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Abstract
A nonparanormal graphical model is a semiparametric generalization of a Gaus-
sian graphical model for continuous variables in which it is assumed that the
variables follow a Gaussian graphical model only after some unknown smooth
monotone transformations. We consider a Bayesian approach to inference in a
nonparanormal graphical model in which we put priors on the unknown trans-
formations through a random series based on B-splines. We use a regression
formulation to construct the likelihood through the Cholesky decomposition on
the underlying precision matrix of the transformed variables and put shrinkage
priors on the regression coefficients. We apply a plug-in variational Bayesian
algorithm for learning the sparse precision matrix and compare the perfor-
mance to a posterior Gibbs sampling scheme in a simulation study. We finally
apply the proposed methods to a microarray dataset. The proposed methods
have better performance as the dimension increases, and in particular, the vari-
ational Bayesian approach has the potential to speed up the estimation in the
Bayesian nonparanormal graphical model without the Gaussianity assumption
while retaining the information to construct the graph.
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1 INTRODUCTION

The Gaussian graphical model (GGM) is a mathemati-
cal model commonly used to describe conditional inde-
pendence relationships among normally distributed ran-
dom variables. The estimation of the underlying graph
in a GGM is known as structure learning. Zeros in the
inverse covariance matrix, or the precision matrix, indi-
cate that the corresponding variables in the dataset are

conditionally independent given the rest of the variables
in the dataset, and this relationship is represented by
the absence of an edge in the graph. Similarly, nonzero
entries in the precision matrix are represented by edges
in the graph and correspond to conditionally dependent
variables in the dataset. Thus, an assumed sparsity con-
dition is used to learn the conditional dependence struc-
ture in a GGM. An extension of the GGM is the non-
paranormal graphical model [26] in which the random
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variables are replaced by transformed variables that are
assumed to be normally distributed. Liu et al. [26] use a
truncated empirical distribution function to estimate the
transformation functions and then estimate the precision
matrix of the transformed variables using the graphical
lasso. A Bayesian method for the nonparanormal graph-
ical model [36] uses a random series B-splines prior to
estimate the transformation functions and a Student-t
spike-and-slab prior to estimate the resulting precision
matrix. These extensions differ from the Gaussian copula
graphical model [14, 25, 33, 43] in that the nonparanormal
graphical model concurrently estimates the transforma-
tion functions and the precision matrices. Nonparanormal
graphical model approaches have been applied to discrete
data models of interactions between genes [38] and to test
differential gene networks [57].

Estimation of a sparse precision matrix is necessary to
learn the structure in GGMs and nonparanormal graphical
models. For unstructured precision matrices, a commonly
used algorithm in the frequentist literature is the graph-
ical lasso [16]. Many algorithms have been proposed to
solve this problem including [2, 13, 16, 28, 31, 32, 45, 46,
54, 56].

Analogous methods in the Bayesian literature use pri-
ors to aid the edge selection procedure. For instance,
off-diagonal entries of the precision matrix may be set to
zero by allowing a point mass at zero in the prior [3], but
the posterior is harder to compute or sample from. A nor-
mal spike-and-slab prior [51] replaces the point mass at
zero by a highly concentrated normal distribution around
zero and similarly, a Laplace spike-and-slab prior [17] has
been used. From a computational point of view, continu-
ous shrinkage priors such as the horseshoe prior [9], the
Dirichlet–Laplace prior [6], and generalized double expo-
nential prior [1], bring in the effects of both a point mass
and a thick tail by a single continuous distribution with an
infinite spike at zero.

Ideally, we seek solutions that guarantee a sparse pos-
itive definite matrix using continuous shrinkage priors.
Since continuous shrinkage priors do not assign exact
zeros, a variable selection procedure needs to be used
to determine which of the small and nonzero elements
should be specified as exactly zero. Methods that use
spike and slab priors naturally incorporate variable selec-
tion, whereas methods that use alternative priors need
a thresholding procedure. However, post-hoc threshold-
ing procedures do not guarantee a positive definite preci-
sion matrix. The methods in [50, 51] guarantee a positive
definite matrix by way of the sampling algorithm. [42,
50] use the double exponential prior and improve on
its use for sparsity by allowing each double exponen-
tial prior to have its own shrinkage parameter. More
recent methods estimate the inverse covariance matrix by

using the normal spike and slab prior [22, 23, 41, 51] for
variable selection in the graphical model context. Lastly,
Williams et al. [53] constructs Gaussian graphical mod-
els by estimating the partial correlation matrix using a
horseshoe prior for regularization and for sparsity, using
projection predictive selection, a method that allows for
variable exclusion based on predictive utility, with good
results.

The purpose of this paper is to explore the use of a
Cholesky decomposition, horseshoe prior, and variational
Bayesian (VB) techniques to construct a Bayesian non-
paranormal graphical model. Utilizing a Cholesky decom-
position is an alternative way to incorporate the positive
definiteness constraint on precision matrices, but is very
dependent on the ordering of the variables [44]. We con-
sider a prior based on Cholesky decomposition of the
precision matrix that reduces this dependence. We derive
a sparsity constraint that ensures a weak order invariance
in that it maintains the same order of sparsity in the rows
of the precision matrix by increasing the order of sparsity
down the rows of the lower triangular matrix. We con-
struct a pseudo-likelihood through regression of each vari-
able on the preceding ones. The approach splits the very
high dimensional original problem to several lower dimen-
sional ones. The method in [55] is also based on Cholesky
decomposition, but it uses a noninformative Jeffreys’ prior
and the ordering issue of the Cholesky decomposition is
not addressed.

We consider two different priors, the horseshoe and
the Bernoulli–Gaussian [47]. These priors have clear inter-
pretations of the probability of nonzero elements [47,
48], which allows us to effectively calibrate sparsity. The
strength of the Bernoulli–Gaussian prior is that it leads
to a sparse positive definite precision matrix that does
not require thresholding and the strength of the horse-
shoe prior is that it is a better model of sparsity than the
Bernoulli–Gaussian prior due to its heavier tails. Horse-
shoe priors have not yet been considered for Bayesian
nonparanormal graphical models that use transformation
functions. We compare the performance of the meth-
ods using both a VB algorithm and a full Markov chain
Monte Carlo (MCMC) sampling scheme. Mean field vari-
ational Bayes [18, 49] is an alternative to MCMC that
allows for faster fitting by deterministic optimization.
A VB method for Gaussian graphical models is devel-
oped in [10] and an expectation conditional-maximization
approach is used by Li and McCormick [23] in Gaus-
sian copula graphical models. This approach has not yet
been explored in the setting of a nonparanormal graphical
model. We wish to determine if we can retain the infor-
mation learned in a Bayesian nonparanormal graphical
model while speeding up the estimation process using VB
techniques.
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The paper is organized as follows. In the next section,
we describe the model and the sparsity constraint. In
Section 3, we describe the VB algorithm. In Sections 4
and 5, we discuss particular priors and their correspond-
ing Markov Chain Monte Carlo algorithms. In Section 6,
we describe a thresholding procedure and in Section 7,
we detail the tuning procedure. In Section 8, we present
a simulation study. In Section 9, we describe a real data
application.

2 MODEL AND PRIORS

2.1 Nonparanormal transformation

Definition 1. A random vector X =
(

X1, … ,Xp
)′ has a

nonparanormal distribution if there exist smooth mono-
tone functions {fd ∶ d = 1, … , p} such that Y = f(X) ∼
Np(𝝁,Σ), a normal distribution with mean 𝝁, covari-
ance matrix Σ, and dimension p, and where f(X) =(

f1 (X1) , … , fp
(

Xp
))′. In this case, we shall write X ∼

NPN(𝝁,Σ, f).

We put prior distributions on the unknown trans-
formation functions through a random series based on
B-splines. In [36], we have described the prior distribu-
tions, including the motivation and support for the choices
made, in greater detail. We briefly describe the prior in
this section. We represent the transformation functions
f(x) =

(
f1 (x1) , … , fp

(
xp
))′ in a nonparanormal model

X ∼ NPN(𝝁,Σ, f) through a basis expansion

fd (xd) =
J∑

𝑗=1
𝜽djB𝑗

(xd) , (1)

where each 𝜃dj are coefficients, B
𝑗
(⋅) are the B-spline basis

functions, d = 1, … , p, 𝑗 = 1, … , J, and J is the num-
ber of B-spline basis functions used in the expansion.
We assume that the precision matrix Ω = Σ−1 is sparse,
in that, most of its off-diagonal entries are zero. How-
ever, the model is not identifiable, since location-scale
changes in the transformation functions and the normal
distributions can be canceled by each other. To resolve
the issue, one possibility is to fix the mean-vector to
zero and assume that the covariance matrix is a cor-
relation matrix, but putting a prior on such a matrix
maintaining sparsity of its inverse appears inconvenient.
Therefore, we let the mean and the precision matrix be
free parameters while putting restrictions on the trans-
formations. We begin with a normal prior on each of
the coefficients of the B-splines, 𝜽d = (𝜃d1, … , 𝜃dJ)′, that
is set to be 𝜽d ∼ NJ

(
𝜻 , o2I

)
, where o2 is some positive

constant, 𝜻 is some vector of constants, and I is the identity

matrix, and impose a monotonicity restriction on them
to make the transformation fd monotone (see below for
details). We impose the following two linear constraints
on the coefficients through function values of the transfor-
mations: 0 = fd(1∕2) =

∑J
𝑗=1𝜃djB𝑗

(1∕2) and 1 = fd(3∕4) −
fd(1∕4) =

∑J
𝑗=1𝜃dj

[
B
𝑗
(3∕4) − B

𝑗
(1∕4)

]
. The linear con-

straints can be written in matrix/vector form as A𝜽d = c
for each d = 1, … , p. The linear nature of the constraints
allows us to retain the joint normality of the coefficient
vectors before the monotonicity restriction, and hence a
truncated joint normal after the restriction is imposed.

By the properties of a B-spline basis function, if
the B-spline coefficients, 𝜃dj are increasing in 𝑗, then f

𝑗

is an increasing function. We thus impose the mono-
tonicity constraint on the coefficients, which is equiv-
alent with the series of inequalities 𝜃d2 − 𝜃d1 > 0, … ,

𝜃dJ − 𝜃d,J−1 > 0. The monotonicity constraint can be
expressed in matrix/vector form as F𝜽d > 0 for each
d = 1, … , p. Thus, the prior on the coefficients before
the truncation is imposed is given by 𝜽d ∣ {A𝜽d = c} ∼
NJ(𝝃,Γ), where the prior mean and variance are 𝝃 =
𝜻 + A′(AA′)−1(c − A𝜻) and Γ = o2

[
I − A′(AA′)−1A

]
. To

ensure we have a Lebesgue density on R
J−2, we work with

a dimension-reduced coefficient vector by removing two
coefficients and we denote this reduction with a bar over
the vector and matrix.

The final prior on the coefficients is given by a
truncated normal prior distribution 𝜽d ∣ {A𝜽d = c} ∼
TNJ−2(𝝃,Γ,  ), where 𝜽d is the dimension-reduced coef-
ficient vector with the dimension-reduced mean vector
𝝃, dimension-reduced covariance matrix Γ, restric-
tion  =

{
𝜽d ∶ F𝜽d + g > 0

}
. Additionally, F is the

dimension-reduced matrix of the monotonicity con-
straints and g is a dimension-reduced vector of the
constant pertaining to the monotonocity constraints. We
denote the truncated normal distribution as TNp(𝝁,Σ,  )
with mean 𝝁, covariance matrix Σ, restriction  , and
dimension p. Any choice of 𝜻 is acceptable, but we use
𝜁
𝑗
= 𝜈 + 𝜏Φ−1

(
𝑗−0.375

J−0.75+1

)
, 𝑗 = 1, … J, where 𝜈 is a con-

stant, 𝜏 is a positive constant, andΦ−1 is the inverse of the
cumulative distribution function of the standard normal
distribution. The idea is that by increasing the original
components of the mean vector 𝜻 , the truncation set 
in the final prior of the B-spline coefficients will have a
substantial prior probability.

Finally, we put an improper uniform prior on the mean
p(𝝁) =

∏p
d=1pd (𝜇d) ∝ 1. The resulting transformed vari-

ables, Zd = Yd − 𝜇d, which are assumed to be distributed
as N

(
0,Ω−1) and Yd =

∑J
𝑗=1𝜽djB𝑗

(Xd), d = 1, … , p, are
used to estimate the precision matrix and learn the struc-
ture of the underlying graph.
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2.2 Cholesky decomposition
reformulated as regression problems

We learn the structure of the precision matrix using a
Cholesky decomposition. Denote the Cholesky decompo-
sition ofΩ asΩ = LL′, where L is a lower triangular matrix
with elements lkd. Define the coefficients 𝛽kd = −lkd∕ldd
and the precision as 𝜙d = 1∕𝜎2

d = l2
dd, where d = 1, … , p.

Then, as described in [55], the lower triangular entries of
Ω, denoted as Ωkd, are given by

𝜔kd =
d∑

m=1
lkmldm =

d∑

m=1
𝛽km𝛽dm𝜙m, for k ≥ d.

Accordingly, the multivariate Gaussian model Z ∼ N(0,Σ)
is equivalent to the set of independent regression problems

Zd =
∑

k>d
𝛽kdZk + 𝜀d, 𝜀d ∼ N

(
0, 𝜎2

d
)
, d = 1, … , p,

where 𝛽kd are the regression coefficients for k = d +
1, … , p and d = 1, … , p, and Zd and Zk are, respectively,
the dth column and kth columns selected from matrix Z.
We use the notation k > d to indicate that the columns are
greater than the dth column.

We use a standard conjugate noninformative prior
on the variances. We consider two different continuous
shrinkage priors on the regression coefficients, the horse-
shoe prior and the Bernoulli–Gaussian prior. Using these
priors, we enforce a sparsity constraint along the rows
of the lower triangular matrix. The sparsity constraint is
one in which the global sparsity parameter of the con-
tinuous shrinkage prior is scaled by

√
k, where k > d

and d = 1, … , p. Using this constraint, we expect that
the precision matrix will be sparse through weak order
invariance. The sparsity constraint is derived in the next
section.

2.3 Sparsity constraint

In order to ensure that the probability that an entry is
nonzero (i.e., sparsity) remains roughly the same over dif-
ferent rows we cannot simply impose the same degree of
sparsity on the rows of the Cholesky factor L, but need to
change it over rows appropriately. Denote the probability
as P(⋅). To see how the Cholesky factor L depends on the
row index, we observe that

P (𝜔kd ≠ 0) = P

( p∑

m
lkmldm ≠ 0

)

= P (lkmldm ≠ 0 for some m)

= 1 − P (lkmldm = 0 for all m)

= 1 − P
(
∩min(k,d)

m=1 {lkmldm = 0}
)

= 1 −
min(k,d)∏

m=1
P (lkmldm = 0)

= 1 −
min(k,d)∏

m=1
{1 − P (lkmldm ≠ 0)}

= 1 −
min(k,d)∏

m=1
{1 − P (lkm ≠ 0)P (ldm ≠ 0)}

= 1 − {1 − P (lkm ≠ 0)P (ldm ≠ 0)}min(k,d)
.

Let 𝜌k =P(nonzero entry in the kth row of L). Then

P (𝜔kd ≠ 0) = 1 − (1 − 𝜌k𝜌d)min(k,d)
.

If k ∼ d, the expression is roughly 1 −
(
1 − 𝜌

2
k

)k, which
remains stable in k if 𝜌k = cp∕

√
k, where cp depends on p

but not on k. Then, we obtain the probability of nonzero
to be 1 − exp

(
−c2

p
)
. Furthermore, choosing cp to be small

for p →∞ makes the probability small, which is essen-
tial in higher dimension. We choose 𝜌k = P(nonzero in
kth row)= c∕(p

√
k), and tune the value of c ∈ {0.1,1,10}

to cover a range of three orders of magnitude, that is
10−1

, 100
, 101.

3 VARIATIONAL BAYES
ESTIMATION

We observe n independent samples, X1, … ,Xn, from the
nonparanormal model NPN

(
𝝁,Ω−1

, f
)

with a sparse Ω.
Based on these observations and the prior described in
Section 2.1, we intend to compute the posterior distribu-
tion to make inferences aboutΩ and its structure, using the
transformations f. Ideally, we would want to construct a
complete VB algorithm in which the B-spline coefficients,
mean, and inverse covariance matrix are estimated all in
one setting. However, for our problem, there is no closed
form solution for the truncated multivariate normal distri-
bution, and closed form solutions are needed for the mean
field VB algorithms. Instead, we use an exact Hamiltonian
Monte Carlo within Gibbs scheme to sample the B-spline
coefficients and the mean. We obtain the Bayes estimate
of the B-spline coefficients, ̂𝜽d = E (𝜽d|X1, … ,Xn), and
the Bayes estimate of the mean, 𝜇d = E (𝜇d|X1, … ,Xn),
where E (⋅|X1, … ,Xn) is the posterior mean operator. We
then apply the VB method on the synthetic data obtained
by transforming the original observations using the esti-
mated transformations. Thus we estimate the transformed
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variables using

Zid =
J∑

𝑗=1

̂
𝜃jdB

𝑗
(Xid) − 𝜇d.

Ideally, instead of plugging in, one can obtain samples
from the posterior distributions of the transformations
and draw samples from the variational distributions of the
precision matrix for each generated sample and accumu-
late them. However, even in moderately high dimension,
such an approach is extremely computationally intensive.
Since the posterior distributions of the transformations
are consistent [36], they concentrate near the Bayes esti-
mate. As the main goal is structure learning, the inabil-
ity of the plug-in to assess the posterior variability of
the transformations is not a highly deterring issue. Thus,
although the proposed algorithm is not fully Bayesian,
it utilizes the strength of the VB approach to identify
conditional independence relations in a nonparanormal
graphical model within a manageable time. While the vari-
ational inference generally underestimates the posterior
variance [8], the quality of uncertainty quantification is
affected, but that of estimation is hardly compromised.
Moreover, since the goal of structure learning is to identify
zero or nearly nonzero elements in the precision matrix,
the main purpose is not affected at all. We illustrate the
variational method on the Bernoulli–Gaussian prior, fol-
lowing the strategy described in [39]. Let the Bernoulli
distribution be denoted as Ber and the inverse gamma
distribution be denoted as IG(A,B) with shape parame-
ter A and scale parameter B. We can describe the joint
distribution by

Zd ∣ 𝜷k>d,𝝈, 𝛶k>d ∼ N
(

Zk>d𝛶k>d𝜷k>d, 𝜎
2
dI
)
,

𝛽kd ∼ N
(
0, g2)

𝜐kd ∼ Ber
(
𝜌

∗
kd
)
, 𝜎

2
d ∼ IG(A,B), (2)

for d = 1, … , p, where 𝜷k>d =
(
𝛽d+1, … , 𝛽p

)
is the vector

of regression coefficients, Zk>d is the matrix of transfor-
mations, and 𝛶k>d is a binary indicator matrix of 0s and
1s that is modeled by the Bernoulli distribution with ele-
ments 𝜐kd. The hyperparameters g2, A, and B, are fixed,
and 𝜌

∗
kd ∈ [0, 1] controls the sparsity. This variant of the

spike-and-slab prior indirectly models sparsity on the
regression coefficients by putting a binary indicator on the
regression coefficients in the likelihood, instead of directly
modeling sparsity on the regression coefficients. As such,
if 𝜐kd = 0 for the Bernoulli–Gaussian prior, then 𝛽kd ∣ 𝜐kd ∼
N

(
0, g2), unlike in usual spike-and-slab priors in which

𝛽kd would be exactly equal to 0. We select 𝜌∗kd using a tun-
ing procedure that incorporates the sparsity constraint and
is discussed in Section 3.1.

The joint posterior distribution that we aim to compute
is

p
(
𝜷, 𝛶 ,𝝈

2|Z
)
∝

( n∏

i=1

p−1∏

d=1
p
(

Zid|Zi,k>d, 𝜷k>d, 𝛶k>d, 𝜎
2
d
)

×p
(
𝜷k>d

)
p (𝛶k>d) p

(
𝜎

2
d
)

p
(

Zip|𝜎2
p
)

p
(
𝜎

2
p
)
)

.

By plugging in the estimated transformed variables, we use
a VB algorithm to compute the posterior distribution of the
sparse precision matrix. Mean field VB inference involves
minimizing the Kullback–Leibler divergence between the
true posterior distribution and a factorized approximation
of the posterior. Let 𝜿 represent the set of parameters in
the model and Z represent the matrix of estimated trans-
formed variables. Then, p(𝜅|Z) is approximated by q(𝜿) =∏K

k=1qk (𝜿k), where (𝜿1, … ,𝜿K) is a partition of 𝜿. The
optimal qk densities satisfy

qk (𝜿k) ∝ exp
[
E∖qk(𝜿k){log p(Z,𝜿)}

]
,

where E∖qk(𝜿k) is the expectation with respect to all densi-
ties except qk (𝜿k) [7]. The variational lower bound (VLB)
for the marginal likelihood for Z is then given by

VLB(q) = Eq[log{p(Z,𝜿)∕q(𝜿)}],

where Eq is the expectation with respect to the density
qk (𝜿k). Using the coordinate ascent method, optimizing
each qk while holding the others fixed will result in the
algorithm converging to a local maximum of the lower
bound.

Following [39], the choice of factorization that we use
for the VB approximation is

q
(
𝜷, 𝝊,𝝈

2) = q
(
𝜎

2
p
) p−1∏

d=1
q
(
𝜷d

)
q
(
𝜎

2
d
) p∏

k=d+1
q (𝜐kd) ,

with, for some choice of parameters

q∗
(
𝜷d

)
∼ N (𝜶d,Σd) , q∗

(
𝜎

2
d
)
∼ IG

(
A + n

2
, sd

)
,

q∗ (𝜐kd) ∼ Ber (wkd) .

The parameters are obtained by the VLB with respect to
them by coordinate ascents, called variational updates,
which we can derive as in [39]. Introduce the notations
expit(x) = exp(x)∕{1 + exp(x)}, and logit(x) = log(x∕(1 −
x)), and let the symbol ◦ denote the Hadamard product
between two matrices. Then, we obtain

Σd =
[
𝜏d

(
Z′k>dZk>d

)
◦Ωd + g−2I

]−1
,
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𝜶d = 𝜏d
(
𝜏dWdZ′k>dZk>dWd +Dd

)−1WdZ′k>dZd,

sd = B + 1
2

[
‖Zd‖2 − 2Z′dZk>dWd𝜶d

+ tr
{(

Z′k>dZk>d◦Ωd
) (
𝜶d𝜶

′
d + Σd

)} ]
,

𝜂kd = logit
(
𝜌

∗
kd
)
− 𝜏d

2
(
𝛼

2
kd + Σk,k

)
‖Zk‖2

+ 𝜏d
[
𝛼kdZ′kZd − Z′kZl>kWl>k

(
𝜶l>k𝛼kd + Σl>k,k

)]
,

sp = B + 1
2
‖‖Zp‖‖

2
, wkd = expit (𝜂kd) ,

𝜏d =
2A + n

2sd
,

for l = k + 1, … , p, and k = d + 1, … , p. Note that we use
the notation l > k to indicate that the columns are greater
than the kth column and #(k > d) means the number of
columns k higher than d. In addition, Wd = diag (wk>d)
where wk>d =

(
wd+1, … ,wp

)
,Ωd = wdw′

d +Wd (I −Wd),
and Dd = 𝜏d

(
Z′k>dZk>d

)
◦Wd◦ (I −Wd) + g−2I.

Using these optimal qk densities, the VLB simplifies to

VLB(Z; 𝜌) = −
pn
2

log(2𝜋) + pA log(B)

− p logΓ(A) −
(

A + n
2

)
log sp

+ p logΓ
(

A + n
2

)

+
p−1∑

d=1

{
#(k > d)

2
− #(k > d)

2
log

(
g2)

−
(

A + n
2

)
log (sd) +

1
2

log |Σd|

− 1
2g2 tr

(
𝜶d𝜶

′
d + Σd

)
+

p∑

k=(d+1)

[
wkd log

(
𝜌

∗
kd

wkd

)

+ (1 − wkd) log
( 1 − 𝜌

∗
kd

1 − wkd

)]}
. (3)

The VB algorithm (Algorithm 1) is detailed in Appendix C.

3.1 Tuning procedure

For every (p − 1) regression problem, we choose the
parameter 𝜌∗kd, used in the prior in Equation (2), by apply-
ing the tuning algorithm described in detail in [39, sec.
4] because the authors also describe a way to select the
hyperparameter 𝜌, the tuning parameter that they use to
control sparsity. In this section, we describe the changes
that we made to add the sparsity constraint to our tun-
ing parameter. We use the value of 𝜌 discussed in [39]
and multiply that value with 𝜌k = c∕(p

√
k) to incorporate

the sparsity constraint discussed in Section 2.3. Thus, for
the fixed 𝜌 that was discussed in [39], for our work, that
translates to 𝜌

∗
k = expit(−0.5

√
n)∕(p

√
k). Note that, since

the dimension d is not changing for 𝜌∗k, we do not need to
include c for tuning. For a fixed w, which was discussed in
[39], for our work, which translates to the fixed wk>d, and
we select 𝜌

∗
kd =

(
expit

(
𝜄
𝑗

)
c
𝑗

)
∕(p

√
k), where c

𝑗
is taken

from an equally spaced grid of 50 points between 0.1 and
10, and 𝜄

𝑗
varies over an equally spaced grid of 50 points

between −15 and 5. We replace the c with c
𝑗

which leads
a grid of 50 values of c

𝑗
between 0.1 and 10 instead of

the three values of c ∈ {0.1,1,10} that was discussed in
Section 2.3. The variational lower bound for the tuning
procedure is only based on the preceding (p − 1) regres-
sions and not the regression relations that involve Zp and
𝜎

2
p .

4 MCMC ESTIMATION
THROUGH THE HORSESHOE PRIOR

4.1 Horseshoe prior

We use the horseshoe prior described in [37], to shrink the
𝛽 coefficients

Zd ∣
(
Zk>d, 𝜷k>d, 𝜎

2
d
)
∼ N

(
Zk>d𝛽k>d, 𝜎

2
dI
)
,

𝛽kd ∣
(
𝜆

2
d, bkd, 𝜎

2
d
) ind∼ N

(

0,
𝜎

2
dbkdc2

𝜆

2
d

p2k

)

,

𝜆

2
d ∣ ad ∼ IG

(
1
2
,

1
ad

)
, ad ∼ IG

(1
2
, 1

)
,

bkd ∣ hkd
ind∼ IG

(
1
2
,

1
hkd

)
, hkd ∼ IG

(1
2
, 1

)
,

𝜎

2
d ∼ IG(A,B), (4)

for d = 1, … , p, where 𝜷k>d =
(
𝛽d+1, … , 𝛽p

)
, Zk>d is the

matrix of transformations, and A and B are fixed hyperpa-
rameters.

The global scale parameter 𝜆 is roughly equivalent to
the probability of a nonzero element [48]. We enforce the
sparsity constraint using, (𝜆dc) ∕(p

√
k). Thus, since we are

working with the squared parameter, the factor in the vari-
ance term for 𝛽kd is

(
𝜆

2c2) ∕
(

p2k
)
, where c ∈ {0.1,1,10}.

The joint posterior distribution and the correspond-
ing conditional posterior distributions are provided in
Appendix A, and the sampling algorithm (Algorithm 2) is
provided in Appendix C.

5 MCMC ESTIMATION
THROUGH THE
BERNOULLI–GAUSSIAN PRIOR

5.1 Bernoulli–Gaussian prior

We use the same Bernoulli–Gaussian prior described
in Equation (2). The joint posterior distribution and
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the corresponding conditional posterior distribu-
tions are provided in Appendix B and the sampling
algorithm (Algorithm 3) is provided in Appendix C.

6 THRESHOLDING

Since the horseshoe prior is a continuous shrinkage prior,
it does not assign exact zeros to the elements of the inverse
covariance matrix, so we must apply a thresholding pro-
cedure that determines which of the elements should be
exactly zero. The resulting thresholded matrices are then
used to construct the graphical model. The threshold-
ing procedure that we consider for the method using the
horseshoe prior (Equation 4) is based on a 0–1 loss func-
tion described in [50] for classification under absolutely
continuous priors. Although this procedure is heuristic, it
seems to perform well in practice. Other thresholding rules
may be used, such as those based on posterior credible
intervals [19], information criterion [20], clustering [24],
posterior model probabilities [3, 34], and projection predic-
tive selection [53], but we choose to focus on the 0–1 loss
procedure for this study.

6.1 0–1 Loss procedure

We find the posterior partial correlation using the preci-
sion matrices from the Gibbs sampler of the horseshoe
prior (Equation 4) and the posterior partial correlation
using the standard conjugate Wishart prior. The poste-
rior samples of the partial correlation using the precision
matrices from the Gibbs sampler are defined as

ekd,m =
−𝜔kd,m

√
𝜔kd,m𝜔dd,m

,

where 𝜔kd,m is an MCMC sample from the posterior dis-
tribution of Ωm, where m = 1, … ,M, M is the num-
ber of MCMC samples, and k, d = 1, … , p. The posterior
partial correlation using the standard conjugate Wishart
prior is found by starting with the latent observation,
Zm, which is obtained from the MCMC output. We put
the standard Wishart prior on the precision matrix, Ωm ∼
Wp(3, I), which was used in [50] for their thresholding
procedure, where I is the identity matrix. Note that this
Wishart prior does not assume sparsity, but Z is obtained
from the MCMC output assuming sparsity of the preci-
sion matrix. Through conjugacy, the posterior distribu-
tion is Ωm ∼ Wp

(
n + 3, (I + Sm)−1), where Sm = Z′mZm.

We then calculate the mean of the posterior distribution,
Hm = E (Ωm|Zm) = (n + 3)(I + Sm)−1. Finally, we compute
the posterior samples of partial correlation coefficients by

conjugate Wishart prior as

𝑗kd,m =
−hkd,m

√
hkd,mhdd,m

,

where hkd,m stands for the (k, d)th element of Hm.
We link these two posterior partial correlations for the

0–1 loss method. We claim the event
{
𝜔kd,m ≠ 0

}
if and

only if
ekd,m

𝑗kd,m
> 0.5, (5)

for k, d = 1, … , p and m = 1, … ,M. The idea is that we
are comparing the regularized precision matrix from the
horseshoe prior to the nonregularized precision matrix
from the Wishart prior. If the absolute value of the par-
tial correlation coefficient from the regularized precision
matrix is similar in size or larger than the absolute value
of the partial correlation coefficient from the Wishart pre-
cision matrix, then there should be an edge in the edge
matrix. If the absolute value of the partial correlation
coefficient from the regularized precision matrix is much
smaller than the absolute value of the coefficient from the
Wishart matrix, then the entry should not appear in the
edge matrix.

7 CHOICE OF PRIOR
PARAMETERS

For the precision matrix being estimated with a horse-
shoe prior (Equation 4), we need to select the value of
the parameter c which controls the sparsity. We solve a
convex constrained optimization problem in order to use
the Bayesian Information Criterion (BIC), as described in
[11, 12]. First, we find the Bayes estimate of the inverse
covariance matrix, ̂Ω = E(Ω|Z). We also find the average
of the transformed variables, Z = M−1∑M

m=1Zm, where Zm,
m = 1, … ,M, are obtained from the MCMC output. Then,
using the sum of squares matrix S = Z

′
Z, we solve for

̂ΩMLE, the maximum likelihood estimate of the inverse
covariance matrix

minimize
Ω

− n log detΩ + tr(ΩS), subject to(̂Ω),

where  represents the constraint that all elements of ̂Ω at
the locations of the zeros of the estimated edge matrix from
the MCMC sampler are zero. The estimated edge matrix
from the MCMC sampler will be described in more detail
in Section 8. For computational simplicity, in the code, we
represent this problem as an unconstrained optimization
problem as described in [11, 12].
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Lastly, we calculate BIC = −2𝓁
(
̂ΩMLE

)
+ k log n,

where k is the sum of the number of diagonal elements
and the number of edges in the estimated edge matrix,
̂Ω, and −𝓁

(
̂ΩMLE

)
= −n log det ̂ΩMLE + tr

(
̂ΩMLES

)
. We

select the value of c that results in the smallest BIC.

8 SIMULATION RESULTS

We conduct a simulation study to assess the performance
of the proposed methods using the horseshoe MCMC,
indicated as Horseshoe, Bernoulli–Gaussian MCMC, indi-
cated as Bernoulli–Gaussian, and VB algorithm, indicated
as variational Bayes. We choose not to include the Bayesian
method for the nonparanormal graphical model described
in [36] because we want to compare only the Cholesky
decomposition-based Bayesian methods to the empirical
method for the nonparanormal graphical model [26] and
to a Bayesian Gaussian copula graphical model [33] based
method. We indicate the Bayesian Gaussian copula graph-
ical model by the Bayesian Copula, in which the rank
likelihood is used to transform the random variables with
a uniform prior on the graph, a G-Wishart prior on the
inverse correlation matrix, and estimation is used with the
birth-death MCMC [34]. These competing methods all uti-
lize a transformation of the data to learn the graphical
structure.

We assess the performance of these methods by calcu-
lating sensitivity, specificity, and the Matthews correlation
coefficient (MCC). We assess the effect of the transforma-
tion functions of our proposed methods by calculating the
scaled L1-loss. These metrics are detailed in Section 8.1. In
this section, we describe the data generation process used
to conduct the simulation study.

The random variables, Y1, … ,Yp, are simulated from a
multivariate normal distribution such that Yi1, … ,Yip

i.i.d.∼
N

(
𝝁,Ω−1) for i = 1, … ,n. The means 𝜇 are selected from

an equally spaced grid between 0 and 2 with length p. We
consider nine different combinations of n, p, and sparsity
for Ω:

• p = 25, n = 25, sparsity = 10% nonzero entries in the
off-diagonals;

• p = 50, n = 100, sparsity = 5% nonzero entries in the
off-diagonals;

• p = 100, n = 300, sparsity = 2% nonzero entries in the
off-diagonals;

• p = 25, n = 25, AR(2) model, sparsity ≈ 16%;
• p = 50, n = 100, AR(2) model, sparsity ≈ 8%;
• p = 100, n = 300, AR(2) model, sparsity ≈ 4%;
• p = 25, n = 25, circle model, sparsity = 8%;

• p = 50, n = 100, circle model, sparsity = 4%;
• p = 100, n = 300, circle model, sparsity = 2%;

where the circle model and the AR(2) model are described
by the relations

• Circle model: 𝜔ii = 2, 𝜔i,i−1 = 𝜔i−1,i = 1, and 𝜔1,p =
𝜔p,1 = 0.9;

• AR(2) model: 𝜔i,i = 1, 𝜔i,i−1 = 𝜔i−1,i = 0.5 and 𝜔i,i−2 =
𝜔i−2,i = 0.25.

The percent sparsity levels for Ω are computed using
lower triangular matrices that have diagonal entries
normally distributed with 𝜇diag = 1 and 𝜎diag = 0.1, and
nonzero off-diagonal entries normally distributed with
𝜇∖diag = 0 and 𝜎∖diag = 1, where ∖ denotes the complement
of the set.

The observed variables X =
(

X1, … ,Xp
)

are con-
structed from the simulated variables Y1, … ,Yp. The
functions used to construct the observed variables are
three cumulative distribution functions (c.d.f.s): asymmet-
ric Laplace, extreme value, and stable. Any values of the
parameters for the c.d.f.s could be chosen, but instead of
selecting 25, 50, and 100 sets of parameters, we automati-
cally choose the values of the parameters. The values are
the maximum likelihood estimates of the corresponding
distributions (asymmetric Laplace, extreme value, and sta-
ble) using the variables Y1, … ,Yp, calculated with the mle
function in MATLAB.

We follow the procedure in [36] to estimate the
transformation functions. The hyperparameters for
the normal prior are chosen to be 𝜈 = 1, 𝜏 = 1, and
o2 = 1. To choose the number of basis functions, we
use the Akaike Information Criterion as described in
[36]. Samples from the truncated multivariate normal
posterior distributions for the B-spline coefficients are
obtained using the exact Hamiltonian Monte Carlo
(exact HMC) algorithm [40]. The initial coefficient
values, 𝜃dj,initial, for the exact HMC algorithm are cal-
culated using quadratic programming as described in
[36]. After finding the initial coefficient values 𝜽d, we
construct initial values for Yd,initial =

∑J
𝑗=1𝜃dj,initialB𝑗

(Xd)
using the observed variables. These initial values Yinitial
are used to find the initial values for Σ,𝝁, and Ω for
the algorithm, where Σinitial = cov (Yinitial) ,𝝁initial =
Yinitial, where Yinitial is the average of Yinitial, and
Ωinitial = Σ−1

initial.
For the part of the simulation study in which we

do not estimate the transformation functions, the initial
values for the Horseshoe, Bernoulli–Gaussian, and varia-
tional Bayes algorithms are constructed from the observed
variables, X, with Σinitial = cov(X), 𝜇initial = X, where X
is the average of X, and Ωinitial = Σ−1

initial. Afterward, the
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mean 𝜇 and the precision matrixΩ are estimated using the
algorithms as described in the previous sections.

The hyperparameter g2 for the Bernoulli–Gaussian
prior and the variational Bayes algorithm is fixed at 10.
The hyperparameters A and B for the inverse gamma dis-
tribution for the Bernoulli–Gaussian prior, the variational
Bayes algorithm, and the horseshoe prior, are fixed at A =
B = 0.01. The initial value, 𝜏0, where t = 0, for the varia-
tional Bayes algorithm is chosen to be 1000. The threshold
𝜀 for stopping the variational Bayes algorithm is set to 𝜀 =
10−6. For the variational Bayes algorithm and the MCMC
algorithm using the Bernoulli–Gaussian prior, the tun-
ing procedure described in Section 3.1 is used to find the
hyperparameter for the Bernoulli distribution, 𝜌∗kd. Since
the vector wk>d from the tuning procedure consists of only
0 and 1 values, it is used as the initial indicator vector 𝝊d for
the MCMC algorithm using the Bernoulli–Gaussian prior.
The data matrix that is used as input for the tuning pro-
cedure is Zinitial = Yinitial − 𝝁initial, which was described in
the previous paragraphs.

For the MCMC algorithm for the horseshoe prior, we
consider three values of c that are a range of three orders
of magnitude: c ∈ {0.1,1,10}. The value of c that yields
the lowest BIC was selected for the final estimates of the
precision matrix and edge matrix. The 0–1 loss proce-
dure described in Section 6.1 was used to threshold the
precision matrices and construct the edge matrices.

For the simulation study, we run 100 replications for
each of the nine combinations and assess structure learn-
ing for each replication. We collect 10,000 MCMC samples
for inference after discarding a burn-in of 5000. We do
not apply thinning. The Bayesian copula method is imple-
mented by the R package, BDGraph [35] using the option
“gcgm.” Posterior graph selection is done using Bayesian
model averaging, the default option in the BDGraph pack-
age, in which it selects the graph with links for which their
estimated posterior probabilities are greater than 0.5. The
nonparanormal graphical model is implemented by the
R package huge [58] using the option “truncation.” The
graphical lasso method is selected for the graph estimation
and the default screening method, lossless [30, 54], is used.
Three regularization selection methods are used to find the
estimated precision matrix and select the nonparanormal
graphical model: the Stability Approach for Regularization
Selection (StARS) [27], the modified Rotation Information
Criterion (RIC) [29], and the Extended Bayesian Informa-
tion Criterion (EBIC) [15]. The default parameters in the
huge package are used for each selection method. As in
Liu et al. [26], the number of regularization parameters
used is 50 and they are selected among an evenly spaced
grid in the interval [0.16, 1.2].

The code for the proposed Bayesian methods is
written in MATLAB and sparse representations of the

matrices are used when appropriate. For the variational
Bayes algorithm, when calculating w∗

kd = expit (𝜂kd), it is
set to 0 if exp (𝜂kd) is below 2−52, which is eps, the
floating-point relative accuracy in MATLAB, while w∗

kd is
set to 1 if exp (𝜂kd) is equal to infinity in MATLAB
for numerical stability. Infinity results from operations
that lead to results too large to represent as conventional
floating-point values. Similar adjustments are also applied
for the Bernoulli–Gaussian MCMC. The code is given in
Appendix C.

8.1 Performance assessment

We compute the Bayes estimate of the precision matrix
̂Ω = E(Ω|Z) by averaging all MCMC samples after burn-in,
or the variational Bayes estimate by averaging over 500
independent samples from the variational distribution.
The median probability model [4] is used to obtain the
Bayes estimate of the edge matrix. We find the estimated
edge matrix by first using the 0–1 loss procedure dis-
cussed in Section 6.1 to threshold the MCMC precision
matrix samples, and then we take the mean of the thresh-
olded precision matrices. If each off-diagonal element of
the mean of the thresholded matrices is greater than 0.5,
the element is registered as an edge in the estimated edge
matrix, and if each off-diagonal element of the mean is not
greater than 0.5, it is registered as no edge. We use 0.5 as
the cut-off since an average above 0.5 means on average,
the matrices included an edge more than half of the time.

We compute specificity (SP), sensitivity (SE), and MCC
to assess the performance of the graphical structure learn-
ing. They are defined as follows:

Specificity = TN
TN + FP

, Sensitivity = TP
TP + FN

,

MCC = TP × TN − FP × FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and
FN is the number of false negatives. For all three metrics,
the higher the values are, the better is the classification. If
there are models that are estimated to have no edges, they
result in NaNs as MCC values.

We also look at the effect of the transformation func-
tions on parameter estimation for our methods. We con-
sider the scaled L1-loss function, the average absolute dis-
tance, as a measure of parameter estimation. Scaled L1-loss
is defined as

Scaled L1 − loss = 1
p2

∑

k

∑

d

‖‖‖
̂Ωkd − Ωtrue,kd

‖‖‖
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F I G U R E 1 Violin plots of the sensitivity results for each of the methods for different structures of precision matrices. Percent refers to
the 10% model for dimension p = 25, 5% model for dimension p = 50, and 2% model for dimension p = 100

where Ωtrue,kd stands for the true covariance matrix. Note
that for the Bayesian Copula method, we use the estimated
inverse correlation matrix and the true correlation matrix
in place of the precision matrix for loss calculation.

We review the results of sensitivity, specificity, MCC,
and the scaled L1-loss for each method using violin plots.
In general, for sensitivity, specificity, and MCC, the closer
the violin plots are to one and the tighter the violin plots,
the better the performance of the method. For the scaled
L1-loss, the closer the violin plots are to zero and the tighter
the violin plots, the better performance.

First, we consider sensitivity. In Figure 1 for the p = 25
dimension and AR(2) model, the StARS model has the
best sensitivity, followed with the Bayesian Copula model.
For p = 50 and the AR(2) model, the Bayesian Copula per-
forms the best, followed by the StARS model. Notably, the
proposed methods perform better at the p = 50 dimen-
sion than at the p = 25 dimension, with the Horseshoe
method performing the third best. Finally, for the p = 100
dimension and AR(2) model, the Bayesian Copula method
performs the best and the proposed methods perform sec-
ond best, with the Horseshoe method performing the best
and the variational Bayes and Bernoulli–Gaussian meth-
ods performing third and fourth best. The Bayesian Copula

is the best, the Horseshoe is the second best, and the
Bernoulli–Gaussian and variational Bayes methods are the
third and fourth best, respectively. For the p = 25 dimen-
sion and the circle model, all methods are high performing,
but the RIC and StARS methods perform the best and
the Bayesian Copula method is the third best. For the
p = 50 and p = 100 dimensions and the circle model, all
methods perform similarly. For the p = 25 dimension and
the 10% model, the StARS method is the best and the
Bayesian Copula method is the second best. For the p = 50
dimension and 5% model, the Bayesian Copula method
performs the best. The Horseshoe and StARS methods
perform similarly and are the second best, while the vari-
ational Bayes and Bernoulli–Gaussian methods perform
similarly and are the third best. For the p = 100 dimension
and the 2% model, the Bayesian Copula slightly outper-
forms the Horseshoe model, and the Bernoulli–Gaussian
and variational Bayes methods perform similarly at third
best.

Next, we review how the methods perform when
considering specificity. In Figure 2 for all dimen-
sions and AR(2) model, the three proposed methods,
Bernoulli–Gaussian, Horseshoe, and variational Bayes
methods, as well as the EBIC method, perform the best.
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F I G U R E 2 Violin plots of the specificity results for each of the methods for different structures of precision matrices. Percent refers to
the 10% model for dimension p = 25, 5% model for dimension p = 50, and 2% model for dimension p = 100

For the p = 25 dimension and circle model, the three
proposed methods, Bernoulli–Gaussian, Horseshoe, and
variational Bayes methods, as well as the EBIC method,
perform the best. For the p = 50 and p = 100 dimen-
sions and the circle model, the three proposed methods,
Bernoulli–Gaussian, Horseshoe, and variational Bayes
methods, perform the best, outperforming all other meth-
ods. For the p = 25 dimension and the 10% model, the
three proposed methods, Bernoulli–Gaussian, Horse-
shoe, and variational Bayes methods, as well as the EBIC
method, perform the best. For the p = 50 dimension and
5% model and the p = 100 dimension and 2% model, the
three proposed methods, Bernoulli–Gaussian, Horseshoe,
and variational Bayes methods, perform the best.

We consider the MCC to compare the overall per-
formance of structure learning. In Figure 3 for the
p = 25 and p = 50 dimensions and the AR(2) model,
the Bayesian Copula method performs the best and
the Horseshoe method performs the second best. No
edges were selected by the nonparanormal model using
EBIC for the sparsity models of dimension p = 25 and
for the p = 50 AR(2) model. For the p = 100 dimen-
sion and the AR(2) model, the three proposed methods,
Horseshoe, Bernoulli–Gaussian, and variational Bayes

methods, perform the best. For all dimensions of the
circle model, the three proposed methods, Horseshoe,
Bernoulli–Gaussian, and variational Bayes methods, per-
form the best. Lastly, for the p = 25 dimension and 10%
model, the Horseshoe method performs the best, and
the Bernoulli–Gaussian and RIC methods perform sim-
ilarly and are the second best. For the p = 50 and 5%
model and p = 100 and 2% model, the three proposed
methods, Horseshoe, Bernoulli–Gaussian, and variational
Bayes methods, perform the best. Thus, when consider-
ing the overall structure learning, the proposed methods
outperform all competing methods except in the cases of
p = 25 and p = 50 and the AR(2) model.

Finally, in Figure 4, we review the results of param-
eter estimation, using the scaled L1-loss, for the three
proposed methods. We consider whether or not the trans-
formation decreases the scaled L1-loss. For all three meth-
ods, the transformation functions resulted in a smaller
scaled L1-loss, implying an improvement in parameter
estimation. Overall, the Horseshoe method had a higher
scaled L1-loss than the Bernoulli–Gaussian and variational
Bayes methods. In addition, overall, the variational Bayes
method had a similar or lower scaled L1-loss compared to
the Bernoulli–Gaussian method.
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F I G U R E 3 Violin plots of the Matthews correlation coefficient results for each of the methods for different structures of precision
matrices. Percent refers to the 10% model for the dimension p = 25, 5% model for the dimension p = 50, and 2% model for the dimension
p = 100

Figures 1–4 display the results. The first three vio-
lin plots in the figures are the three proposed methods,
Bernoulli–Gaussian, Horseshoe, and variational Bayes,
respectively. Note that Percent refers to the 10% model for
dimension p = 25, 5%model for dimension p = 50, and 2%
model for dimension p = 100.

9 REAL DATA APPLICATION

For the real data application, we consider the dataset based
on the GeneChip (Affymetrix) microarrays for the plant
Arabidopsis thaliana originally referenced in Wille et al.
[52]. This dataset features gene expression levels from
isoprenoids. Isoprenoids serve a great many biochemical
functions in plants, such as components of membranes
(sterols) and photosynthetic pigments (carotenoids and
chlorophylls). The cytosolic pathway, often described as
the mevalonate or MVA pathway, is responsible for the syn-
thesis of sterols and the plastidial (nonmevalonate or MEP)
pathway is used for the synthesis of isoprenes, carotenoids
and the side chains of chlorophyll. Although both path-
ways operate independently, interaction between them has

been discovered [21]. There are n = 118 microarrays and
p = 39 genes from the isoprenoid pathway that are used.
For pre-processing, the expression levels for each gene,
xi for i = 1, … , 118, are log-transformed. We study the
associations among the genes using the Bayesian nonpara-
normal methods, the nonparanormal method of Liu et al.
[26], and the method based on the Bayesian copula graph-
ical model of [33]. These data are treated as multivariate
Gaussian originally in Wille et al. [52].

Using the same set-up as in the simulation study, we fit
the Bayesian copula graphical model using the BDGraph
package and we fit the nonparanormal graphical model
using the huge package. The BDGraph package selected
211 edges using Bayesian model averaging. The huge
package using the RIC selection resulted in 140 edges
and using the StARS method resulted in 209 edges. The
EBIC-selected model results in no edges.

In order to construct the graphical models using our
methods which use B-spline transformations, we con-
verted the observations to be between 0 and 1 using
the equation (x −min (xi)) ∕ (max (xi) −min (xi)). The vari-
ational Bayes method results in 98 edges, the horse-
shoe prior based method results in 257 edges, and the
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F I G U R E 4 Violin plots of the scaled L1-loss, with and without transformation for different structures of precision matrices. Percent
refers to the 10% model for the dimension p = 25, 5% model for the dimension p = 50, and 2% model for the dimension p = 100

Bernoulli–Gaussian prior based method results in 102
edges. For p = 39, convergence of the variational Bayes
method can be achieved in about 26 min, the horseshoe
prior based method in about 47 min for a given c, and the
Bernoulli–Gaussian prior based method in about 52 min
on a laptop computer with Windows operating system,
2.8 GHz of CPU, and 28 GB of RAM. Figure 5 shows the
graphs of our proposed methods and Figure 6 shows the
graphs of the existing methods.

Since we use a sparsity inducing prior for each of
the graphs, we consider the sparsity to compare the
performance of the graphs. The variational Bayes and
Bernoulli–Gaussian prior methods result in the sparsest
graphs. The method based on the Horseshoe prior results
in the densest graph. Out of the three proposed methods,
this method is the most sensitive method, so it appears for
this dataset, it is selecting more edges than the other mod-
els. The variational Bayes method is the fastest method out
of the three proposed methods. The variational Bayes and
Bernoulli–Gaussian prior methods proposed in this paper
give sparser graphs than that based on the Gaussian copula
graphical model, which uses a G-Wishart prior on the pre-
cision matrix. Sparse graphs can aid in simpler scientific

interpretation and could be used for further exploration,
such as understanding the mechanisms involved in the
isoprenoid pathway.

We also compare features related to the graphs. Wille
et al. [52] found three subgroups in their GGM that were
nearly or fully connected. They found that the genes DXR,
MCT, CMK, and MECPS are nearly fully connected, the
genes AACT2, HMGS, HMGR2, MK, MPDC1, FPPS1, and
FPPS2 share many edges in the MVA pathway, and the
subgroup AACT2, MK, MPDC1, and FPPS2 is completely
interconnected [52]. We will refer to these subgroups as
Subgroup 1, Subgroup 2, and Subgroup 3, respectively.
The maximum number of edges in an undirected graph
is p(p − 1)∕2, where p is the number of nodes. The max-
imum number of edges for Subgroup 1, Subgroup 2, and
Subgroup 3 is 6, 21, and 6, respectively. Table 1 shows
the number of edges for each of the methods for the sub-
groups. The EBIC-selected method is not shown since it
resulted in no edges. The RIC and StARS methods results
in subgroups that have the highest number of edges.
The Horseshow and Bayesian Copula methods have the
next highest number of edges. The variational Bayes and
Bernoulli–Gaussian have the least number of edges.
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F I G U R E 5 Comparison of selected graphs from the
proposed methods using gene expression data

(A)

(B)

(C)

F I G U R E 6 Comparison of selected graphs from the existing
methods using gene expression data
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T A B L E 1 Table showing the number of edges for each of the
subgraphs for the methods

Method Subgroup 1 Subgroup 2 Subgroup 3

Bernoulli–Gaussian 3 5 3

Horseshoe 3 11 5

Variational Bayes 3 8 4

RIC 6 18 6

StARS 6 17 6

Bayesian Copula 6 10 3

10 DISCUSSION

We have introduced a Bayesian regression method to con-
struct graphical models for continuous data that do not
rely on a normality assumption. The method assumes
the nonparanormal structure, that under some unknown
monotone transformations, the original observation vec-
tor reduces to a multivariate normal vector. The preci-
sion matrix of the transformed observations can be used
to learn the graphical structure of conditional indepen-
dence of the original observations. We use a prior dis-
tribution on the underlying transformations through a
finite random series of B-splines with increasing coef-
ficients that are given a multivariate truncated nor-
mal prior. We incorporate the positive definiteness con-
straint on the precision matrix of the transformed vari-
ables by utilizing the Cholesky decomposition. We con-
sider two different priors based on the Cholesky decom-
position, the Bernoulli–Gaussian prior and the horse-
shoe prior, and we impose a sparsity constraint. We
use a VB algorithm to learn the conditional indepen-
dence relations more efficiently as well as use a tradi-
tional Gibbs sampling approach. The VB approach and
the approaches using Bernoulli–Gaussian and horseshoe
priors result in most cases with better overall structure
learning, measured using the Matthews correlation coeffi-
cient, than competing methods. The competing methods
perform similarly or in some cases, better, than the pro-
posed methods with smaller dimension. In addition, the
VB algorithm performs similarly to the proposed meth-
ods in terms of overall structure learning and param-
eter estimation. It appears that information is not lost
with the VB algorithm and we have the potential to
speed up the estimation of the Bayesian nonparanor-
mal graphical model. Lastly, when comparing the horse-
shoe to the Bernoulli–Gaussian prior, the horseshoe prior
has higher sensitivity than the Bernoulli–Gaussian prior.
Although the Bernoulli–Gaussian methods perform sim-
ilarly to the horseshoe in terms of specificity and overall

structure learning, they do better parameter estimation. In
summary, the proposed methods perform best at higher
dimension (p ≥ 50). Thus, for higher dimensional prob-
lems, we recommend using the VB algorithm to reduce the
computational time while still maintaining good estima-
tion properties.

Bayesian nonparanormal graphical models are flexi-
ble. They can be used to estimate the elements of the
precision matrix directly or via a Cholesky decomposi-
tion. Researchers can try different sparsity inducing pri-
ors on the precision matrix based on their interests and
needs. In addition, researchers can use a fully Bayesian
approach to learn the graphical structure or employ a
partially Bayesian approach to increase the speed in learn-
ing the structure without sacrificing much in quality. The
Bernoulli–Gaussian prior, used in the VB method and
the traditional Bayesian approach, resulted in the spars-
est graphs using real data, which might be useful for
researchers who would like greater variable reduction for
data exploration.
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Then the corresponding conditional posterior distribu-
tions are given by

𝛽k>d ∼ N
⎡
⎢
⎢
⎣

(

Z′k>dZk>d + diag

(
p2k

𝜆

2
dbk>dc2

))−1

Z′k>dZd,

×𝜎2
d

(

Z′k>dZk>d + diag

(
p2k

𝜆

2
dbk>dc2

))−1⎤
⎥
⎥
⎦
,

𝜆

2
d ∼ IG

(
#(k > d)

2
+ 1

2
,

1
2
𝛽

′
k>d

diag

(
p2k

𝜎

2
dbk>dc2

)

𝜷k>d +
1

ad

)

,

ad ∼ IG

(

1, 1
𝜆

2
d

+ 1

)

,

bkd ∼ IG

(

1,
k𝛽2

kdp2

2𝜎2
d𝜆

2
dc2

+ 1
hkd

)

,

hkd ∼ IG
(

1, 1
bkd

+ 1
)
,

𝜎

2
d ∼ IG

(
n + #(k > d)

2
+ A,

1
2
‖Zd − Zk>d𝛽k>d‖2

+ 1
2
𝛽

′
k>ddiag

(
p2k

𝜆

2
dbk>dc2

)

𝛽k>d + B
)
,

𝜎

2
p ∼ IG

(n
2
+ A,

1
2
‖‖Zp‖‖

2 + B
)
.

Since sampling the 𝛽k>d can be expensive for large p, we
use an exact sampling algorithm for Gaussian priors based
on data augmentation [5].

APPENDIX B. BERNOULLI–GAUSSIAN POS -
TERIOR

The joint posterior distribution is

p(𝜷, 𝛶 |Z) ∝
n∏

i=1

p−1∏

d=1
p

( J∑

𝑗=1
𝜃djB𝑗

(Xid) ∣

×
J∑

𝑗=1
𝜃k>d,𝑗B𝑗

(
Xi,k>d

)
, 𝜷k>d, 𝛶k>d, 𝜎

2
d

)

× p
(
𝜷k>d

)
p (𝛶k>d)

× p
(
𝜎

2
d
)

p (𝜃d) p (𝜇d) p

( J∑

𝑗=1
𝜃pjB𝑗

(
Xip

)
|𝜎2

p

)

× p
(
𝜎

2
p
)

p
(
𝜃p
)

p
(
𝜇p

)
.

Then the corresponding conditional posterior distribu-
tions are given by

𝛽k>d ∣ ⋅ ∼ N
⎡
⎢
⎢
⎣

(

𝛶k>dZ′k>dZk>d𝛶k>d +
𝜎

2
d

g2 I

)−1

𝛶k>dZ′k>dZd ,

×

(

𝛶k>dZ′k>dZk>d𝛶k>d +
𝜎

2
d

g2 I

)−1⎤
⎥
⎥
⎦
,

𝜐k ∣ ⋅ ∼ Ber
[

expit
{

logit
(
𝜌

∗
kd
)
− 1

2𝜎2
d

‖Zk‖2
𝛽

2
k

+ 1
𝜎

2
d

𝛽kZk′ (Zd − Zl>k𝛶l>k𝛽l>k)
}]

,

𝜎

2
d ∼ IG

(n
2
+ A,

1
2
‖Zd − Zk>d𝛶k>d𝛽k>d‖2 + B

)
,

p
(
𝜎

2
p
)
∼ IG

(n
2
+ A,

1
2
‖‖Zp‖‖

2 + B
)
,

where k = d + 1, … , p, and d = 1, … , p − 1.
Again, to sample 𝛽k>d, we used an exact sampling

algorithm for Gaussian priors that invokes data augmen-
tation [5].

APPENDIX C. GITHUB REPOSITORY

The code used to run the methods described in
this paper are available on GitHub: https://github.com/
jnj2102/BayesianRegressionApproach.

Algorithm 1. Variational Bayesian Algorithm

1: Gibbs Sampler: Estimate 𝜽 and 𝝁
2: for d = 1: p do

(a) Sample ̄𝜽d|( ̄𝚯−d,Y ,𝝁,𝛀) ∼ TN
(
𝜸,𝚿, { ̄Fd ̄𝜽d+

ḡd > 0}), where 𝜸 and𝚿 are defined in Section 3.1
of [36].

3: end for
4: Repeat Step 2 until convergence.
5: Compute ̂𝜽d =

∑M
m=1 𝜽dm and �̂�d =

∑M
m=1 𝜇dm, where

M is the number of Markov Chain Monte Carlo sam-
ples.

6: Compute Zid =
∑J

𝑗=1
̂
𝜃
𝑗dB

𝑗
(Xid) − �̂�d.

7: Using Z, tune 𝜌

∗
kdand find the initial values for wk>d

using the tuning procedure described in Subsection
3.1.

8: Coordinate Ascent Variational Inference: To compute
𝛀
(a) Initialize with t = 1,Zd,Zk>d, g2

,A,B, 𝜏0,𝝆
∗
d,wk>d

where w(1)
k>d ∈ [0, 1]

#(k>d)

(b) for d = 1: p-1
• W(t)

d = diag
(
w(t)

k>d

)

https://github.com/jnj2102/BayesianRegressionApproach
https://github.com/jnj2102/BayesianRegressionApproach
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• 𝛀d = w(t)
d w(t)′

d +W(t)
d

(
I −W(t)

d

)

• 𝚺(t)d =
[
𝜏

(t−1)
d (Zk>d′Zk>d)◦𝛀(t)d + g−2I

]−1

• 𝝁
(t)
d = 𝜏

(t−1)
d 𝚺(t)d W(t)

d Zk>d′Zd

• sd = B + 1
2

[
‖Zd‖2 − 2Zd′Zk>dW(t)

d 𝝁
(t)
d +

tr
{(

Zk>d′Zk>d◦𝛀(t)d

)(
𝝁
(t)
d 𝝁

(t)′
d + 𝚺(t)d

)}]

• 𝜏

(t)
d = 2A+n

2sd

• w∗
d = w(t)

d

• for k = (d + 1) ∶ p do
– 𝜂kd = logit(𝜌∗kd) −

𝜏

(t)
d
2
((𝜇(t)k )

2 + Σ(t)k,k) ‖Zk‖2 +
𝜏

(t)
d

[
𝜇

(t)
k Zk′Zd − Zk′ZlW

(t)
l (𝝁

(t)
l 𝜇

(t)
k + 𝚺(t)l,k)

]

– w∗
kd = expit(𝜂kd)

• end for
• w(t+1)

d = w∗
d

(c) end for
(d) s(t)p = B + 1

2

[ ‖‖Zp‖‖
2

(e) Repeat (b)–(d) until
||VLB(Z,𝝆)(t) − VLB(Z,𝝆)(t−1)|| < 𝜖.

9: Sample 𝜷d ∼ N(𝝁d,𝚺d), 𝜐kd ∼ Ber(wkd), 𝜎d ∼ IG(A +
n∕2, sd), and 𝜎p ∼ IG(A + n∕2, sp)

10: Compute lkd = −𝜐kd𝛽kd∕𝜎d and ldd = 1∕𝜎d.

11: Compute 𝛀 = LL′.

Algorithm 2. Horseshoe Gibbs Algorithm

1: Gibbs Sampler: Estimate 𝜽, 𝝁, and 𝛀:
2: for d = 1: p do

(a) ̄𝜽d|( ̄𝚯−d,Y ,𝝁,𝛀) ∼ TN
(
𝜸,𝚿, { ̄Fd ̄𝜽d + ḡd >

0})where 𝜸 and𝚿 are defined in Section 3.1
of [36].

3: end for
4: Compute Yid =

∑J
𝑗=1 𝜃d𝑗B𝑗

(Xid).
5: Sample 𝝁|(Y ,𝛀) ∼ Np

(
̄Y , 1

n
𝛀−1)

.

6: Compute Zid = Yid − 𝜇d.

7: for d = 1: p-1 do
(a) Sample 𝜷k>d|𝜎d, bk>d,

𝜆

2
d ∼ N

(
A−1ZT

k>dZd, 𝜎
2
dA−1)

,

where A =
(
Z′k>dZk>d + diag(p2k∕

(
𝜆

2
dbk>dc2))) ∶

(i) Sample t ∼ N(0,D) and 𝛿 ∼ Normal(0, In),
where D = 𝜎

2
ddiag(𝜆2

dbk>dc2∕(p2k)).
(ii) set v = 𝚽t + 𝛿, where𝚽 = Zk>d∕𝜎d.

(iii) solve for w in (𝚽D𝚽′ + In)w = (𝛼 − v), where
𝛼 = Zd∕𝜎d.

(iv) set 𝛽 = t + D𝚽′w.

(b) Sample 𝜆

2
d ∼ IG

(
#(k > d)

2
+

1
2
,

1
2
𝜷
′
k>ddiag

(
p2k

𝜎

2
dbk>dc2

)
𝜷k>d +

1
ad

)
.

(c) Sample ad ∼ IG
(
1, 𝜆−2

d + 1
)
.

(d) Sample bkd ∼ IG
(

1,
p2k𝛽2

kd

2𝜎2
d𝜆

2
dc2

+ 1
hkd

)
.

(e) Sample hkd ∼ IG
(
1, b−1

kd + 1
)
.

(f) Sample 𝜎

2
d ∼ IG

(
n + #(k > d)

2
+ A,

1
2
‖‖Zd − Zk>d𝜷k>d

‖‖
2 + 1

2
𝜷
′
k>ddiag

(
p2k

𝜆

2
dbk>dc2

)

𝜷k>d + B
)
.

8: end for
9: Sample

𝜎

2
p ∼ IG

(
n
2
+ A,

1
2
‖‖Zp‖‖

2 + B
)
. (B1)

10: Compute lkd = −𝛽kd∕𝜎d and ldd = 1∕𝜎d.

11: Compute 𝛀 = LL′.
12: These steps are repeated until convergence.

Algorithm 3. Bernoulli–Gaussian Gibbs Algorithm

1: Gibbs Sampler: Estimate 𝜽, 𝝁, and 𝛀:
2: for d = 1: p do

(a) Sample ̄𝜽d|( ̄𝚯−d,Y ,𝝁,𝛀) ∼ TN
(
𝜸,𝚿, { ̄Fd ̄𝜽d +

ḡd > 0}), where 𝜸 and 𝚿 are defined in Section
3.1 of [36].

3: end for
4: Compute Yid =

∑J
𝑗=1 𝜃d𝑗B𝑗

(Xid).
5: Sample 𝝁|(Y ,𝛀) ∼ Np

(
̄Y , 1

n
𝛀−1).

6: Compute Zid = Yid − 𝜇d.
7: for d = 1: p-1 do

(a) Sample 𝜷k>d|𝜎d,𝚼k>d ∼ N
(A−1𝚼k>dZT

k>dZd, 𝜎
2
dA−1), where

A =
(
𝚼k>dZ′k>dZk>d𝚼k>d +

𝜎

2
d

g2 I
)
.

(i) Sample t ∼ N(0,D) and 𝛿 ∼ N(0, In), where
D = g2I;

(ii) set v = 𝚽t + 𝛿, where𝚽 = Zk>d𝚼k>d∕𝜎d;
(iii) solve for q in (𝚽D𝚽′ + In)q = (𝛼 − v), where

𝛼 = Zd∕𝜎d;
(iv) set 𝛽 = t + D𝚽′q.

(b) Sample 𝜐k|𝛽k, 𝜎d ∼ Ber
[
expit

{
logit(𝜌∗kd)

− 1
2𝜎2

d
‖Zk‖2

𝛽

2
k +

1
𝜎

2
d
𝛽kZ′k(Zd − Zl>k𝚼l>k𝜷 l>k)

}]
.

(c) Sample 𝜎

2
d|𝜷k>d,𝚼k>d ∼ IG(

n
2
+ A,

1
2
‖‖Zd − Zk>d𝚼k>d𝜷k>d

‖‖
2 + B

)
.

8: end for
9: Sample 𝜎

2
p|Zp ∼ IG( n

2
+ A,

1
2
‖‖Zp‖‖

2 + B).
10: Compute lkd = −𝜐kd𝛽kd∕𝜎d and ldd = 1∕𝜎d.

11: Compute 𝛀 = LL′.
12: These steps are repeated until convergence.
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