L-lactide) (PLA) and its derivatives, polyethylene glycol (PEG), polycarbonate urethane
(PU), and poly (ε-caprolactone) (PCL), some of which can function as both hydrogels and
solid scaffolds [38,63,121–155]. Synthetic hydrogels consist of polymer networks that can
absorb a large amount of water, are easy to modify, and can be consistently and highly
tunable [121]. However, most production processes of synthetic hydrogels involve the
use of reactive reagents and require the complete removal of contaminants and unreacted
reagents [115,156]. In comparison, natural polymer-based biomaterials mainly include hydro-
gels, such as alginate, agarose, fibrin, hyaluronic, collagen, chitosan, and carboxymethylcellu-
lose [4,5,7,39,41,49,57,64–66,78,90,92,100,101,116,121,122,128,132,140,142,157–233] (Table 3).
These natural hydrogels have been extensively studied for NP tissue engineering due to
their excellent biocompatibility and biological activity and their participation in the physio-
logical turnover process [116,122,234]. A number of in vitro studies have shown that these
hydrogels support cell survival and induce differentiation of residual NP disc cells and
stem cells [132,142,158–160,163,169,188,197,203,207,208,232,235–238].
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Table 3. Candidate biomaterials for intervertebral disc regeneration therapy.

Biomaterials References

Synthetic Biomaterials

Polylactic acid (PLA), Polyglycolic acid
(PGA), Polylactic-co-glycolic acid (PLGA) [38,63,123–131]

Polyethylene glycol (PEG) [132–142]
Polycarbonate urethane (PU) [143–148]

Poly epsilon-caprolactone (PCL) [149–155]

Natural Biomaterials

Alginate [7,66,78,92,100,128,158–172]
Agarose [4,173–179]
Fibrin [39,41,49,90,101,180–196]

Hyaluronic acid [57,64,132,140,142,173,185,188,197–210]
Collagen [65,132,142,197,210–223]
Chitosan [66,172,214,218,224–231]

Carboxymethylcellulose [232,233]

To achieve intrinsic and sustainable disc regeneration, soft biomaterials are required
to support cell survival and induce in vivo differentiation of the transplanted stem cells
and remaining disc cells. Hydrogels, such as collagen gel (atelocollagen), hyaluronic acid,
fibrin, peptide hydrogel, polysaccharide hydrogel, and alginate, have been reported in
in vivo studies to be useful as cell carriers for cell transplantation and disc regeneration
therapy [26,57,60,65,68,78,92,196,239]. Degenerated discs present harsh microenvironments
characterized by hypoxia, hypotrophy, acidic pH, high mechanical loading, high osmotic
pressure, and a complex network of various proteases and cytokines [95,113,240–244].
Meanwhile, biomaterials incorporate cells into the scaffold to increase their viability, act
as protective carriers to prevent the leakage of the cells from the site, and also support
the transmission of mechanical loading [157]. In addition, several in vivo studies of IVD
regeneration with cell-free biomaterials using hydrogels alone have reported the regen-
erative potential of fibrin sealant, polyglycolic acid (PGA)-hyaluronic acid scaffold, and
collagen-based scaffold through hydrolysis with actinidin protease and ultra-purified
alginate (UPAL) gel [7,101,107,125,192,204,220].

3.3. Mechanism of IVD Regeneration Therapy Using Cell-Free Soft Biomaterials Alone

Considering the various issues related to the clinical application of cell transplantation
therapy, biological disc regeneration using cell-free soft biomaterials alone may be a new
alternative to the current treatment for disc degeneration disease and ideally involve a
single-step process [7,107]. For instance, there has been much interest in bioengineering
approaches in recent years that exploit endogenous cell populations to restore the structure
and function of IVDs, with the potential for IVD repair using cell-free soft biomaterials
being promising [99,220]. Several in vivo studies have shown that various soft biomaterials
have the potential to regenerate IVD tissue by supporting the survival and activation of
remaining disc cells in damaged or degenerated IVDs and by promoting ECM production.
However, details regarding their repair mechanisms have not yet been fully elucidated.

Several biomaterials have been analyzed in in vivo experiments with respect to their
mechanisms in inducing and activating residual disc cells (Table 4). For instance, an
in vivo rabbit study of IVD aspiration followed by alginate-based hydrogel called UPAL
gel implantation revealed a significant increase in the percentage of GD2Tie2 cells [7,92],
which are NP progenitor cells [245]. This indicated that the implanted biomaterial was
able to induce endogenous NP cells and NP progenitor cells, leading to endogenous IVD
repair [7]. Similar to the UPAL gel results, a collagen type 1-based scaffold called low
adhesive scaffold collagen (LASCol) promotes internal migration of the remaining disc NP
cells when implanted after discectomy of rat caudal IVDs [220]. Furthermore, it has been
shown that LASCol promotes the formation of cell aggregative spheroids that facilitate the
maintenance of the original disc NP phenotype, upregulates the expression of chondrogenic
genes, and promotes disc tissue repair [220].
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Table 4. Soft biomaterials as candidates for cell-free intervertebral disc (IVD) regeneration therapy.

Composition of
Soft Biomaterials Abbreviation Clinical

Trials/Preclinical Mechanism of Regeneration Ref.

Alginate UPAL (ultra-purified
alginate)

Clinical (in
progress)/Preclinical

(in vivo, rabbit, sheep)

Induction of endogenous NP cells and NP
progenitor cells (GD2Tie2 cells), leading to

endogenous IVD repair
[7,246]

Collagen LASCOL (low adhesive
scaffold collagen) Preclinical (in vivo, rat)

Promotion of the formation of cell
aggregative spheroids that facilitate the

maintenance of the original disc NP
phenotype, upregulation of the expression

of chondrogenic genes

[220]

Fibrin Fibrin sealant Clinical/Preclinical
(in vivo, rat)

Suppression of the acute proinflammatory
cytokine (TNF-α, IL-1β, IL-6) production,

increasing expression of pro-resolution
cytokines (IL-4, TGF-β), inhibiting

nucleotomy-induced progressive fibrosis
of the NP

[192,195]

Hyaluronic acid

HMW HA (high
molecular weight
hyaluronic acid

microgel)

Preclinical (in vivo, rat)

Regulation of inflammation by
downregulating IFNα, reduction in cell

death by suppressing expression of
IGFBP3 and caspase-3 fragment p17,

induction of the production of
extracellular matrix

[205]

Biomaterials affecting the expression of various cytokines in damaged discs have
also been reported as a mechanism of biomaterial-induced disc repair. For instance, fibrin
injection (fibrin sealant) after discectomy of porcine IVD has been shown to suppress acute
production of proinflammatory cytokines TNF-α, IL-1β, and IL-6, increase the expression
of pro-resolution cytokines IL-4 and TGF-β, and inhibit discectomy-induced progressive
fibrosis of NP [192]. Furthermore, hyaluronan treatment after rat tail disc injury regulates
inflammation by downregulating IFNα, reduces cell death by suppressing the expression
of IGFBP3 and caspase-3 fragment p17, and induces the production of ECM [205].

3.4. Effects of Biomaterials on Reduction in Pain Related to Damaged IVDs

The goal of biomaterial-based IVD therapy is to not only inhibit tissue degeneration
but also to control the pain caused by disc injury and degeneration. Inflammation within
the lumbar IVD is often a key factor in acute low back pain [168,247,248]. Intradiscal
inflammation and sensory nerve ingrowth into the deep inner layers of the AF cause
discogenic pain during the chronic phase of IVD damage and degeneration [168,249].
Several types of soft biomaterials proposed as candidates for IVD repair have been shown
to inhibit inflammatory cytokines in IVDs and are expected to reduce pain. Recently,
it was reported in an in vivo rat IVD injury model for which methods evaluating pain-
related behavior were established that hydrogels suppress pain [168,209]. Meanwhile,
implantation of a hydrogel (hyaluronic acid hydrogel and UPAL gel) in a rat caudal
NP punch model inhibited nociceptive behavior in Hargreaves, von Fley, and tail-flick
tests [168,209]. The following possible mechanism of the hydrogel effect in the IVD injury-
induced pain model has been reported. First, hydrogels implanted into injured discs of rats
have been shown to regulate inflammation by inhibiting the downstream signaling cascade
that activates nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) by
downregulating IL-6 and IL-β and by inhibiting their binding to receptors [209]. Second,
discogenic pain in the chronic phase is caused by an increased expression of nerve growth
factor (NGF) that is induced by proinflammatory cytokines and the binding of NGF to
its high-affinity receptor, tyrosine kinase A (TrkA), which promotes neoinnervation of the
IVD and local inflammation [168,250–252]. Third, hydrogel treatment of injured discs has
been shown to suppress neurotrophic factors, such as NGF, and reduce NGF-TrkA binding,
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which mediates inhibition of neurite outgrowth of sensory nerves in the discs, resulting in
reduced pain-related behavior in rats [168,209]. Finally, hydrogel treatment of damaged
IVDs is expected to have a palliative effect on acute IVD pain after discectomy, as well as a
preventive effect on discogenic pain [168].

3.5. Biomechanical Evaluation of Soft Biomaterials for NP Repair and/or Regeneration

From a mechanical perspective, soft biomaterials for use in NP treatment should
ideally mimic the material properties of NP and withstand physiological loading condi-
tions in order to restore their biomechanical properties [109]. The water content of NP
is >85% by weight in juveniles, decreasing to approximately 70–75% in adults, and fur-
ther decreases with additional aging and degeneration [253–255]. The swelling stress and
effective, cohesive modulus of non-denatured human NPs in constrained compression
tests are 0.138 MPa and 1.01 MPa, respectively [112], and the complex modulus of NP
is 5.82 kPa at 1 rad per second, 10% compressive strain in torsional shear tests of the
viscoelastic shear properties of NP [109,111]. There have been many in vitro studies on soft
biomaterials that mimic the mechanical properties of native NP tissues, including alginate
hydrogel, collagen gel, hyaluronic acid hydrogel, and polyethylene glycol hydrogel, among
others [115,173,211,256]. It has been shown that these materials exhibit biomechanical
properties comparable to those of NPs, such as water content, stiffness, and viscoelastic
properties, making them candidate materials for use in NP therapy. These candidate soft
biomaterials for NP treatment were first evaluated in vitro and subsequently in situ using
ex vivo or in vivo preclinical animal models; however, no consensus has yet been estab-
lished regarding their biomechanical evaluation as functional spinal units [109,257]. This
may change as biomechanical evaluation methods have been proposed to establish best
practices for screening the performance of newly developed hydrogel formulations and
ensure that these materials meet minimum feasibility benchmarks for translation [257].

In general, biomechanical analysis should include (1) evaluation of the effect of hydro-
gel on disc function repair for axial, torsional, and viscoelastic motion segment responses
and (2) evaluation of durability, mechanical feasibility, and the associated herniation
risk [257]. An ex vivo approach using cadaveric animal/human motion segments can
be used to investigate the biomechanical suitability of the material(s) under study [109].
Motion segments have been tested under uniaxial compression, lateral bending, and
flexion/extension as a biomechanical evaluation of IVD [242]. Meanwhile, the axial com-
pressive properties of IVDs are usually investigated in vertebra-disc-vertebra specimens
of the lumbar spine, with the load-displacement curve showing a nonlinear viscoelastic
response [242]. In other experiments using uniaxial compression, creep, stress relaxation,
vibration/dynamic compression, and high load factor properties have been evaluated [242].
As IVDs are subjected to complex three-dimensional loading in vivo, they should be evalu-
ated on a mechanical spine tester that can apply various combinations of cyclic compression,
bending, and torsion to spinal segments ex vivo [242]. Typical moment–rotation graphs
reveal marked nonlinearity and hysteresis and can be used to evaluate stiffness, the neutral
zone, and range of motion. A setup using six degrees of freedom provides insight into
the resulting range of motion and its restoration to previous values [109,242]. Currently,
several ex vivo and in vivo studies have reported that soft biomaterials, including alginate,
hyaluronic acid, chitosan-based hydrogels, and fibrin, are able to restore biomechanical disc
functions, such as stiffness and range of motion, after disc implantation [7,192,215,258].

In contrast, it has been reported that hydrogel injected into IVDs may extrude out
of the disc in vivo, with no improvement in biomechanical evaluation [206]. Therefore,
to apply hydrogel candidates to preclinical animal models and clinical trials, it is very
important to determine in situ IVD repair, a configuration for which there is currently no
document to guide the evaluation of the development of new hydrogel systems for IVD
treatment, including the evaluation of functional outcomes, such as implant herniation risk
and structural durability [257].
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Herniation risk following IVD repair has been assessed using a cyclic axial loading
test and displacement-controlled ramp-to-failure test [7,230,233,257,259–263]. In particular,
the ramp-to-failure test is designed to evaluate the worst-case IVD motion segment failure
characteristics and hydrogel sealing properties as the motion segment is compressed with
five degrees of side-bending and NP displacement is induced in the radial direction of
the hydrogel [257]. Fatigue endurance testing has also been performed using a fatigue
loading protocol established by Wilke et al. [264]. In this test, called the hula hoop test,
the IVD motion segment is subjected to cyclic eccentric compression at an offset that
induces a physiological bending moment until failure is reached, with NP extrusion being
examined and flexibility testing being performed [233,257,264]. When assessing the risk
of implant herniation and structural durability, the degree of biomechanical recovery
should be assessed by comparing the motion segment of the repaired IVD with that of
the intact IVD, and the biomechanical non-inferiority or superiority relative to standard
treatment should be demonstrated by comparison with an IVD injury model that simulates
discectomy [257].

3.6. Clinical Trial of Soft Biomaterials for Treating IVD Degeneration

As noted above, numerous in vitro and in vivo experiments on NP regeneration
therapy based on using soft biomaterials have been performed, but very few human
clinical trials have investigated the use of biomaterials alone or as a cell scaffold or delivery
system for IVD regeneration. [24,113]. One of the clinical trials in which fibrin sealant was
injected into the IVDs of patients with discogenic low back pain reported on the safety of
the treatment with significant improvement in pain and function at a 24-month follow-
up [195]. Another preliminary study showed that collagen sponges containing autologous
BM-MSCs that were percutaneously transplanted into the discs of two patients resulted in
improved hydration and motion segment instability of the degenerated discs and improved
low back pain at two years postoperative [51]. Using a fibrin carrier in a clinical trial
of 15 patients with lumbar spondylolisthesis associated with mechanical low back pain,
allogeneic juvenile chondrocytes were percutaneously injected into degenerated IVDs,
resulting in no apparent side effects at 12-month follow-up and significant improvement
in disability and pain scores, with 77% of the patients showing improvement on MRI [39].
In a phase I study in which a combination of hyaluronic acid derivatives and autologous
adipose tissue MSCs was percutaneously injected into the discs of 10 patients with chronic
discogenic low back pain, there were no serious adverse events during a one-year follow-up
period, and the patients showed significant improvement in visualized analog scale (VAS)
and Oswestry Disability Index (ODI) scores for pain, as well as improved disc hydration
on diffusion MRI [64].

4. Disc Regeneration and/or Repair Treatment for IVD Herniation

One of the aforementioned targets for NP regeneration therapy is lumbar disc hernia-
tion, which is one of the main causes of back pain and is a psychological burden [168,265,266].
A discectomy for a herniated disc relieves pain by removing the NP through fissures in
the AF, which relieves nerve compression. However, this procedure does not aim to repair
defects in the NP or AF, and the defect within the IVD produced by discectomy can lead
to undesirable postoperative outcomes, including further disc degeneration, chronic low
back pain, and recurrent herniation [168,257]. To compensate for this defect, disc reparative
therapy using soft biomaterials may be useful, as patients with lumbar disc herniation are
typically relatively young (<45 years old), and disc cells are expected to remain in these
individuals [7,267,268] (Figure 1). However, no suitable biomaterial has been developed to
date to replace NP tissue removed after discectomy [168].

Biomaterials for NP regeneration and/or repair after discectomy should not only
function to biologically protect cells and promote tissue repair but should also have the
following biomechanical functions to address the NP and AF defects. First, the bioma-
terial should fill the defective area of the NP and AF, have adhesive properties, and not
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extrude under in vivo loading conditions (Figure 3). Second, the biomaterial should pro-
vide structural support in order to restore biological and biomechanical function to the
damaged tissues.

Figure 3. Herniated disc model with a 4.5 mm diameter hole in a pig lumbar disc injected with
hydrogel. The hydrogel, which has little adhesive ability, easily extrudes from the disc under
compressive load.

4.1. Adhesive Function of Soft Biomaterials after Discectomy or AF Injury

Ex vivo and in vivo studies using AF injury models have demonstrated the usefulness
of soft biomaterials, such as fibrin, collagen, hyaluronic acid, and alginate-based hydrogels,
for IVD regenerative therapy [7,129,140,186,190,192–194,205,223,257,260,262,263,269–276].
These hydrogels have the ability to adhere to tissues and allow for in situ repair of
disc defects. The adhesion mechanism of hydrogels to tissues can be explained through
three modalities, mechanical interlocking, electrostatic interactions, and chemical
interactions [257,277,278].

Mechanical interlocking occurs via the biophysical phenomenon in which the rough-
ness of an adherend surface causes the hydrogel to “mate” with the surface irregularities
and adhere to the tissue surface [257,278,279]. Meanwhile, electrostatic interaction is a
force at the molecular level in which the asymmetrical distribution of attachment surfaces
due to differences in the electronegativity of atoms creates partial positive and negative
charges between the attachment surfaces, which attract each other making it difficult to
functionally separate them [257,279]. Finally, chemical interactions arise from biochemical
phenomena acting at the atomic or molecular level and are characterized by diffusion,
physisorption, and chemisorption [257,280]. For instance, constituent polymers of the hy-
drogel network and the biopolymers of the tissue interpenetrate each other at the interface,
and diffusion occurs between the polymer adhesive and the adherend [257,281]. In com-
parison, physisorption is the adhesion of a biomaterial to a tissue substrate by non-covalent
intermolecular interactions caused by hydrogen bonding and van der Waals forces at the
interface [257,282,283]. Chemisorption is the adhesion of a hydrogel to a tissue substrate
by means of multiple types of covalent bonds, such as imine bonds, amide bonds, urea
bonds, N-N bonds of hydrazine derivatives, and disulfide bridges, which exist between the
adhesive hydrogel and the tissue [257,278,282].

Each type of hydrogel exhibits its own physical and chemical interactions with biopoly-
mers on the tissue surface, and the mechanism of adhesion to IVD tissue differs depend-
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ing on the hydrogel formulation [257]. The main mechanisms of hydrogel adhesion for
IVD repair are proposed to be chemisorption for fibrin-based and collagen-based hy-
drogels [192,222,257,275], and electrostatic interaction, physisorption, and diffusion for
hyaluronic acid-based and alginate-based hydrogels [7,140,205,257].

4.2. Evaluation of Biomechanical and Biological Regeneration by Soft Biomaterials in IVD after
Discectomy or AF Injury

Candidate biomaterials for IVD repair should be evaluated in ex vivo studies for mechan-
ical feasibility and the associated risk of herniation after in situ application (Figure 3). As noted
previously, the risk of herniation after IVD repair can be assessed using cyclic axial loading
tests and displacement-controlled ramp-to-failure tests [257]. Fibrin (genipin cross-linked
fibrin), collagen hydrogel (riboflavin cross-linked collagen, Rose Bengal cross-linked collagen),
alginate (UPAL), chitosan, and cellulose have been shown to improve IVD failure properties
and to retain hydrogels after biomechanical loading in ex vivo biomechanical studies, suggest-
ing their clinical usefulness for IVD repair [7,186,192,223,230,233,257,262,269–273] (Table 5).

Table 5. Biomechanical evaluation of soft biomaterials for intervertebral disc (IVD) repair after a
discectomy or annulus fibrosus injury.

Composition of Soft
Biomaterials

IVD Model
(Ex Vivo)

Biomechanical Evaluation
Method Outcome References

Fibrin
Genipin

cross-linked fibrin

Bovine Cyclic axial tension–
compression, torsion

Full restoration of compressive stiffness,
partial restoration of tensile and

torsional stiffness
[186]

Ovine Cyclic axial tension–
compression, torsion

Restoration of axial range of motion and
torque range [269]

Bovine Cyclic flexion–extension,
torsion, bending

Restoration of torsional stiffness,
bending range of motion, low risk of

herniation in bending and compression
[270]

Bovine Ramp-to-failure test Low risk of herniation [271]

Collagen
hydrogel

Riboflavin
cross-linked

collagen

Ovine Cyclic axial tension–
compression, torsion

Restoration of torsional stiffness and
torque range (combined with nucleus

pulposus augmentation using
hyaluronic acid)

[223]

Rat Axial compression (uniaxial
stress-relaxation)

Improvement in effective equilibrium
and instantaneous

moduli (combined with nucleus
pulposus augmentation using

hyaluronic acid)

[273]

Rat Axial compression (uniaxial
stress-relaxation)

Improvement in effective equilibrium
and instantaneous

moduli
[272]

Rose Bengal
cross-linked

collagen
Rabbit Cyclic axial compression,

torsion push-out test

No extrusion after loading
(40,320 cycles with 0.4 to 0.8 MPa

compressive loading,
0–25 degree torsion)

[262]

Alginate Ultra-purified
alginate (UPAL) Ovine

Static axial compression,
rotation, flexion–extension,

bending,
cyclic axial compression

No extrusion after loading (compression
loading test up to 1000 N, or 1000 cycles
with −300 N to 300 N of axial loading).
Partially restored compression stiffness

[7]

Chitosan

Triple-
interpenetrating-

network hydrogel
comprised of

dextran, chitosan,
and teleostean

Human Cyclic axial compression
No extrusion after loading

(10,000 cycles with 0.12 and 0.96 MPa
compressive loading)

[230]

Cellulose Carboxymethyl-
cellulose Bovine Ramp-to-failure test, fatigue

endurance test

Reduction in herniation risk compared
to injury group, restoration of failure

strength, maximum stiffness, and
subsidence to failure.

Restoration of fatigue endurance
compared to injury group.

[233]
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Histological evaluation in an in vivo AF injury/discectomy model has demonstrated
the effect of several soft biomaterials on IVD tissue repair. Meanwhile, treatment with
hydrogels, such as fibrin, collagen-based hydrogels (riboflavin-cross-linked collagen and
citric acid-1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide col-
lagen gel), hyaluronic acid, and UPAL, has been reported to maintain the IVD structure,
retain NP tissue, and cause less degeneration compared with that in disc-injury control
groups [7,140,192,222,257,274–276,284]. Among the candidate hydrogels, hyaluronic acid-
based gels have not been proven to have biomechanical functions in an AF injury model.
However, it has been reported for NP augmentation and AF repair that the combination of
hyaluronic acid gel with photo-crosslinked collagen gel or fibrin gel prevents disc degen-
eration in vivo after discectomy [204,223]. These findings indicate a potential need for a
combined strategy when it comes to using biomaterials to inhibit disc degeneration after
IVD herniation surgery.

4.3. Clinical Application of Soft Biomaterial Therapy for IVD Herniation

As previously noted, clinical trials of soft biomaterials for the treatment of disc degen-
eration are currently limited. In addition, all the clinical trials have been performed using
intradiscal injection therapy for patients with no AF defects, and there have been no clinical
applications of soft biomaterials for disc repair therapy after discectomy. That noted, a first
human pilot study using an acellular bioresorbable UPAL gel in patients with lumbar disc
herniation has been conducted [246]. In a preclinical study using a large-animal discec-
tomy model, the UPAL gel not only exhibited sufficient biomechanical properties without
protrusion but also histologically promoted disc repair [7]. UPAL gel can be suitable for
various shapes of post-discectomy defects while reducing the risk of gel extrusion because
the alginate gel can be rapidly cured by covering the AF surface with CaCl2 [7,78,92,168].
Based on current findings, UPAL gel is expected to be clinically applied as a soft biomaterial
to safely promote disc repair after disc herniation surgery.

5. Conclusions

IVD degenerative disease, which can cause back pain and neurological disorders,
is a major obstacle to independent and healthy living by afflicted individuals and is an
important issue that needs to be addressed and overcome. However, there is still no
effective treatment that can reduce or restore IVD degenerative changes or even alter the
course of disease progression. A number of studies have been performed on cell-based
IVD regeneration therapies, mainly those using stem cells and biomaterial-based IVD
regeneration therapies using tissue engineering techniques. Fortunately, there have been
reports of their usefulness as IVD tissue regeneration therapies. In addition, multiple clinical
trials evaluating cell therapies, biomaterial therapies, and combinations of these therapies
are currently being conducted. In other words, these therapies have the opportunity to
become a new and unprecedented treatment for IVD degeneration.

However, many challenges need to be overcome for these regenerative therapies to
become clinically practical. With regard to cell-based therapy, there are issues such as the
selection of cell types suitable for IVD regeneration therapy, securing quality cells with
high proliferative and differentiation potential, problems with cell aging, and securing
a sufficient number of cells. Biomaterial-based therapy requires further improvements
in biocompatibility and biomechanical functions described in this review, in addition to
in vivo stability, biodegradability, and non-immunogenicity. Cost and clinical safety are
also important issues for both treatments. Furthermore, the proper indications and patients
for these new therapies, as well as the timing of their introduction, need to be fully dis-
cussed. Further basic research and preclinical and clinical trials are needed in the future to
resolve these issues. With the recent technological innovations in regenerative medicine
and tissue engineering, it is expected that IVD regeneration therapy will overcome the
current biological, biomechanical, and clinical limitations and ultimately achieve signifi-
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cant improvements in daily activities and quality of life for patients suffering from IVD
degenerative diseases.
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