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Abstract: Cellulose nanofibers (CNF), representing the nano-structured cellulose, have attained an
extensive research attention due to their sustainability, biodegradability, nanoscale dimensions, large
surface area, unique optical and mechanical performance, etc. Different lengths of CNF can lead
to different extents of entanglements or network-like structures through van der Waals forces. In
this study, a series of polyvinyl alcohol (PVA) composite films, reinforced with CNF of different
lengths, were fabricated via conventional solvent casting technique. CNF were extracted from jute
fibers by tuning the dosage of sodium hypochlorite during the TEMPO-mediated oxidation. The
mechanical properties and thermal behavior were observed to be significantly improved, while the
optical transparency decreased slightly (Tr. > 75%). Interestingly, the PVA/CNF20 nanocomposite
films exhibited higher tensile strength of 34.22 MPa at 2 wt% filler loading than the PVA/CNF10
(32.55 MPa) while displayed higher elastic modulus of 482.75 MPa than the PVA/CNF20 films
(405.80 MPa). Overall, the findings reported in this study provide a novel, simple and inexpensive
approach for preparing the high-performance polymer nanocomposites with tunable mechanical
properties, reinforced with an abundant and renewable material.

Keywords: TEMPO-mediated oxidized cellulose nanofibrils; morphology and dimension; reinforcement;
polyvinyl alcohol

1. Introduction

Nanotechnology has impacted the wide areas such as medicine, electronics and food
technology by manipulating the nanomaterials for various purposes [1–5]. The material
development has significant improved owing to the incorporation of nanotechnology. In
recent years, the use of nanomaterials as nano-reinforcement in the polymer composites has
been widely reported [6,7]. The nanoscale fibers used for reinforcing the polymer matrices
represent an important class of nano-reinforcements [8–10]. The fibers are dispersed at
nanoscale, thus, a significantly less filler fraction is needed as compared to the conventional
reinforcing materials, while the properties of composites are markedly improved [11,12].
To minimize the environmental health and safety concerns, the sustainable and environ-
mentally friendly development of nanomaterials is highly desired [13,14]. One of the
most promising strategies for the sustainable development involving nanotechnology is
the isolation of nanomaterials from low-cost, abundant, renewable and biodegradable
resources [15]. Thus, the green nanomaterials have received major attention recently, thus,
enhancing the development of natural and renewable products [16,17].

Nanocellulose possesses valuable characteristics such as a renewability and biodegrad-
ability with satisfactory mechanical properties when incorporated in a polymer matrix [18–20].
Owing to the depletion of the raw materials to develop the synthetic polymers, the use
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of nanocellulose as biopolymer reinforcing agent can be promising [21–24]. The literature
studies reveal that research interest in the nanocomposites consisting of nanocellulose and
polymer matrices has significantly enhanced in recent years. The reported increment in the
tensile properties, crystallinity index and specific surface area of the composites success-
fully demonstrate the potential use of nanocellulose as reinforcement for developing the
polymer nanocomposites [25–28]. Overall, nanocellulose represents a superior eco-friendly
material as compared with the inorganic nanoscale materials used as reinforcements [29,30].
However, a few challenges exist with respect to the use of nanocellulose in polymers for
achieving good performance, including the efficient dispersion of particles in the matrix,
compatibility of nano-reinforcement in the matrix and development of suitable methods
for the material processing, which also determining the final properties of the cellulose
nanocomposites [21,24,25].

With respect to the mechanical properties of the nanocellulose-based nanocomposites,
regardless of the type of polymer matrix or processing method, the addition of nanocel-
lulose as a reinforcement phase in the polymer matrices can improve the mechanical
performance of the resulting materials. A number of studies have reported that the ad-
dition of nanocellulose in the polymer matrices leads to an enhanced tensile modulus of
the materials, which is attributed to the geometry and stiffness of nanocellulose [31–33].
In addition, the enhancement in the mechanical properties also corresponds to the strong
interactions between the matrix and nanocellulose, which restrict the movement of the poly-
mer chains, thereby hindering its deformation [22,34]. Apart from mechanical properties,
several studies have shown that the incorporation of nanocellulose can also improve the
thermal properties of the materials [35–37]. Generally, the thermal stability of the polymer
nanocomposites has been reported to increase with the incorporation of nanocellulose,
which is attributed to the restricted mobility of the polymer chains due to the addition of
nanocellulose as well as the homogeneous distribution of nanocellulose in the polymer
matrix [22,24,34,38].

Cellulose nanofibrils with different size presents different surface charge, dimension,
morphology, and crystal structure, which precisely make CNF-based materials possess
distinct properties and performances. Yang et al. produced cellulose nanofibrils with dif-
ferent lengths by the high-pressure homogenization and the results showed that the short
cellulose nanofibril exhibited higher hydrophobicity and low interfacial tension [31]. Isogai
et al. found self-standing films manufactured by longer cellulose nanofibrils displayed
obviously higher tensile strengths, elongations at break and crystallinity indexes [32]. Be-
sides, Wu et al. proposed that cellulose fibril with large size had higher ice recrystallization
inhibition (IRI) activity [33]. These typical results apparently demonstrated that composites
enhancing by cellulose nanofibril with various sizes could showcase significantly differ-
ent properties as well. Moreover, polyvinyl alcohol (PVA), a water-soluble crystalline
polymer, has extensive prospects in the fields of food packaging film materials, textile,
artificial organs and medical gels biomedical fields, etc, which predominantly put down
to its biodegradability, biocompatibility, excellent film-forming properties and gas barrier
properties [39–41]. PVA is normally used composites to lower down the cost of product
without any compromise or partial compromise with its properties and the hydrophilic
composition, which consists of hydroxyl groups in the PVA structure, is well-linked with
carbohydrates, creating significant agreement in composites [40,42,43].

To the best of our knowledge, the previous studies have primarily concentrated
on the impact of nanocellulose on the optical transparency, morphological properties
and mechanical properties of the nanocomposites, and the effect of the CNF length at
nanoscale on the mechanical properties has been rarely studied. In this study, three kinds
of CNF with different dimensions were isolated from jute fibers by tuning the dosage of
sodium hypochlorite during the TEMPO-mediated oxidation, and the CNF reinforced PVA
composites were fabricated via the conventional solvent casting/evaporation technique.
The surface charge, morphology, physical properties and crystallinity index of CNF were
successively characterized, and the impact of CNF length as well as the evolution of the



Polymers 2022, 14, 128 3 of 16

multi-level microstructure in the nanocellulose-based composites during stretching were
studied to explore the mechanism of reinforcement by nanocellulose, so as to provide
an effective reference for the subsequent preparation of nano-matrix composites with
higher performance.

2. Materials and Methods
2.1. Materials

The pristine jute fibers were provided by Redbud Textile Tech. Inc., Suzhou, China.
The fibers were sufficiently dried in a vacuum drying oven at 70 ◦C for over 24 h. Polyvinyl
alcohol with a degree of alcoholysis of 97.0–98.8 mol% was procured from Shanghai
Yuanye Biological Technology Co. Ltd. (Shanghai, China) 2,2,6,6-tetrmethylpiperidine-
1-oxyl radical (TEMPO, 98%), sodium bromide (NaBr, 99.6%) and sodium hypochlorite
(NaClO, 6–14%) were supplied by Shanghai Macklin Biochemical Co. Ltd. (Shanghai,
China) and were used as received. The sodium hydroxide (NaOH, ≥96.0%) and ethanol
were purchased from Shanghai Titan Scientific Co. Ltd. and utilized without any further
purification. All reagents were of analytical grade, and ultrapure water generated using
the Milli-Q plus water purification system (Millipore Corporation, Billerica, MA, USA)
was used.

2.2. Preparation of CNF of Different Sizes

The jute fibers were alkali treated by using 3 wt% NaOH solution at 70 ◦C for 4 to
remove a majority of lignin, hemicellulose and pectin. Subsequently, the pre-treated jute
fibers were filtered and washed for several times with deionized water, followed by drying
in a vacuum oven at 80 ◦C for 6 h. The preparation of CNF by the TEMPO-mediated
catalytic oxidation has been reported in detail by Isogai et al. [44,45]. Briefly, 1 g alkalized
jute fibers were dispersed in 100 mL deionized water. The suspension was stirred for
1 h, followed by the addition of NaBr (0.33 g) and TEMPO (0.033 g). It is particularly
emphasized that the morphology and size of CNF can be changed by adding different
contents of NaClO into the system, which is also the most important point different from
other studies [29,30]. The NaClO solutions (20 g/10 g/5 g) were subsequently added to
the suspension to initiate the reaction at room temperature. The pH of the mixture was
maintained between 10.6 and 10.8 by adding 1 wt% NaOH solution. The reaction was
terminated by adding ethanol (7.0 mL) until the pH of the system no longer changed. The
translucent jelly-like CNF were obtained after repeated centrifugal washing, which were
denoted as CNF20, CNF10 and CNF5, respectively. Later, the resulting CNF were stored at
4 ◦C without any treatment for subsequent utilization.

2.3. Preparation of PVA/CNF Films

The PVA/CNF composite films were fabricated by using the solvent casting technique
(Figure 1). PVA was first heated to dissolve in deionized water to obtain 8 wt% solution and
were subsequently mixed with CNF dispersion in different ratios in a flask under vigorous
stirring for 1.5 h to obtain the PVA/CNF hybrid solutions. Here, the weight content of CNF
in the CNF/PVA nanocomposite solutions was varied from 0 to 2 wt% (based on the PVA
solid weight). The mixed solutions were diluted to a solid content of 4 wt%, and the same
quantity of the mixed solutions was subsequently poured in the TFE molds with the same
diameter and dried for 48 h at 25 ◦C, 1% humidity. Eventually, a series of nanocomposites
with different CNF contents was obtained.
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Figure 1. The schematic representation of the synthesis of the PVA/CNF nanocomposite films.

2.4. Transmission Electron Microscopy (TEM)

The CNF morphology was analyzed by using a transmission electron microscope
(JEM-2100F, Japan JEOL Ltd, Beijing, China) equipped with a Gatan 1 k × 1 k CCD camera.
About 10 µL CNF ethanol suspensions were deposited onto glow-discharged carbon-coated
TEM grids.

2.5. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of polyvinyl alcohol, nanocellulose and the reinforced composites
were acquired by using a Bruker Tensor II infrared spectrometer (Karlsruhe, Germany) in
the range 400–4000 cm−1.

2.6. Particle Size and Zeta Potential Measurement

Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, UK) was used to measure the
surface charge and estimate the size of the nanocellulose particles in aqueous suspension.
The suspensions were diluted 1000 times and sonicated for 30 min. The measurements were
replicated 3 times, and an average value was presented. Additionally, the zeta potential
distribution of the CNF suspensions was monitored with no ionic strength adjustment.

2.7. Mechanical Properties

The tensile analysis of the PVA film and nanocellulose reinforced PVA composites
were carried out using an INSTRON 5966 electronic universal material testing machine
(Boston, America), equipped with a 10 kN load cell. The film specimens were cut in a
rectangular shape with dimensions 40 × 5 mm and a thickness of 0.2~0.3 mm. The tensile
measurements were conducted using a head speed of 6 mm min−1 and a span length of
10 mm. Each membrane was tested at least 5 times under same conditions, and the average
value were reported.

2.8. Thermal Properties

The thermal properties of the PVA/CNF composite films were evaluated using Discov-
ery TGA 500 and DMA Q800 (TA, New Castle, DE, USA). The thermogravimetric analysis
(TGA) of each sample (5–10 mg) was carried out in the temperature range 50–700 ◦C, and
the heating rate was set as 10 ◦C min−1 under N2 purging (30 mL min−1). The dynamic
thermomechanical properties of the nanocomposites were analyzed using a heating rate of
3 ◦C min−1 in the temperature range −50 to 100 ◦C.
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2.9. UV-Vis Spectra

The visible light transmittance of the PVA/CNF films was determined in the wave-
length range from 200 to 800 nm by using a PerkinElmer Lambda 950 UV-visible spec-
trophotometer, (Waltham, MA, USA).

2.10. The Degree of Carboxylation of TEMPO-Oxidized CNFs

The degree of carboxylation of TEMPO-oxidized CNFs was investigated by electric
conductivity titration method [22,46]. Herein, 55.3 g CNF suspensions (containing 0.3 g
CNF) and 0.01 M NaCl solution (5 mL) were mixed and stirred sufficiently to prepare a well-
dispersed slurry. Then the above mixture was acidified with 0.1 M HCl solution and stirred
again for 1 h at a pH value in the range of 2.5–3.0, thus ensuring all the carboxylate(−COO−)
to be changed to carboxyl groups (−COOH) for further measurement. Subsequently, 0.04 M
NaOH solution was dropwise added at the rate of 0.1 mL/min until pH = 11. During
titration, conductivity meter was used to monitor the change of conductivity of solution
in real-time. Finally, the titration curve of the NaOH consumption and conductivity was
plotted, and the carboxylate content of the sample was determined from the titration curves.
The content of carboxyl groups (C) was determined using the following equation:

C =
(V2 − V1)× CNaOH

m
(1)

where V1 and V2 are the volume of the used NaOH solution (mL), corresponding to the
intersection point of the linear fitting lines between the first and second stage and between
the second and third stage, respectively. CNaOH represents the concentration of the NaOH
solution (0.04 M), and m refers to the weight of the CNFs.

3. Results and Discussion
3.1. Characterization of CNF with Different Lengths

Nano-CNF with different lengths were fabricated by the TEMPO catalytic oxidation.
The preparation method is a simple process and does not require the complex and expensive
equipment. As observed from the TEM images of CNF20 (Figure 2a), CNF10 (Figure 2b)
and CNF5 (Figure 2c), the diameters of the CNFs are in the nanoscale range, with the
length successively increasing from a few hundred nanometers to a few microns. Figure 2d
respectively shows the optical images of the CNF films. As observed, the color of the
different CNF films exhibits a significant distinction owing to the dimensional changes
in CNFs.

During the TEMPO catalytic oxidation, NaClO reacts continuously with the jute fibers
as an oxidant. Therefore, under certain pH conditions, the content of NaClO directly
determines the degree of CNF reaction. The greater the amount of NaClO, the more
hydroxyl groups on C6 in the cellulose are oxidized. As a result, the TEMPO oxidation
becomes more thorough, thus, reducing the length. Thus, the nanocellulose with different
morphology and size can be designed by adjusting the addition of NaClO.

CNF20 presents a uniform structure with a diameter of 5–10 nm and a length of several
hundred nanometers to a few microns, thus, exhibiting a resultant aspect ratio of more
than 50. Also, CNF10 exhibits a relatively uniform size under 200 nm, which is larger in
length as compared to CNF20. In addition, entanglements among the fibers are observed,
which may be caused by the fact that a small amount of CNF are not completely peeled off
and are still connected to each other. As noted from Figure 2c, the size of CNF5 is much
larger than the other two, with the largest diameter up to tens of nanometers. The observed
phenomenon may be due to the low concentration of NaClO leading to a lower degree of
oxidation, thus, a majority of CNF are not been stripped out, thus, leading to a significant
extent of non-nanoscale cellulose in the system.
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The observed phenomenon was further confirmed by optical images of the films
prepared using different nanocellulose materials. As can be observed from the Figure 2d,
on increasing the NaClO dosage, the transparency of the CNF membrane is enhanced.
For a low NaClO content, the size of the cellulose fibers is in the micron range (or even
visible to the naked eye), thus, the macroscopic materials do not demonstrate an effective
light transmittance. On increasing the proportion of NaClO, the size of the cellulose fibrils
reaches the nanoscale, and the CNF are closely packed with each other, thereby imparting
optimal optical properties to the films.

As per the previous studies, changing the dosage of sodium hypochlorite does not
affect the crystalline transformation of cellulose, with only change observed in the mor-
phology and size of nanocellulose [47].

The characterization of the chemical structure, crystal structure and tensile properties
of the different CNF materials are summarized in Figure 2e–f. As observed from the infrared
spectra in Figure 2e, the nanocellulose materials exhibit the characteristic absorption peaks
at 3340, 2901, 1595, 1105, 898 cm−1 with slight differences in intensities among different
samples [48,49]. It indicates that the chemical structure of CNF largely remains the same.
Specifically, a strong absorption peak around 3300 cm−1 is observed, corresponding to
the stretching vibration of the hydroxyl group [50]. The intensity of the O–H stretching
absorption peak was more pronounced for the CNF20 and CNF10 compared with CNF5,
showing a higher proportion of cellulose within fibers [51]. The vibration peak at 2910 cm−1
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is assigned to the C–H stretching vibration of the methylene group, whereas the C–H
symmetric bending of CH2 appears at 1410 cm−1 [52,53]. At the same time, CNF exhibit
characteristic bonds at 1595, 1105 and 898 cm−1, which are attributed to the stretching
vibration of COONa derived by the TEMPO-mediated oxidization, C–O–C stretching
of the ether bond and characteristic absorption of the cellulosic anomeric carbon C1,
respectively [46–51]. Moreover, the intensity of the COO− peak exhibits the following
order: CNF20 > CNF10 > CNF5, indicating the degree of carboxylation increased with
increasing NaClO contents, which consists with conclusion of Puangsin et al [51,54].

Figure 2f presents the 1D integrated SR-WAXS curves of CNF20, CNF10 and CNF5.
The integral curves display two strong diffraction peaks at 2θ = 18.1◦ and 27.8◦, correspond-
ing to the lattice planes of cellulose ((200) and (004)). Moreover, two overlapping weak
diffraction peaks at 2θ = 11.5◦ and 13.5◦ can be attributed to the Bragg peaks of cellulose
((110) and (110)). Overall, the different nanocellulose materials with various dimensions do
not exhibit any changes in the crystalline structure.

The zeta potential is an important index representing the stability of a colloidal system,
which manifests the degree of repulsion of the adjacent particles with the same charge
in the dispersion. The higher is the absolute value of the zeta potential, the better is the
stability of the colloidal dispersion. In other words, the ability to dissolve or disperse is
higher than that of agglomeration [55]. The zeta potential distribution of CNF20, CNF10
and CNF5 is illustrated in Figure 2g. As observed, CNF20, CNF10, and CNF5 possess
negative ξ values, peaking at −62.8, −54.7 and −37.2 mV, respectively. The absolute value
of the zeta potential of nanocellulose is noted to increase with the NaClO addition, thus,
indicating that the CNF dispersion becomes more electrically stable. It is due to the reason
that a higher content of NaClO promotes the oxidation, so that a large number of primary
hydroxyl groups on the surface of CNF are converted into COO−, and a strong electrostatic
repulsion between the microfibers in water contributes to the uniform dispersion of CNF
in the aqueous solution. The observed finding is consistent with the TEM observations.

The mechanical behavior of the CNF films is presented in Figure 2h. As observed
from the stress-strain curve, CNF10 exhibits the best mechanical properties, with the tensile
strength and Young’s modulus reaching up to 126.38 MPa and 7.4 GPa. In contrast, the
tensile strength of CNF20 is 101.58 MPa, which is slightly lower than CNF10. On the other
hand, its modulus is about 1.1 GPa lower than CNF10 (7.4 GPa). It is worth noting that
the modulus of CNF5 is as low as 2.14 GPa, and the tensile strength is much lower as
compared to CNF20 or CNF10, which may be attributed to the inhomogeneous dispersion
of cellulose in the PVA matrix. In general, the CNF with different sizes exhibit completely
different mechanical properties, which is important for exploring the different behaviors of
the reinforced composites.

3.2. Determination of the Content of Carboxyl Groups and Carboxylate in CNFs

Figure 3a–c shows the conductivity titration curves of CNFs with different dimensions.
As is shown in Figure 3a–c, the relationship of the conductivity with the consumption of
sodium hydroxide solution can be divided into three stages. With the increasing volume of
sodium hydroxide, the conductivity decreases linearly in the first stage, changes slowly
and tends to plateau in the second stage, and then begins to increase linearly in the third
stage. The consumption of sodium hydroxide solution is directly relevant to the original
carboxyl groups and the newly generated carboxyl groups from carboxylate after HCl
acidification. According to the above Equation (1), the total content of carboxyl groups and
carboxylate in CNFs can be calculated as 0.77 mmol g−1, 0.75 mmol g−1 and 0.34 mmol g−1,
respectively, which further demonstrates that more NaClO content promotes TEMPO-
mediated oxidation, and consequently increases the degree of carboxylation of CNF.
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3.3. Thermal Properties of CNFs with Different Lengths

The thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG)
curves of CNFs are exhibited in Figure 3d–e. The degradation temperature (Tonset) and
maximum degradation temperature (Tmax) are listed in Table 1. The onset thermal degrada-
tion temperature of TEMPO-oxidized CNFs is 206.93, 220.73, 225.21 ◦C, respectively, which
is lower than jute fiber (>250 ◦C). The lower degradation temperature of TEMPO-oxidized
CNFs is attributed to decarboxylation of sodium anhydroglucuronate units and degrada-
tion of cellulose [51]. At the same time, the two main sharp peaks could be clearly observed
from the DTG curves of CNFs, which represents the fastest degradation rate. According
to Table 1, the Tmax1 and Tmax2 of CNF5 are all higher than CNF10 and CNF20. Besides, a
higher content of residues at 800 ◦C (>25.0%) is observed for three kinds of CNFs, which is
induced by a sodium cation acting as a counterion [56]. In conclusion, with the increase of
sodium hypochlorite dosage, the carboxyl contents on cellulose surfaces increase and the
decreased thermal stability connected with a higher residue content could be obtained [57].

Table 1. TGA data of CNFs with different morphology.

Samples Tonset/◦C Tmax1/◦C Tmax2/◦C Char Yield/%

CNF20 206.93 256.08 313.85 25.90
CNF10 220.73 257.29 321.44 25.89
CNF5 225.21 259.36 327.99 28.06

3.4. The Effects of Morphology and Dimension of CNF on PVA/CNF Composites
3.4.1. Chemical Strcture

The differences in the chemical structure of PVA and CNF can be evaluated from
the infrared spectra in Figure 4a. Both PVA and CNF exhibit strong absorption peaks
around 3300 cm−1, which represents the stretching vibration of the hydroxyl group [58].
The absorption bonds at 2910 cm−1, 1410 cm−1 and 1050 cm−1 are assigned to the C–H
stretching vibration of the methylene base, C–H bending vibration peak of methylene
and C–O stretching, respectively [59]. On the other hand, the characteristic absorption
peaks of CNF are observed at 1595, 1105 and 898 cm−1 [53], which are also consistent with
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Figure 2e. However, in the FTIR spectra of the PVA/CNF composite films, the characteristic
absorption peaks of CNF are not obvious, owing to the small content of CNF.
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3.4.2. Optical Transparency

Owing to the superior optical transparency of the neat PVA films, the morphology
of nanocellulose and its distribution in the PVA matrix play a dominant role in the visi-
ble light transmission of the nanocomposites [25]. The UV-vis spectra of the PVA/CNF
nanocomposite films are presented in Figure 4c–e. The transmittance (Tr., %) of pure PVA
film is noted to be as high as 90%, and the composite films also exhibit a remarkable
optical transparency. Compared with the PVA/CNF10 and PVA/CNF5 composites, the
PVA/CNF20 films display the highest optical transmittance for the same CNF concentra-
tion. The Tr. values of PVA/CNF20–0.5%, PVA/CNF10–0.5% and PVA/CNF5–0.5% are
determined to be 87.80%,87.75% and 87.42%, respectively, which are only about 3% lower
than the transmittance of the pure PVA film (90.84%). In addition, as also observed from
the Figure 4c–e, the Tr. of PVA/CNF20–2% and PVA/CNF10–2% decreases to 83.51% and
80.51%, respectively, while the light transmission of PVA/CNF5–2% shows a remarkable
decline to 77.55%, thus, further indicating the effect of the uniform size of CNF20 as well as
its perfect dispersion and distribution in the PVA matrix.

3.4.3. Mechanical Properties

Figure 4f–h and Table 2 present the tensile modulus, tensile strength and elongation-
at-break of the composite materials. The typical stress-strain curves of the samples are also
presented in Figure S1.
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Table 2. The tensile properties of pure PVA and PVA/CNF nanocomposites.

Film CNF Content
(%)

Tensile
Strength (MPa)

Elongation at
Break (%)

Young’s
Modulus (MPa)

PVA 0 31.65 ± 0.85 550.61 ± 11.06 91.00 ± 21.64

PVA/CNF20

0.5 34.84 ± 0.44 535.26 ± 10.71 197.73 ± 22.03
1.0 34.02 ± 0.71 507.12 ± 11.65 227.41 ± 30.59
1.5 34.46 ± 0.80 447.24 ± 15.49 239.29 ± 17.22
2.0 34.22 ± 0.66 385.04 ± 10.73 405.80 ± 20.34

PVA/CNF10

0.5 36.21 ± 0.62 458.49 ± 13.85 234.98 ± 24.25
1.0 34.21 ± 0.33 430.71 ± 20.47 266.22 ± 30.66
1.5 33.48 ± 0.43 352.42 ± 8.58 378.88 ± 25.25
2.0 32.55 ± 0.56 324.52 ± 6.78 482.75 ± 21.95

PVA/CNF5

0.5 29.97 ± 0.72 529.64 ± 11.06 114.48 ± 24.21
1.0 30.64 ± 0.85 437.54 ± 11.75 141.27 ± 16.57
1.5 29.75 ± 0.48 390.89 ± 17.21 145.77 ± 14.87
2.0 22.71 ± 0.82 284.42 ± 12.48 196.83 ± 23.33

Compared to the raw PVA film, the Young’s modulus of the PVA/CNF composite
films display a significant increase as a function of the CNF content. Particularly, the tensile
modulus of the PVA/CNF10 composites is observed to increase by 430% after the addition
of 2% CNF10. A similar behavior is also observed for tensile strength, where a rising
trend is noticed as a function of the nanocellulose loading. However, as the CNF content
reaches 2%, the tensile strength is observed to decrease slightly, probably owing to the poor
distribution caused by the agglomeration of nanocellulose. Although a similar trend is
noticed for the different nanocellulose materials, not all CNF materials are observed to
generate a uniform reinforcement of the polyvinyl alcohol matrix. The incorporation of
CNF5 results in a gradual decline in the tensile strength of the PVA composite film. The
possible reason is that the presence of the non-nanoscale cellulose in CNF5 hinders its
homogeneous dispersion in PVA and weakens the hydrogen bond interaction between
CNF and PVA; thus, the polymer molecular chains cannot be compactly stacked, and the
defects are easily formed. Besides, the elongation at break suffers a successive reduction on
increasing the CNF content for all PVA/CNF nanocomposite films, which is attributed to
the tough network structure formed between the cellulose nanofibirls, thus, thoroughly
restricting the polymer chain activity [22,34].

3.4.4. Thermal Properties

The effect of CNF on the thermodynamic behavior of the PVA/CNF nanocomposites
was characterized using thermogravimetric analysis (Figure 5). As observed, the samples
exhibit a two-step thermal degradation, which is consistent with the degradation of PVA,
as reported previously [60]. First, the dehydration reaction of PVA occurs at 220–350 ◦C, as
shown in the following equation:

Equation 2:  
 

 
(2)

Second, the polyene residues degrade to form a mixture of carbon and hydrocarbons.
The typical temperatures at 5% weight loss (T−5%) and 25% weight loss (T25%) are used to
study the thermal stability of the PVA composite films, as manifested in Table 3. T−5% of
PVA is noted to be approximately 263 ◦C. Incorporating CNF (especially CNF20) in the
PVA matrix shifts the T−5% and T25% values toward higher temperatures, i.e., the thermal
stability of the PVA films is improved on incorporating CNF20 and CNF10. Particularly,
only 1% filler loading of CNF20 leads to a remarkable increase of 25 ◦C in T25%, which can be
attributed to the hydrogen bonds derived from CNF and PVA. The hydrogen bonds inhibit
the movement of the polymer molecular chains, thereby forming a denser structure in the
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nanocomposites, which restricts the degradation of the PVA matrix [22,34,38]. However,
the thermal stability of PVA/CNF5 is noted to decrease, as the thermal degradation of the
non-nanoscale cellulose material accelerates the thermal decomposition of PVA [61–64].

Table 3. The TGA data of neat PVA and PVA/CNF composites as a function of the CNF content.

Film CNF Content (%) T−5%/◦C T25%/◦C

PVA 0 263.07 367.21

PVA/CNF20

0.5 265.97 368.63
1.0 264.95 391.12
1.5 262.94 376.18
2.0 258.38 376.81

PVA/CNF10

0.5 264.51 388.55
1.0 262.27 368.36
1.5 263.84 361.96
2.0 262.21 367.24

PVA/CNF5

0.5 258.25 358.17
1.0 265.17 361.43
1.5 262.56 357.07
2.0 260.15 342.87

The high strength, dimensional anisotropy and biocompatibility of CNF make them
a functional and renewable reinforcing agent for the polymer composites. The compati-
bility between the matrix and filler as well as the interfacial effect directly determine the
composite properties. If the filler is not uniformly dispersed in the matrix or the interface
adhesion with the matrix is weak, the mechanical properties of the composites cannot
be enhanced or may even deteriorate. Thus, it is necessary to analyze the mechanical
properties for exploring the affinity between the reinforcing agent and matrix as well as
the relationship between the macro-performance and microstructure of the material [21].
The mechanical reinforcing effect of CNF in the PVA matrix was evaluated by using the
conventional electronic universal testing and dynamic mechanical analysis (DMA).

Figure 6 and Table 4 exhibits the evolution of the storage modulus and tan δ versus
temperature for the PVA/CNF nanocomposite films as a function of the nanocellulose
size and proportion (i.e., 0, 0.5, 1.0, 1.5 and 2 wt%). As observed from the DMA curves
and DMA data, a small extent (less than 1 wt%) of CNF can make the storage modulus
of the composite about 5−12%. Once the CNF content reaches or even exceeds 1%, a
steady improvement in the viscoelasticity of the obtained nanocomposites is obtained,
especially above the glass transition temperature (Tg). Specifically, PVA/ CNF5 showed the
highest storage modulus (1453 MPa) when the CNF dosage was 1.0%, while PVA/CNF20
exhibited 53.4% higher storage modulus than pure PVA when the dosage was 1.5%. The
CNF addition of 2.0% resulted in slightly lower storage modulus than that of 1.5%. The
observed enhancement trend might be associated with the restricted network structure
formed by CNF in the PVA matrix [25].
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Table 4. The DMA data of PVA and PVA/CNF composites as a function of the CNF content.

Samples PVA 20–0.5 20–1.0 20–1.5 20–2.0 10–0.5 10–1.0 10–1.5 10–2.0 5–0.5 5–1.0 5–1.5 5–2.0

Tg/◦C 80 80 80 80 80 80 80 80 80 83 82 85 84
∆E’ at Tg

/MPa 1096 1225 1289 1681 1333 1156 1376 1173 1142 1263 1453 1030 1370

3.4.5. The Comparison of this Work with Other Researches

The results of this work compared with other researches were summarized in Table 5.
Compared PVA/MFC, the PVA/CNF films in this work possess lower tensile strength
and lower Young’s modulus, which may be attributed to the smaller diameter and lesser
CNF content. However, the PVA/CNF composites exhibit higher tensile strength and
higher Young’s modulus contrast with EVA/CNF when the added CNF have similar
size. In addition, the added CNF is CNF-I while the strength and modulus are lower
than PVA/CNF-I, which can be caused by filming technology. In general, the PVA/CNF
films in this work show relatively superior mechanical property, optical transparency and
thermodynamic property, which will make them have a wide application prospect in
the future.

Table 5. The results of this work compared with other researches.

Samples CNF Morphology σ/MPa ε/% E/MPa Tr./% Td/◦C References

D/nm L/nm After Before After Before After Before After Before After Before

PVA/MFC 365 - 48 1 41 - - 1600 1 1200 - - 2651 252 [65]
EVA/CNF 5–10 - 3.64 2 3.32 688 2 750 6.92 2 5.36 77 2 78 - 320–380 [51]

PVA/CNF-I
10–15

1120 44.30 3 39.08 89.2 3 320.5 1473.86 3 96.09 53 3
90

294.9 4 272.5 [25]PVA/CNF-II 250 44.59 3 39.08 313 3 320.5 276.2 3 96.09 86 3 287.4 4 272.5
PVA/CNF20 5–10 200–1000 34.22 5

31.65
385.04 5

550.61
405.80 5

91
83.51 5

90.84
258.38 5

263.07 This workPVA/CNF10 10–15 1000–3000 32.55 5 324.52 5 482.75 5 80.51 5 262.21 5

PVA/CNF5 20–50 >3000 22.71 5 284.42 5 196.83 5 77.55 5 260.15 5

Abbreviations: σ = Tensile Strength; ε = Elongation at break; E = Young’s Modulus; Tr. = Transparency;
Td = Thermal degradation temperature; D = Diameter; L = Length. 1 CNF content was 3%; 2 CNF content
was 1%; 3 CNF content was 10%; 4 CNF content was 5%; 5 CNF content was 2%.

4. Conclusions

In summary, a novel, simple and inexpensive strategy has been demonstrated for
preparing the high performance polymer nanocomposites with tunable mechanical prop-
erties, based on the reinforcement of the PVA matrix with abundant and renewable CNF.
Three kinds of CNF with different dimensions were produced by using the classical TEMPO
catalytic oxidation by altering the NaClO content. The CNF grades exhibited distinct
chemical structure, crystalline structure, light transmission, gel stability and mechanical
properties. Subsequently, the reinforcement effect of the different CNF on the optical
transparency, thermostability and mechanical properties of the PVA nanocomposites was
thoroughly investigated. First, despite a decline in the optical transparency caused by CNF,
the PVA/CNF films demonstrated a favorable visible light transmittance (Tr. > 75%). Mean-
while, the inherent nature of CNF, homogeneous dispersion and compatibility between
PVA and CNF also had a significant impact on the mechanical properties and thermal
stability of the PVA/CNF nanocomposite films. Due to the high strength and modulus of
CNF10, the PVA/CNF films demonstrated a superior Young’s modulus of 482.75 MPa at
2 wt% filler loading. Further, the presence of CNF may induced the nucleation of the PVA
matrix, which further contributed to the generation of the steady and robust 3D network.

Supplementary Materials: Supplementary information for this article can be found in the online
version: https://www.mdpi.com/article/10.3390/polym14010128/s1: Figure S1: Stress-Strain curves
of pure PVA and PVA/CNF composites with various concentration of CNF.
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