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ABSTRACT: Herein we present a mononuclear lanthanum(III) complex obtained in a template cyclocondensation reaction of
lanthanum(III) nitrate salt, 1,2-propanediamine, and 2,6-diacetylpyridine (LaPA complex). A preliminary investigation of the
biological potential of this compound was conducted using a biomedically relevant target Tel26. We found that, different from
parallel G4, antiparallel G4, and duplex DNA, only a hybrid-type G4 structure of Tel26 in a K+ solution was significantly stabilized by
≥7 °C, which emerged in our UV melting studies. Moreover, LaPA induced structural changes in the Tel26 structure in a K+-
deprived solution, suggesting that it may also lead to conformational changes in “non-G4” telomeric DNA.

The G-quadruplex (G4) is a noncanonical DNA structure
formed in the guanine-rich regions and preserved by

Hoogsteen interactions.1 Only in 2013 were G4s shown to
exist in human genome by visualization using a immuno-
fluorescence staining method with a specific BG4 antibody.2

They are mostly present in the key regulatory regions of the
human genome such as promoters and gene bodies.3

Moreover, they were revealed to form at the ends of the
chromosomes in the regions called telomeres. Hence, they are
expected to be involved in maintaining the chromosome
stability by preventing the accidental damage of genetic
material.4

Telomeric DNA, when structured in the G4 form, cannot be
recognized by telomerase. This inhibits the telomere length-
ening, notably responsible for cancer cell immortality. Thus,
directing ligands to stabilize specific telomeric G4-structured
DNA constitutes a valuable anticancer strategy.5 We have
recently reported on the telomeric DNA binding capacity of
phenylalanine, as verified with Tel26 and Pu22.6

Several examples of G4 targeting derivatives are based on
planar organic heteroaromatic systems and are able to interact
through π−π-stacking, hydrogen-bonding, and electrostatic
interactions at the apex and with the loops of G4s, as well as
intercalate between G quartets.7 So far, mostly derivatives of
pyridine, acridine, porphyrin, phenanthrene, and naphthalene-
diimide are known as G4 DNA targeting agents and
stabilizers.8 However, there are also some reports on
macrocyclic entities such as hexaoxazoles, which are able to
selectively induce the antiparallel G4 DNA structure of Tel24.9

The studies available on this topic also show that metal
complexes can play an important role as G4 DNA binders.10

Although the actual function of G4 DNA folds is still under
investigation, their relevance is widely recognized, justifying
the current interest in the development of new molecules able
to stabilize the G4 structures of interest.11

An encouraging pathway to build the macrocyclic planar
complexes of interest arises from the core concept of
supramolecular chemistry: self-assembly. A properly designed
macrocycle can be formed in a one-pot synthesis in high
yields.12 The molecular ring size and metal−ligand interactions
are relevant in the context of application as biomolecule
targeting systems. Therefore, flat macrocycles are able to
selectively interact with specific structures of nucleic acids.13

In the present work, we report a mononuclear lanthanum-
(III) complex with an 18-membered hexaaza macrocyclic
ligand. The described compound acts as a parallel/antiparallel
hybrid-type G4 DNA stabilizer, while it destabilized parallel
G4 and duplex DNA and had no influence on the antiparallel
DNA stability, as shown by UV melting studies. Additionally,
circular dichroism (CD), UV, fluorescence, and scanning
electron microscopy (SEM) studies were performed to better
elucidate the observed phenomena.
Herein, we report on the formation of a mononuclear

lanthanum(III) nitrate complex of a hexaaza macrocyclic
ligand of the formula [La(C24H30N6)(NO3)2CH3OH]NO3,
which is soluble and stable in water (Figure S1). A template
reaction of lanthanum(III) nitrate salt, 1,2-propanediamine,
and 2,6-diacetylpyridine allows one to obtain the LaPA
complex of an 18-membered macrocyclic ligand as a result of
[2 + 2] cyclocondensation (Scheme 1). The compound was
characterized by electrospray ionization mass spectrometry
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(Figure S2), IR (Figure S3), and elemental analysis (see the
Supporting Information).

As revealed by X-ray diffraction measurement (Figures 1 and
S4 and Table S1), the coordination sphere of lanthanum(III) is

filled by six nitrogen atoms (four nitrogen atoms from
azomethine groups and two nitrogen atoms from pyridines)
and five oxygen atoms (four oxygen atoms from two nitrate
groups behaving as bidentate chelators and one oxygen atom
from a methanol molecule). Hence, the coordination number
of lanthanum(III) is formally equal to 11. A similar
coordination was previously observed in a number of
lanthanide complexes with hexaaza macrocycles.14 It might
be noted that such a large coordination number is relatively
rare. In the Cambridge Structural Database,15 there are 14063
structures of lanthanide complexes with coordination number
9, while only 514 have coordination number 11 or higher.
Among those 514 complexes, 346 have NO3

− ligands (in the
chelating disposition). The close vicinity of available oxygen
atoms seems to prefer the high coordination numbers: 67.3%
of all complexes compared with 16.4% for coordination
number 9. The macrocycle, with a roughly planar skeleton, is
close to mirror Cs symmetry (cf. torsion angles). Its planarity
and the presence of the central cavity filled with positively
charged lanthanum(III) became the foundation for the
evaluation of LaPA as a G4 DNA binder. The macrocycle is
12.77 Å long and 9.76 Å wide, and the thickness between the
two most distant oxygen atoms from nitrates is 8.52 Å. In the
G4 DNA hybrid-1 structure,16 the minor and major grooves
are 6.16 and 9.62 Å wide, respectively, and the distance
between the stacked tetrads is ca. 3.18 Å. Because of this size
mismatch, it is envisaged that the binding and assembly of the
LaPA−Tel26 complex could occur at the apex of the stacked
tetrads through multiple interactions (π−π-stacking, hydrogen-
bonding, and electrostatic interactions) stabilizing the loop and
flanking regions.10b

In order to explore the potential of LaPA to interact with G4
DNA structures, we have selected three G-rich strands of DNA
forming various G4 structures: Pu22 forming parallel G4,17

Tel22 forming antiparallel G4 in the presence of Na+,18 and
Tel26 folding into a hybrid-type parallel−antiparallel G419 in

K+ solutions. Our main goal was to obtain a macrocycle that
selectively targets the G4s; therefore, the duplex DNA was also
tested because binding to it would be clearly undesired as it
could diminish the potential therapeutic effects of a candidate
as a G4 DNA binder. In this study, the buffers were chosen so
as to obtain distinct G4s that are not too stable for the binding
experiments (Table S2). Because the experimental conditions
are quite different for each oligonucleotide, one has to be
aware that no quantitative comparison between various DNA
strands can be made here.
In an initial UV-based thermal stabilization screening, we

noticed that LaPA provokes a ∼2−4 °C structural destabiliza-
tion of both duplex and parallel G4 (Pu22) DNA, while it
causes no significant effect on antiparallel DNA, as verified
using Tel22 in a Na+ solution (Figure S5 and Table 1).

Conversely, in the case of the hybrid-type parallel−antiparallel
G4 structure of Tel26 in a K+ solution, LaPA led to a ∼7 °C
stabilization effect (Figure 2A and Table 1), a feature that
attracted our interest because of the above-mentioned
potential of Tel26 stabilizers.20

Moreover, the fluorescence titration experiments performed
on different oligonucleotides showed that LaPA quenches the
intrinsic emission21 of Tel26 (Figure 2B). Conversely, it has a
negligible impact on the intrinsic emission of other
oligonucleotides (Figure S6). The observed hypochromicity
without any significant shift in the emission spectrum of Tel26
suggests that the macrocycle, in fact, may directly interact with
the terminal G-tetrads, which found confirmation in the CD
intensity increase in the spectrum of LaPA−Tel26 complex
(Figure S7A). Furthermore, to obtain more quantitative
information, the quenching constant KSV was calculated from
the Stern−Volmer equation (see the Supporting Informa-
tion)22 and is equal to 1.5 × 104 M−1 (Figure 2B, inset).

Scheme 1. Template Synthesis of the LaPA Macrocycle

Figure 1. Perspective view of the macrocycle LaPA in the top-to-
bottom (A) and side (B) views.

Table 1. ΔTm (°C) for Complexes of LaPA with Duplex
DNA, Pu22, Tel22, and Tel26 (First Derivatives Shown in
Figures S9−S12)a

sample 1 equiv of LaPA 2 equiv of LaPA

duplex DNA −1.9 ± 0.4 −3.6 ± 0.4
Pu22 −1.6 ± 0.4 −3.6 ± 0.6
Tel22 +0.3 ± 0.4 −0.4 ± 0.4
Tel26 +7.9 ± 0.4 +6.4 ± 0.6

aThe results are reported as mean ± standard deviation values. 1
equiv = 2.5 μM.

Figure 2. UV melting curves of Tel26 alone and with LaPA (A) and
fluorescence quenching of Tel26 with the incremental addition (1−8
equiv) of LaPA (B). Stern−Volmer plot I0/I − 1 versus [LaPA] at the
fixed wavelength λ = 312 nm: ●, experimental data points; solid line,
linear fitting of the data (inset in part B). Buffer: 10 mM Tris, 100
mM KCl, pH = 7.4. 1 equiv = 2.5 μM.
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Knowing that the fluorescence lifetime τ of biomolecules is
∼10−8 s, the quenching rate constant kq of Tel26 was
determined from the equation KSV = kqτ0

23 as 1.5 × 1012

M−1·s−1. Similar values were obtained in the case of
allocryptopine (KSV = 1.0 × 105 M−1; kq = 4.2 × 1013 M−1·
s−1), which binds partially in the loops and through end
stacking to the hybrid-type G4. Higher values of KSV and kq
would suggest that groove binding of the compounds may
occur.24

It needs to be noted that UV titration and CD studies of
Pu22 and Tel22 with LaPA do not reveal any significant
structural changes in the spectra of oligonucleotides (Figures
S7B,C and S8).25

The CD spectrum of the folded hybrid-type parallel−
antiparallel telomeric G4 is characterized by a negative band at
240 nm, and the two positive bands at ca. 265 and 290 nm
(Figure S7A),26 while a parallel Pu22 G4 lacks the long-
wavelength band (Figure S7B). An antiparallel telomeric G4
exhibits one negative band at 265 nm and two positive bands
at 245 and 295 nm (Figure S7C).26 In a K+-deprived solution,
we obtained a CD spectrum for Tel26 exhibiting two strong
bandsa negative band at 240 nm and a positive band at 260
nmand a bump at ca. 292 nm, which was previously
associated with the “non-G4” form of this G-rich DNA5c

(Figure 3A). Upon ligand addition, CD spectral bands

underwent significant changes, as reported in Figure 3A,
clearly indicating that LaPA causes conformational changes in
the “non-G4” Tel26.27 Interestingly, when the “non-G4” Tel26
was annealed in the presence of LaPA, a melting sigmoid with
a high Tm of 62.0 ± 0.6 °C in the UV melting experiment was
observed, testifying to the formation of a “non-G4” Tel26−
LaPA stable complex (Figure 3B).
In order to better characterize the complex formation

occurring between “non-G4” Tel26 and LaPA, we performed
also a SEM analysis of the morphologies adopted by the “non-
G4” Tel26−LaPA complex. SEM images of this complex
shown in the micrographs (Figure 4) revealed spherical
particles of width ranging from 3 μm up to 8 μm able to further
agglomerate. It is analogous to other literature reports on
nucleic acid complexes, which induce the clustering of several
nanofibers into larger aggregates (Figure 4B).6a,28

Herein, we described the synthesis and characterization of
t h e l a n t h a num( I I I ) c omp l e x [L a (C 2 4H 3 0N 6 ) -
(NO3)2(CH3OH)]NO3, indicated as LaPA, whose potential
in biomedicine was explored by our preliminary studies. We
used UV, CD, and fluorescence spectroscopies to investigate
the ability of LaPA to interact with different DNA models,
including duplex DNA and oligonucleotides, forming various
G4 structures: parallel Pu22, antiparallel Tel22, and hybrid-

type parallel−antiparallel Tel26. We found that LaPA was able
to stabilize hybrid-type G4 but not parallel and antiparallel G4
or double-helical DNA. The LaPA−Tel26 complex was
endowed with good stability (Tm ≥ 60 °C), even in the
absence of K+, suggesting that the lanthanum(III) derivative is
intrinsically able to form complexes with “non-G4” Tel26. A
tendency of Tel26 to form spherical entities in the presence of
a LaPA binder was also evidenced by SEM. We hypothesize
that LaPA is an active agent binding probably by π−π-stacking
and electrostatic interactions to the apex of the folded hybrid-
type G4 DNA, thus stabilizing it.
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