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A B S T R A C T   

The potential of hyperspectral imaging technology (HIT) for the determination of physicochemical and nutri-
tional components, evaluation of fungal/mycotoxins contamination, wheat varieties classification, identification 
of non-mildew-damaged wheat kernels, as well as detection of flour adulteration is comprehensively illustrated 
and reviewed. The latest findings (2018–2023) of HIT in wheat quality evaluation through internal and external 
attributes are compared and summarized in detail. The limitations and challenges of HIT to improve assessment 
accuracy are clearly described. Additionally, various practical recommendations and strategies for the potential 
application of HIT are highlighted. The future trends and prospects of HIT in evaluating wheat quality are also 
mentioned. In conclusion, HIT stands as a cutting-edge technology with immense potential for revolutionizing 
wheat quality evaluation. As advancements in HIT continue, it will play a pivotal role in shaping the future of 
wheat quality assessment and contributing to a more sustainable and efficient food supply chain.   

1. Introduction 

Wheat, originated and cultivated in the Middle East around 7000 

BCE (Abdel-Aal et al., 1998), is arguably one of the most important and 
popular grain crops in the world, with highly indisputable importance 
(Igrejas & Branlard, 2020). Wheat is widely cultivated for its seeds and 
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belongs to the grass family Poaceae (Geren, 2021). The cultivation, 
processing, and distribution of wheat contribute significantly to the 
economies of many countries (Ahmed, Sulaiman, & Mohd, 2011). Be-
sides, wheat is one of the most traded commodities on the global market, 
providing a significant portion of the world’s food supply (Mitchell, & 
Mielke, 2005). Different varieties of wheat are cultivated to meet spe-
cific market demands, with the common wheat (Triticum aestivum) and 
durum wheat (Triticum durum) commonly used for food production 
(Rachon, & Szumilo, 2009). According to the statistics from the Food 
and Agriculture Organization of the United Nations (FAO), wheat is the 
third most produced grain crop around the world, after rice and maize. 
Its production is concentrated in over 80 countries, with the majority 
coming from a few countries in regions of Asia, Europe and the Americas 
(data from 2000 to 2021 shown in Fig. 1). China is currently the largest 
wheat producer globally, with an annual output over 100 million tons 
and a total production of 2.54 billion tonnes from 2000 to 2021, fol-
lowed by India, Russia and the United States of America (FAO/FAO-
STAT, 2021). 

In the global food supply chain, wheat plays a vital and wide-ranging 
role, as it is not only a staple food to sustain human survival but also a 
good raw material to make a variety of food products, such as bread, 
pasta, noodles, cereals, cakes, pastries, and more (Cornell & Hoveling, 
2020). Its versatility in processing makes it a fundamental ingredient in 
many cuisines worldwide. More importantly, wheat is a major source of 
dietary energy for a large portion of the world’s population, providing 
valuable nutrients including carbohydrates, protein, fat, fiber, vitamins, 
essential amino acids, nucleic acids and minerals (Šramková, Gregová, 
& Šturdík, 2009), varying in different varieties and environmental 
conditions (Iqbal et al., 2015). Wheat-based products contribute 
significantly to the caloric intake of individuals globally (Hazard et al., 
2020). In addition, with its sweet taste and good nature, wheat has 
sound effects of filling not only the stomach but also medical healing 
such as nourishing heart, strengthening spleen, nursing intestines, 
alleviating thirst, improving sleep, and so on (Shewry & Hey, 2015; Dinu 
et al., 2018). 

Wheat quality is an extremely complex comprehensive concept 
(Troccoli et al., 2000), and can be divided into processing quality (e.g., 
primary processing quality such as grinding, flour yield, bulk weight, 
grain hardness, flour whiteness and ash content; secondary processing 
quality, also known as food production quality, such as flour quality, 
dough quality, baking quality, cooking rate, dough formation time, 
stability time, sedimentation value, softening degree, evaluation value, 
etc.) (Jayas et al., 2016; Pagani, Marti, & Bottega, 2014), edible quality 
(e.g. taste and flavor of products such as bread, noodles, cakes, pastries, 
etc. during baking, steaming and frying process) (Kucek et al., 2017), 
nutritional quality (mainly refer to the content of wheat nutrients) 

(Iqbal, Shams, & Fatima, 2022) and hygienic quality (e.g. toxic sub-
stances, harmful microorganisms, heavy metal pollution, pesticide res-
idues, etc.) (Kovač et al., 2021), from different perspectives. There are 
both differences and correlations among these qualities (Knapp et al., 
2017). One indicator can be used to reflect two or more qualities 
simultaneously (Schuster, Huen, & Scherf, 2023). Evaluating wheat 
quality involves considering factors such as protein content, gluten 
strength, moisture content, kernel size, hardness, color, impurities, and 
more (Varzakas, 2016). Wheat quality standards and specifications can 
vary across regions and countries, depending on the intended end-use of 
the wheat. Farmers, millers, and food processors closely monitor these 
quality characteristics to ensure that the wheat meets the requirements 
of the intended market and application. Quality assurance practices are 
essential throughout the entire production and supply chain to maintain 
high standards and consistency in wheat quality (Uthayakumaran, & 
Wrigley, 2017). 

Wheat grain quality evaluation involves assessing various physical 
and chemical characteristics to determine its suitability for specific end- 
uses, which is generally performed using manual and chemical methods 
(Lasztity & Abonyi, 2009). These traditional methods cannot meet the 
requirement of on-site detection with a large amount of samples. It is, 
therefore, necessary and has been a trend to develop more advanced 
analysis tools, partially or completely replacing traditional detection 
methods, to evaluate wheat quality rapidly, non-destructive and accu-
rately, improving detection efficiency and reducing costs. Optical 
techniques characterized by non-pretreatment, non-pollution, contact-
less, convenient and fast traits, such as near-infrared (NIR) spectroscopy 
(Du et al., 2022), and computer vision (CV) (Sabanci et al., 2017), have 
been investigated to evaluate wheat quality with good results. In prin-
ciple, NIR is an electromagnetic wave in the 780–2526 nm range, 
dividing into two regions of NIR short wave (780–1100 nm) and NIR 
long wave (1100–2526 nm). NIR detection is mainly based on molecular 
vibration of double and harmonic absorption of hydrogen-containing 
group X–H (X = C, N, O) reflecting chemical compositions of a target 
sample. By mining NIR spectra, sample quality can be qualitatively 
analyzed to determine the compositions and structures of the substances 
or quantitatively evaluated to predict the contents of certain compo-
nents in the substance or the values of substance quality attributes 
(Siesler et al., 2008). CV technique, a rapidly growing branch of artificial 
intelligence, uses computers to perform measurement and judgment, 
tasks traditionally done by the human eye. This technique converts the 
captured target into an image signal through CMOS or CCD camera, and 
transmits it to a dedicated image processing system to obtain morpho-
logical information, then converts it into a digital signal based on the 
pixel distribution, brightness, color and other information. Various 
image processing operations are carried out on these signals to extract 

Fig.1. Statistics from FAOSTAT showing the distribution of total wheat production in 2000–2021, a. production share of wheat by region, b. top 10 producers.  
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characteristics of the target, such as area, quantity, position, length, and 
then output results according to preset tolerance and other conditions, 
including size, angle, number, qualified/unqualified, yes/no, etc., to 
achieve automatic recognition (Davies, 2017). Unlike the two optical 
techniques, hyperspectral imaging technology (HIT) provides not only 
spectral information indicating internal chemical composition infor-
mation but also image information reflecting external morphological 
characteristics (He & Sun, 2015; Kamruzzaman, Makino, & Oshita, 
2015). In other words, more information is offered by HIT and can be 
used to evaluate target quality more comprehensively and accurately, 
which is more advanced and beneficial than when NIR spectroscopy or 
CV are used alone. Unlike typical imaging systems that capture three 
bands (red, green, and blue), HIT captures data in numerous narrow and 
contiguous bands across the electromagnetic spectrum. Each pixel in a 
hyperspectral image contains a spectrum of information, allowing for 
detailed analysis and identification of materials based on their spectral 
signatures. 

HIT has been applied and shows great potential in assessing wheat 
quality, providing a non-destructive and efficient way to assess multiple 
quality parameters simultaneously, and contributing to improved 
decision-making in wheat processing industries (An et al., 2023). To 
enhance and deepen the understanding of HIT in the quality evaluation 
of wheat, the research results on the use of HIT in evaluating wheat 
quality, in terms of physical, chemical and nutritional components 
determination, variety identification, fungal and mycotoxins detection, 
damage assessment, and adulteration classification, in the last five years 
(2018–2023) are comprehensively reviewed (shown as Fig. 2). The 
challenges of HIT in wheat quality evaluation and the prospects for its 
future industrial application are also discussed in this review. 

2. HIT principle and analysis procedure 

HIT system integrates imaging and spectroscopy techniques into one 
system to acquire spatial image information and spectral data, simul-
taneously. A typical HIT system consists of a spectrograph, camera, 
lighting device, moving platform and computer installed with data 
processing software, which are placed in a black box as shown in Fig. 3a. 

HIT system produces three-dimensional (3-D) hypercubes (x, y, λ), 
including two-dimensional spatial data (λ) and one-dimensional spectral 
data (x, y), to form an image stack at continuous wavelengths, which can 
also be interpreted as stacking of spatial images (x, y) at different 

wavelengths (λ) (Fig. 3b). Hypercubes are typically obtained through 
three modes of light perception, such as reflection, transmission and 
interaction. The reflection mode is often used to assess external quality 
characteristics including color, size, surface texture, damages, and 
physical defects, while the transmission pattern is usually utilized to 
evaluate internal compositions and defects. More in-depth information 
can be obtained by interaction mode. The most appropriate mode can be 
selected to collect hypercubes based on the purpose of analysis and the 
nature of the sample. Four different patterns, including point-scanning, 
line-scanning, area-scanning and single-shot procedure, are used to ac-
quire hyperspectral image, and line-scanning is the most commonly used 
pattern in food analysis. 

Since a hypercube carries a large amount of data, several essential 
procedures are needed and executed to process the data by reducing 
data dimensions and redundant information. Four steps are generally 
required to process the hypercubes, including image acquisition and 
calibration, data extraction and processing, spectral data modeling, and 
spatial image generation (Fig. 3c). Among, a qualitative or a quantita-
tive model is generally established to recognize or predict target index, 
and is commonly evaluated using correlation coefficient/coefficient of 
determination (R/R2) and root-mean-square error (RMSE) in calibration 
set (RC/R2

C & RMSEC), cross-validation set (RCV/R2
CV & RMSECV) and 

prediction set (RP/R2
P & RMSEP). Other parameters, including absolute 

value between RMSEC and RMSEP, prediction bias, and residual pre-
dictive deviation (RPD), are also calculated to assess the model perfor-
mance. Generally, a good model has higher R/R2 and RPD values and 
lower RMSEC, RMSEP, and prediction bias values. 

3. Application of HIT in wheat quality evaluation 

3.1. Determination of chemical, physical and nutritional components 

Wheat kernel contains various chemical components, some directly 
or indirectly affecting wheat quality. Specifically, moisture content 
directly influences the storage life and quality of wheat. Protein is one of 
the most important chemical components and nutrients in wheat and its 
level directly affects wheat gluten elasticity and taste. Starch is the main 
component of wheat, and its content directly affects the quality and taste 
of wheat gluten. Ash is a general term for inorganic substances in wheat, 
and its content is also one of the important indicators to evaluate wheat 
quality. 

Fig. 2. Overview diagram of HIT for evaluating wheat quality in terms of several aspects using different indicators.  
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In the recent five years, the concentration of these chemical com-
ponents in wheat was predicted by HIT in different wavelength ranges 
combined with chemometrics. Caporaso et al. (2018) applied HIT in 
980–2500 nm to determine protein distribution in whole single wheat 
kernels, obtaining prediction models with R2

P more than 0.8 and an error 
below 1 %, indicating an application potential in breeding wheat to 
select kernels based on their protein content. With two narrower spectral 
bands (1120–2424 nm, 969–2174 nm), excellent performance in pre-
dicting protein content in wheat flour was found by Morales-Sillero et al. 
(2018) (R2

P = 0.99, RMSEP = 0.21 %) and Zhang et al. (2023) (R2
P =

0.9859, RMSEP = 1.1580 g/100 g), respectively, which further high-
lighted the great potential of HIT in determining protein in a fast and 
non-destructive way. Moisture and starch contents of wheat flour were 
also measured and visualized by HIT using 28 and 52 effective wave-
lengths selected from the 969–2174 nm range, respectively, exhibiting a 
better effect of predicting starch (R2

P > 0.9) than predicting moisture (R2
P 

< 0.9)(Zhang et al., 2023). With 16 feature wavelengths selected from 
hyperspectral data (968–2576 nm) by successive projections algorithm 
(SPA), combined with Relieff-selected terahertz feature data, the ash 
content in wheat flour was well-predicted by a non-linear hierarchical 
extreme learning machine (H-ELM) model (R2

P = 0.989, RMSEP = 0.015 
%) proposed by Li et al. (2023). 

In addition to these common indicators, some uncommon indexes 
such as catalase activity, phosphorus, nitrogen, and carbon content can 
indicate wheat quality. Catalase activity is important for judging grain 
aging (Zhang et al., 2017). Eleven feature wavelengths were selected 
from 850 to 1700 nm range hyperspectral data to establish a high pre-
cision prediction model (R2

P = 0.9664), based on a support vector ma-
chine (SVM) algorithm, to quantify and visualize the catalase activity 
changes in wheat kernels very well (Zhang et al., 2022), which makes 
HIT a great potential to classify wheat based on the aging degree rapidly 
and non-destructively. Phosphorus is a key element related to cell wall 
and sugar content and is essential for wheat grain development. Phos-
phorus plays an important role in the effective growth, nutrient for-
mation and grain quality of wheat. In the growth stage of wheat, a large 
amount of phosphorus is converted into constituent nutrients of wheat 
grain, thus promoting the growth of wheat in the later stage (Acevedo, 
Silva, & Silva, 2002). HIT in the 450–850 nm range was investigated to 

predict phosphorus content in the wheat kernel, but the results were not 
satisfactory (Pacheco-Gil et al., 2023). Nitrogen is very important in 
producing high yields and good wheat grain quality (Campillo, Jobet, & 
Undurraga, 2010). The carbon and nitrogen levels can affect the 
amounts and compositions of starch and protein in wheat, and thus 
affecting the wheat yield and quality traits (De Santis et al., 2021). 
Ground wheat samples were scanned and their nitrogen and carbon 
concentrations, as well as sample heterogenicity, were quantitatively 
well-predicted and vividly observed by applying HIT, with the combi-
nation of 1451–1600 nm, 1901–2050 nm and 2051–2200 nm most 
suitable for nitrogen prediction (R2

P ≥ 0.96, RMSEP = 0.06 %), and 
400–550 nm for carbon prediction (R2

P = 0.86, RMSEP = 0.21 %) 
(Tahmasbian et al., 2021). 

Micronutrients such as B, Ca, Cu, Fe, Mg, Mn, Mo and Zn are 
important factors in assessing the nutritional quality of wheat (Njira & 
Nabwami, 2015). They are essential nutrients for human development 
(Welch & Graham, 2004). Micronutrients in wheat kernels and flour 
were measured by applying HIT, and the results indicated a better 
prediction of Ca, Mg, Mo, Zn in wheat kernels (R2

P > 0.70), and of Mg, 
Mo, Zn in wheat flour (R2

P > 0.60) (Hu et al., 2021). 
Physical indexes, including grain yield, vitreousness, hardness, and 

test weight, are also used for wheat quality evaluation. High grain yield 
remains the top priority in wheat breeding and the major determinant 
factor for gaining economic benefit from producers (Zhang et al., 2021). 
Vitreousness is an important appearance marker for wheat grain hard-
ness (Dexter et al., 1988). Hardness indicates wheat milling and end-use 
(Pasha, Anjum, & Morris, 2010). Test weight is used to reflect the bulk 
density of wheat grain (Wang & Fu, 2020). Among the four indexes, only 
the grain yield and hardness were well predicted by HIT (R2

P > 0.80), 
while the prediction of vitreousness and test weight by HIT was not 
satisfactory (R2

P < 0.65) (Erkinbaev, Derksen, & Paliwal, 2019; Vatter 
et al., 2022). Detailed information can be found in Table 1. Further study 
in developing an automatic removal of plot areas without vegetation 
covering may likely promote HIT’s prediction accuracy. 

Such wheat quality indexes can undergo dynamic changes 
throughout the various stages of wheat production, from cultivation to 
processing (Banach, Majewska, & Żuk-Gołaszewska, 2021; Filip et al., 
2023). For example, proteins that contribute to the functional and 

Fig. 3. General procedure of HIT for food quality analysis, a. HIT system, b. hyperscube, c. hyperspectral analysis steps.  
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nutritional properties of wheat-based products can undergo aggregation 
during various stages, such as dough formation, baking, and storage 
(Abedi, & Pourmohammadi, 2021). Wheat protein aggregation is a 
complex process that significantly influences the functional properties of 
wheat-based products (Ortolan, & Steel, 2017). The interplay between 

gliadins and glutenins, along with external factors like hydration, mix-
ing, and baking conditions, contributes to the formation of the gluten 
network and ultimately influences the quality of bread and other wheat- 
derived products (Ooms, & Delcour, 2019;Wieser, Koehler, & Scherf, 
2023). HIT has not used to evaluate the impact of such biochemical 

Table 1 
Applications of HIT for assessing chemical, physical and nutritional components.  

Sample Target index Wavelength 
range 

Best spectral 
preprocessing 
method 

Modeling 
algorithm 

Selection 
method 

Feature wavelengths (regions) Best 
performance 

Reference 

Wheat 
flour 

Ash 968–2576 nm SNV H-ELM SPA 968.05, 1109.56, 1205.52, 1335.02, 
1450.54, 1570.72, 1665.21, 
1822.36, 1940.68, 1989.78, 
2118.01, 2247.32, 2385.50, 
2463.53, 2524.86, and 2530.44 nm 

R2
P = 0.989 

RMSEP =
0.015 % 

Li et al., 2023 

Wheat 
flour 

Protein 969–2174 nm None Protein 
PCR 

Protein 
IVISSA- 
IRIV 

Protein 
11 EWs selected by IVISSA-IRIV 

Protein 
R2

P = 0.9859 
RMSEP =
1.1580 g/100 g 

Zhang et al., 
2023 

Starch Starch 
MLR 

Starch 
IVISSA- 
IRIV  

Starch 
28 EWs selected by IVISSA-IRIV 

Sarch 
R2

P = 0.9243 
RMSEP =
0.2068 g/100 g 

Moisture Moisture 
PLSR 

Moisture 
MASS 

Moisture 
52 EWs selected by MASS 

Moisture 
R2

P = 0.8646 
RMSEP =
2.1669 g/100 g 

Wheat 
kernel 

Phosphorus 450–850 nm None CAR Bayesian 500–690 nm R ≥ 0.6 Pacheco-Gil 
et al., 2023 

Wheat 
kernel 

Grain yield 410–990 nm None avNNet None None Grain yield 
R2

P = 0.84 
RMSEP = 0.94 
Mg/ha 

Vatter et al., 
2022 

Protein Protein 
R2

P = 0.69 
RMSEP = 1.04 
% 

Vitreousness Vitreousness 
R2

P = 0.64 
RMSEP =
12.02 % 

Test weight Test weight 
R2

P = 0.61 
RMSEP = 2.10 
kg/hl 

Wheat 
kernel 

Catalase 
activity 

850–1700 nm MSC SVM SPA 918.7, 956.2, 986.8, 1061.4, 
1125.4, 1149.0, 1192.6, 1368.9, 
1382.1, 1653.3, and 1672.7 nm 

R2
P = 0.9664 

MSE = 0.0064 
Zhang et al., 
2022 

Wheat 
kernel 

B, Ca, Cu, Fe, 
Mg, Mn, Mo, 
Zn 

375–1050 nm None PLSR None None Wheat kernel 
Ca, Mg, Mo, Zn 
R2

P > 0.70 

Hu et al., 2021 

Wheat 
flour 

Wheat flour 
Mg, Mo, Zn 
R2

P > 0.60 
Wheat 

grain 
Nitrogen 400–1000 nm None PLSR  Nitrogen 

1451–1600 nm, 1901–2050 nm and 
2051–2200 nm 

Nitrogen 
R2

P = 0.96 to 
0.99 
RMSEP = 0.06 
% 
RPD =
3.47–3.92 

Tahmasbian 
et al., 2021 

Carbon 1000–2500 
nm 

Carbon 
400–550 nm 

Carbon 
R2

P = 0.86 
RMSEP = 0.21 
% 
RPD = 2.03 

Wheat 
kernel 

Harderness 1000–2500 
nm 

S-G 1st derivative ANN None None R2
P = 0.90 

RMSEP = 6.59 
Erkinbaev 
et al., 2019 

Wheat 
flour 

Protein 1120–2424 
nm 

None PLSR None None R2
P = 0.99 

RMSEP = 0.21 
% 
RPD = 7.92 

Sillero et al., 
2018 

Wheat 
kernel 

Protein 980–2500 nm SNV + 1st 
derivative 

PLSR None None R2
P = 0.80 

RMSEP = 0.94 
% 
RPD = 2.19 

Caporaso 
et al., 2018  
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changes on wheat quality and should be the subject of in-depth study, 
potentially in combination with other techniques. By providing valuable 
insights into the biochemical pathways and compounds that influence 
wheat growth, development, and quality, metabolomics involving small 
molecules or metabolites within a biological system can be used as a 
powerful analytical approach for wheat quality analysis from a micro-
scopic level (Saia et al., 2019; Păucean et al., 2021). Metabolomics and 
HIT are two distinct techniques and provide complementary informa-
tion about different aspects of wheat samples. Metabolomics provides 
in-depth information about biochemical compositions, pathways, and 
concentrations of various metabolites, including sugars, amino acids, 
lipids, and organic acids (Tang et al., 2018; Razzaq et al., 2021), but 
cannot inherently provide spatial information on metabolite distribution 
within a sample. Understanding the metabolomic fingerprints of 
different wheat varieties contributes to breeding programs to improve 
quality traits (Litvinov, Karlov, & Divashuk, 2021). By integrating 
metabolomics and HIT, researchers and producers can better understand 
the factors influencing wheat quality. The combination of detailed 
biochemical information and spatial patterns enhances the precision of 
quality assessments, providing valuable insights for wheat management, 
breeding programs, and optimizing processing and production practices 
in the wheat industry. 

3.2. Evaluation of fungal and mycotoxin contamination 

Toxigenic molds can attack wheat grains during postharvest storage 
and processing. The mildew of wheat will affect the nutritional value 
and taste of grain and produce mycotoxins, which seriously threaten 
human health (Beccari et al., 2016). Mycotoxins are mainly toxic me-
tabolites produced by mold in contaminated food; they can be delivered 
into human and animal bodies through feed or food, causing acute or 
chronic toxicosis, damaging the liver, kidney, nerve tissue, hematopoi-
etic tissue and skin tissue (da Rocha et al., 2014). Rapid and visual 
detection of wheat mildew significantly reduces wheat storage losses. 
Early detection of mold infection degree is more important to control the 
mildew hazards. HIT has been proposed and used as an advanced optical 
technology for non-invasive and non-destructive detection, quantifica-
tion, identification and discrimination of fungal and mycotoxins in-
fections in wheat grains and flour. 

Fusarium head blight (FHB) is one of the common diseases in wheat 
and wheat infected with FHB always has negative quality effects, such as 
grain atrophy, yield reduction, quality deterioration, and commodity 
value degradation, which cannot be neglected in the control of wheat 
quality (Hershman, Shaner, & Van Sanford, 2012). On the contrary, the 
prevention and control of FHB should be the top priority of the current 
wheat cultivation and production. Hyperspectral images of wheat ker-
nels and flour infected with three Fusarium species (F. graminearum, 
F. culmorum, and F. poae) in 400–1000 nm and 1000–2500 nm ranges 
were investigated to reveal the different correlation between spectra and 
this fungal DNA (Alisaac et al., 2019). With HIT in the range of 
400–1000 nm, 12 optimal wavelengths were selected and combined 
with corresponding images to identify Fusarium-damaged wheat kernels 
by random forest (RF) algorithm, generating an accuracy of classifica-
tion up to 96.44 % (Zhang et al., 2020), almost the same as that of study 
performed by Delwiche et al. (2019), higher than that of other three 
studies (classification accuracy < 90 %) (Nadimi et al., 2021; Femenias 
et al., 2021a; Femenias et al., 2022), similar good as that by Ropelewska 
& Zapotoczny (2018) (accuracy, 85–98 %) and Delwiche et al. (2021) 
(accuracy, 70–96 %), but lower than that from Femenias et al., (2021b) 
(accuracy > 98.4 %) and Lv et al. (2022) (accuracy, 98.31 %), which is 
probably due to the different spectra, preprocessing, and chemometrics 
involved in analysis. Based on previous studies, Liu et al., (2022) 
attempted to use a multispectal imaging system carrying 19 wavelengths 
to monitor the F. graminearum growth in wheat kernels. The count of 
F. graminearum was predicted by a non-linear model (GA-SVM) with a 
correlation over 0.90, and the wheat kernels contaminated with 

F. graminearum was identified by a GA-BPNN model with an accuracy of 
100 %. Besides Fusarium, another mold, namely Aspergillus, also easily 
causes wheat mildew (Mohapatra et al., 2017). The growth time of four 
Aspergillus including A. flavus, A. glaucus, A. parasiticu, and A. ochraceus 
in wheat grains was respectively quantified and distinguished by HIT 
using different number of characteristic wavelengths (13–17) with good 
performance (R2

P, 0.882–0.932; RMSEP, 0.682–0.895) (Sun et al., 2023), 
which enables HIT to inspect the mold growth in wheat grains at early 
stage. 

Deoxynivalenol (DON), a secondary metabolite produced by Fusa-
rium strain, is the most important global mycotoxin in moldy wheat 
grains (Yuen, & Schoneweis, 2007). DON is an important indicator toxin 
of wheat grain mildew and is usually found in high concentrations in 
grain crops such as wheat, corn, barley, and oats (Van Der Fels-Klerx 
et al., 2012). DON is highly toxic to both humans and animals and has 
teratogenic, neurotoxic, embryonal toxic and immunosuppressive ef-
fects (Cimbalo et al., 2020). At present, the common methods used for 
detecting DON include mass spectrometry (MS), high-performance 
liquid chromatography (HPLC), electrochemical method, immunolog-
ical method and so on (Ran et al., 2013). Although these methods are 
highly accurate and reliable, but often high-cost, time- and labor- 
consuming. HIT, representing a green and environmentally friendly 
emerging technology, was proposed to predict DON levels in FHB- 
infected wheat kernels rapidly and non-destructively. Based on 12 
selected feature wavelengths, a SVM model was built to achieve a 
classification accuracy of 97.92 % for the testing set, and a visualization 
map was created to exhibit DON content (Liang et al., 2018). A feature 
range of 430–600 nm gave a classification accuracy of 100 % for wheat 
kernels and 96 % for wheat flour was obtained in the same research 
group (Liang et al., 2020), according to DON levels. Similar good results 
were also found in the other two studies conducted by Zhao et al. (2020) 
(96.92 %) and Shi et al. (2020) (94.29 %), respectively. By comparison, 
a classification accuracy below 90 % was reported by Femenias et al. 
(2020), Nadimi et al. (2021), Femenias et al. (2021a), and Femenias 
et al. (2022) (shown in Table 2). As for DON quantification by HIT, Shi 
et al. (2020) achieved the highest prediction accuracy (RP, 0.9988; 
RMSEP, 365.3 µg/kg), better than other studies (Zhao et al., 2020; 
Femenias et al., 2020; Femenias et al., 2021a; Femenias et al., 2021b; 
Femenias et al., 2022; Shen et al., 2022; Dhakal et al., 2023). The rea-
sons for the differences in the results among these studies may be related 
to wheat variety, spectral wavelength, wavelength preprocessing, 
modeling algorithm, and so on. 

Overall, all these findings show that HIT is great potential and can be 
used to not only identify and classify wheat kernels contaminated with 
different levels of fungi but also detect mycotoxin content in wheat 
grains with good accuracy. Increasing spectral resolution of HIT to 
capture finer details in the unique spectral signatures associated with 
fungal contamination and mycotoxins will allow for more precise 
identification and characterization of specific contaminants. Coupled 
with advanced algorithms, including machine learning approaches 
(Zhang et al., 2022), the accuracy and reliability of contamination 
detection using HIT can be improved. Enhancing the sensitivity and 
selectivity of HIT for detecting low levels of fungal contamination and 
mycotoxins is crucial for early detection and prevention of mycotoxin- 
related issues in food and agricultural products. Though the integra-
tion of HIT with other detection technologies, such as molecular assays 
or biosensors (Wang et al., 2022; Oliveira et al., 2019), and the combi-
nation of complementary information provided by multiple techniques, 
the overall detection capabilities can be improved to a great extent. At 
present, it is still difficult to use HIT technology to identify and quantify 
a variety of toxins simultaneously, and future research on intelligent 
detection to make up for the shortcomings of HIT is expected. 

3.3. Classification and identification of wheat varieties 

Wheat varieties vary according to various factors such as origin, 
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Table 2 
Applications of HIT for evaluating fungal and mycotoxins contamination.  

Sample Target index Wavelength range Best spectral 
preprocessing 
method 

Modeling 
algorithm 

Selection 
method 

Feature wavelengths (regions) Best performance Reference 

Wheat 
grain 

Aspergillus 
flavus 

400–1000 nm OSC SVM SPA Aspergillus flavus 
401,467,595,719,868,931,945,950,954,955,956,957, 958 nm 

R2
P = 0.834 

RMSEP = 1.075 Log 
CFU 

Sun et al., 
2023 

Aspergillus 
glaucus 

Aspergillus glaucus 
424,430,434,438,439,444,476,570,622,671,706,788,888,911,916,920,921, 
928 nm 

R2
P = 0.822 

RMSEP = 1.112 Log 
CFU 

Aspergillus 
parasiticu 

Aspergillus parasiticu 
426,428,430,436,445,447,448,451,452,454,462,681, 709 nm 

R2
P = 0.888 

RMSEP = 0.871 Log 
CFU 

Aspergillus 
ochraceus 

Aspergillus ochraceus 
434,441,443,447,452,454,458,465,493,530,569,601,699,847,905,915, 932 
nm 

R2
P = 0.832 

RMSEP = 1.063 Log 
CFU 

Fusarium 
graminearum 

Fusarium graminearum 
401,475,621,740,929,952,965,972,974,975,976,977,978,981, 983 nm 

R2
P = 0.884 

RMSEP = 0.882 Log 
CFU 

Wheat 
kernel 

DON 
Fusarium 

400–1000 nm None Mask R-CNN 
(prediction) 

None None R2
P = 0.75 Dhakal et al., 

2023 
G-Boost 
(classification) 

Classification 
accuracy of 97 % 

Wheat 
kernel 

Fusarium 400–1000 nm None ASSDN Combination of 
Relieff, UVE, 
RFrog, SFLA 

941, 876, 732 nm Classification 
accuracy of 98.31 % 

Lv et al., 2022 

Wheat 
kernel 

DON 900–1700 nm MSC 
SG smoothing 

LPLS-S None None R2
P = 0.81 

RMSEP = 40.25 mg/ 
kg 
RPD = 2.24 

Shen et al., 
2022 

Wheat 
kernel 

DON 
Fusarium 

895–1728 nm SNV PLSR Regression 
coefficients 

1067,1159,1193,1222,1252,1343,1363,1378,1399,1497, and 1554 nm. DON 
R2

P = 0.88 
RMSEP = 6.66 mg/ 
kg 
RPD = 3.21 

Femenias 
et al., 2022 

Classification 
accuracy of 86 % 

Wheat 
kernel 

Fusarium 
graminearum 

405, 435, 450, 470, 
505, 525, 570, 590, 
630, 645, 660, 700, 
780, 850, 870, 

GA SVM None None GA-BPNN model 
Identification 
accuracy of 100 % 

Liu et al., 2022 

890, 910, 940, and 
970 nm 

BPNN GA-SVM model 
RP = 0.9292 
RMSEP = 0.6725 
CFU/g 

Wheat 
kernel 

DON 
Fusarium 

1000–1650 nm SNV 
(prediction) 

PLSR Regression 
coefficients 

1198, 1322, 1353, 1428, 1445, 1497, and 1549 nm DON 
R2

CV = 0.88 
RMSECV = 4.8 mg/ 
kg 
RPD = 4.4 

Femenias 
et al., 2021a 

LDA 
Naïve Bayes 
K-nearest 
Neighbours 

Classification 
accuracy of 100 %, 
98.9 %, 98.4 % 

(continued on next page) 
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Table 2 (continued ) 

Sample Target index Wavelength range Best spectral 
preprocessing 
method 

Modeling 
algorithm 

Selection 
method 

Feature wavelengths (regions) Best performance Reference 

Wheat 
kernel 

DON 
Fusarium 

900–1700 nm 1st derivative PLSR 
(prediction) 

None None Intact grain 
R2

P = 0.61 
RMSEP = 501 µg/kg 

Femenias 
et al., 2021b 

LDA 
(classification) 

Milled grain 
R2

P = 0.59 
RMSEP = 518 µg/kg 
Accuracy of 85.4 % 

Wheat 
kernel 

Fusarium 940–1600 nm SNV LDA None 1000, 1197, and 1394 nm 1111 nm: Accuracy 
range of 70–82 % 
1197 nm and1395 
nm: 
Accuracy range of 
84–94 % 
1000 nm, 1197 nm, 
and 1394 nm: 
Accuracy range of 
85–96 % 

Delwiche 
et al., 2021 

Wheat 
kernel 

DON 
Fusarium 

960–1700 nm None Classifier 
model 

None None Accuracy of 85 % for 
FDK 
Accuracy of 85 % for 
DON 

Nadimi et al., 
2021 

Wheat 
kernel 

DON 900–1700 nm SNV PLSR 
(prediction) 

None None R2
P = 0.27 

RMSEP = 1174 µg/ 
kg 

Femenias 
et al., 2020 

LDA 
(classification) 

Accuracy of 62.7 % 

Wheat 
kernel 

DON 405, 435, 450, 470, 
505, 525, 

GA SVM 
(prediction) 

None None RP = 0.9988 
RMSEP = 365.3 µg/ 
kg 

Shi et al., 2020 

570, 590, 630, 645, 
660, 700, 780, 850, 
870, 890, 910, 940, 
and 970 nm. 

PCA PCA-PLS 
(classification) 

Accuracy of 94.29 % 

Wheat 
kernel 

Fusarium 400–1000 nm None RF SPA 481,518,570,655,675,706, 
726,744,764,829,852, and 925 nm 

Accuracy of 96.44 % Zhang et al., 
2020 

Wheat 
kernel 

DON 363–1023 nm None PLSR 
(prediction) 

CARS 23 feature wavelengths RP = 0.691 
RMSEP = 0.707 mg/ 
kg 

Zhao et al., 
2020 

LDA 
(classification) 

accuracy of 96.92 % 

Wheat 
kernel 

DON 400–1000 nm MSC SAE GA wheat kernels 
430–600 nm regions 

Wheat kernels 
accuracy of 100 % 

Liang et al., 
2020 

Wheat 
flour 

1000–2000 nm SNV wheat flour 
1300–1400 nm 
1500–1600 nm 
1800–1950 nm 

Wheat flour 
accuracy of 96 % 

Wheat 
kernel 

Fusarium 
(F. 
graminearum, 

400–1000 nm None None None None Different correlation 
for different ranges 

Alisaac et al., 
2019 

Wheat 
flour 

F. culmorum, 
and F. poae) 

1000–2500 nm 

Wheat 
kernel 

Fusarium 938–1654 nm None LDA None 1100, 1197, 1308, and 1394 nm Classification 
accuracy of 96.4 % 

Delwiche 
et al., 2019 

(continued on next page) 
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color, nature, and plant season (Posner, 2000). Kernel morphology is 
one of the most stable traits in the life history of wheat and the primary 
basis for identifying varieties through kernel size, shape, surface char-
acteristics and color, which is only applied to the identification of wheat 
kernels with apparent differences between varieties (Mabille & Abe-
cassis, 2003). The classification of wheat varieties is of great significance 
as wheat kernels with high purity guarantee wheat yield and quality. It is 
practical and beneficial to identify and judge different types of wheat 
varieties with different winter and spring characteristics, texture and 
color (Dubey et al., 2006). In recent years, with the decrease of hardware 
cost and the improvement of computing speed, imaging technology such 
as HIT has been widely used in the quality inspection and grading of 
agricultural products (Wang et al., 2023) and has been successfully 
applied in the variety classification of various grain crops (Feng et al., 
2019). 

Extensive research on HIT for identifying wheat varieties and cate-
gories has been carried out with different accuracies. Vermeulen et al. 
(2018) evaluated the effect of HIT as a tool for discriminating durum and 
common wheat kernels at single and bulk levels. The results indicated 
that using a combination of morphological and HIT (1100–2400 nm) 
and PLS-DA model led to a classification accuracy of 99 % in dis-
tinguishing between the two Italian wheat species. Although a slight 
spectral difference was found between conventional and waxy wheat in 
the 940–1650 nm range, HIT still may be used to determine the mixture 
levels (0–100 %) with standard errors of 9–13 percentage units, offering 
a potential advantage of HIT to sort wheat (Delwiche et al., 2018). The 
NIR spectra (900–1700 nm) preprocessed by Savitzky-Golay second 
derivative (SG2) were investigated by HIT combined with ANN algo-
rithm to classify 15 Indian wheat varieties, giving a best classification 
accuracy of 97.77 % (Sharma et al., 2022), which is better than 93 % 
obtained by Tyagi et al. (2022) who identified other 16 Indian wheat 
varieties by HIT with the same spectral range. The same range of raw 
spectra without preprocessing generated a slightly better classification 
performance (accuracy was 99.94 %) in classifying 40 different Turkish 
wheat cultivars (Işık et al., 2022). 

Five Chinese wheat varieties were classified by HIT combined with a 
nonlinear ELM algorithm, giving good classification accuracy for either 
full spectra (874–1734 nm) (91.3 %) or 50 feature wavelengths (87.74 
%) (Bao et al., 2019). A higher classification accuracy was obtained by 
applying HIT to classify other 30 Chinese wheat varieties (93.01 % for 
full 975–1645 nm spectra, 90.20 % for 60 spectral channels) (Zhou et al., 
2020). Different from the NIR range, the spectra in visible/NIR range 
from 400 nm to 1000 nm were studied by more researchers. Liu et al. 
(2020) proposed a new strategy to select 25 spectral standard deviation 
feature wavelength variables from the 415–995 nm range through 
contribution weights and categorize six close relative hybrid wheat va-
rieties with a classification accuracy of 83.3 %. Higher accuracy was 
obtained from other seven research groups, who applied HIT to classify 
the different quantities and varieties of Chinese hybrid wheat kernels, 
using full 400–1000 nm range spectra or feature wavelengths, resulting 
in the classification accuracies ranging from 92.29 % to 99 % (details 
shown in Table 3), proving the great feasibility of HIT combined with 
chemometrics for the accurate classification and identification of wheat 
varieties (Zhang et al., 2022; Zhao et al., 2022; Jin et al., 2022; Que 
et al., 2023; Jiang et al., 2023; Zhao et al., 2023; Lei et al., 2022). In 
addition, Wu et al. (2021) investigated the possibility of HIT to differ-
entiate waxy wheat and three partial waxy wheats from wild-type wheat 
(five wheat lines), revealing a better overall classification accuracy of 
98.51 % by a SVM model based on raw spectra of 930–2548 nm, better 
than that by other two models. 

In short, HIT can classify wheat varieties from different regions and 
years of different countries. HIT for wheat variety classification offers 
benefits such as non-destructive analysis, rapid data acquisition, and the 
ability to differentiate varieties based on their unique spectral finger-
prints. This technology can play a crucial role in ensuring the authen-
ticity and traceability of wheat products in the agricultural and food Ta
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Table 3 
Applications of HIT for classification and identification of wheat varieties.  

Sample Target index Wavelength 
range 

Best spectral 
preprocessing 
method 

Modeling 
algorithm 

Selection 
method 

Feature 
wavelengths 
(regions) 

Best performance Reference 

Grain kernel Classification of 5 Chinese grain crops 
(red glutinous sorghum rice, long-grain sorghum rice, long- 
round glutinous rice, Xikemai No. 3 wheat, home-grown corn) 

397–1004.5 
nm 

MSC BPNN IVSO-CARS 41 feature 
wavelengths 

Classification accuracies of 
above 99 % 

Lei et al., 
2022 

Wheat kernel Classification of 15 Chinese wheat varieties 
(vitreous wheat varieties including Jingdong8, Xinong558, 
Yannong19, Kenya, Wangshuibai. 
Piebald wheat varieties including Jinmai47, Lantian36, 
Junmai35, Mazhamai, Anke157. 
Starchy wheat varieties including Taikong6, A’bo, Mianyang26, 
Neixiang237, Wansu0217.) 

400–1000 nm PCA Ensemble 
learning 

None None Classification accuracy of 
92.1 % 

Zhao et al., 
2023 

Wheat kernel Classification of 16 Indian wheat varieties 
(DBW 222, DBW 187, HD 3086, PBW 291, PBW 343, PBW 343 
Unnat, PBW 373, PBW 658, PBW 677, PBW 725, PBW 752, PBW 
771, PBW 824, PBW_550_UNNAT, PBW_Zn, PBW 766) 

900–1700 nm None SVM None None Classification accuracy of 93 
% 

Tyagi et al., 
2023 

Wheat kernel Classification of 10 Chinese wheat varieties and mixing ratio 
(Mianmai 827, Mianmai 903, Mianmai 161, Mianmai 51, 
Chuanmai 1247, Chuannong 30, Nanmai 660, Shumai 830, 
Chuanmai 93, Mianmai 905) 

400–1000 nm SG-MSC BP-Adaboost CARS 99–145 wavelengths Average classification 
accuracy of 92.29 % 

Jiang et al., 
2023 

Wheat kernel Classification of 8 Chinese wheat varieties 
(bainong4199, jimai44, zhoumai33, weilong169, Shiluan02-1, 
bainongAK58, xinmai26, jimai22) 

400–1000 nm None CNN iCR-GC Spectral wavelength 
interval with 50 
variables 

Classification accuracy of 
more than 92.29 % 

Que et al., 
2023 

Wheat seed Classification of 20 Chinese wheat varieties from different series 
(Zhoumai Series, Zhengmai Series, Bainong Series, Other Series) 

400–1000 nm MSC SVM PCA None Classification accuracy of 
97.64 % 

Jin et al., 
2022 

Wheat seed Classification of 8 Chinese wheat varieties 
(Bainong 4199, Bainongaikang 58, Weilong 169, Xinmai 26, 
Zhou Mai 33, Jimai 22, 
Jimai 44, Shi Luan 02–1) 

400–1000 nm None Hybrid CNN None None Classification accuracy of 
95.65 % 

Zhao et al., 
2022 

Wheat seed Classification of 8 Chinese wheat cultivars 
(Jingmai 9, BS 1086, CP 730, Jingmai 11, 05Y hua 68–2, 
Jingmai 183, BS 237, 05Y hua 68–1) 

400–1000 nm Detrend PLS-DA CARS Wavelength number 
< 30 

Classification accuracy of 
more than 95 % 

Zhang et al., 
2022 

Wheat cultivar Classification of 40 Turkish wheat cultivars 900–1700 nm None CNN None None Classification accuracy of 
99.94 % 

Işık et al., 
2022 

Wheat seed Classification of 15 Indian wheat varieties 
(DBW187, DBW222, PBW291, PBW343, PBW343U (or PBW343 
Unnat), 
PBW373, PBW658, PBW677, PBW725, PBW752, PBW766 
(SUNHERI), PBW771, PBW824, PBW1Zn, and WH1105) 

900–1700 nm SG2 ANN None None Classification accuracy of 
97.77 % 

Sharma et al., 
2022 

Waxy wheat Discrimination of American waxy wheat 
(a wild-type wheat line PI 9090–1, a waxy type wheat line PI 
675518, three partial waxy type wheat lines PI 9033–2, PI 
9048–1, PI 9028–2) 

930–2548 nm Raw SVM 
PLS-DA 
BPNN 

None None Overall classification accuracy 
of 98.51 %, 75.76 % and 
82.10 %, for the three models, 
respectively 

Wu et al., 
2021 

Wheat kernel Identification of 30 Chinese wheat varieties 
(aikang58, bainong207, bainong4199, bainong889, baomai218, 
baomai330, baomai5, fengdecunmai12, fengdecunmai20, 
guanmai1, huaimai20, huaimai40, huaimai41, huaimai920, 
jiangmai816, jiangmai919, jimai211, jimai22, lunxuan99, 
luomai9, ruihuamai518, saidemai1, tiechuaifu99, weilong169, 
xinong20, xinong979, xumai36, xumai818, yannong19, 
yunong035) 

975–1645 nm Normalization CNN-ATT CNN-FS 60 spectral channels Classification accuracy of 
93.01 % for full spectra 
Classification accuracy of 
90.20 % for 60 spectral 
channels 

Zhou et al., 
2020 

Wheat seed Classification of six Chinese hybrid wheat varieties 
(Dongnongdongmai1, Dongnongdongmai2, Kechun4, Kehan16, 
Kenjiu10, Longfumai21) 

415–995 nm SG smoothing SVM SPA 25 spectral standard 
deviation feature 
variables 

Classification accuracy of 
83.3 % 

Liu et al., 
2020 

(continued on next page) 
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industries. Based on the current research results, continuous improve-
ments in HIT for classifying and identifying wheat varieties are essential 
to enhance accuracy, reliability, and practicality. 

3.4. Identification of non-mildew damage in wheat kernels 

In addition to the damage caused by mildew, wheat kernels suffer 
damage from other factors such as sprouting, black points, broken 
wrinkles and parasites. Sprouting in wheat kernels often occurs after 
rain and is usually caused by mismanagement after harvest, including 
delayed drying, improper storage, and harvesting too late, and so on, 
which easily results in unpleasant effects of rancidity, nutrient loss, taste 
change of wheat kernels, reducing wheat quality and commodity value 
(Gabrovská et al., 2007). Sprouted kernels are vulnerable to infestations 
by diseases and insects (Singh et al., 2009) and should be inspected in a 
timely manner to minimize the loss caused by the infected damages. HIT 
can provide spectra for each pixel in an image. It was explored for its 
potential to detect sprout damage in wheat kernels using a 528–1785 nm 
wavelength range for discriminating between sound and sprouted ker-
nels. A global threshold value of 0.30 was used to separate sound and 
sprouted kernels, achieving an accuracy of 100 % for the three wheat 
cultivars tested (Barbedo et al., 2018). Hyperspectral images of both 
sides of wheat kernels were also acquired to identify sound and slightly 
sprouted wheat kernels. Classification modeling was performed using a 
machine learning deep forest (DF) algorithm, indicating slightly better 
effects of spectral data from the reverse side compared to those from the 
ventral side. By applying the full 254 wavelengths and the 29 charac-
teristic wavelengths selected from the reverse side by CARS algorithm, a 
good classification accuracy of 94.5 % and 93 % was generated, 
respectively, to exhibit the practicality and usefulness of HIT in identi-
fying sprouted wheat kernels (Zhang et al., 2020). The hyperspectral 
images of healthy wheat grain, germinated wheat grain, and shriveled 
wheat grain with two sides were investigated and the classification ac-
curacy was tested using a SVM model. The results showed a classifica-
tion accuracy of 98.5 % for the reverse side (with 7 characteristic 
wavelengths) and 97.4 % for the ventral side (with 6 characteristic 
wavelengths) (Zhang & Ji, 2019), slightly better than that by the CNN 
model, based on the identical spectra (866.4–1701 nm) (Li et al., 2022), 
indicating a good prospect of HIT in the identification of unsound wheat 
kernels. 

Wheat kernels damaged with the occurrence of black points, broken, 
and wrinkles were also discriminated from healthy wheat kernels by 
HIT. With full spectra (900–1700 nm, 160 wavelengths) and 8 effective 
wavelengths selected by X-loadings and SPA methods, three non-linear 
LS-SVM models were developed to classify damaged wheat kernels 
and achieved a perfect classification accuracy of 100 %, better than 
linear PLS models (97.2 %–98.9 %) (Shao et al., 2020). More wheat 
kernel samples with different degrees of damage are still required to 
increase the robust discrimination. 

Rice-weevil, one of the most common pests, is mainly parasitized in 
stored grains, such as rice, corn, wheat, barley, and sorghum (Tripathi, 
2018). Rice-weevil is very harmful and easily causes quality degradation 
of wheat kernels (Singh & Sharma, 2021). Manual screening is always 
used to visually detect and identify pest-damaged wheat kernels, which 
is inefficient, subjective, low-precision, and very difficult to use to detect 
high-quality wheat kernels in large quantities. For this reason, devel-
oping a rapid method to achieve the detection more objectively and 
accurately is necessary. Zhang et al., (2021) proposed to use HIT in 
tandem with LDA to identify rice-weevil-damaged wheat kernels from 
the four sides (reverse, ventral, and two flanks). Using eight feature 
wavelengths selected from the 866.4–1701 nm range, a LDA model was 
established and validated with high accuracy, sensitivity and specificity 
(97 %, 98 %, and 96 %, respectively), indicating the reliability of HIT to 
identify the sound and Rice-weevil-damaged wheat kernels. All the 
specific research results are shown in Table 4. 

To sum up, detecting non-mildew damage in wheat kernels by HIT is Ta
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possible and would benefit wheat kernels’ grade and post-harvest pro-
cessing. HIT and advanced data analysis techniques can provide a reli-
able and non-destructive method for identifying non-mildew damage in 
wheat kernels. The ability to detect subtle variations in spectral signa-
tures enables precise discrimination between healthy and damaged 
kernels, contributing to quality control in the wheat industry. Dealing 
with the process of HIT discrimination, it is important to continually 
address challenges such as data analysis complexity, calibration re-
quirements, and ensuring the robustness of the technology in diverse 
environmental conditions. As technology continues to evolve, the trend 
of employing portable miniature instruments in food and agriculture 
will likely grow, offering new possibilities for improved crop manage-
ment and quality control (Zhu et al., 2022). Portable miniature HIT 
sensors for detecting damaged wheat kernels should be considered and 
developed in the future. 

3.5. Detection of wheat flour adulteration 

Wheat flour is a powder made from wheat kernels, rich in carbohy-
drates, protein and various vitamins, and provides energy and nutrients 
for the human body (Atwell & Finnie, 2016). Wheat flour has been an 
indispensable ingredient in our daily life. It has often been used as one of 
the main raw materials to make pasta, pastry and other foods since 
ancient times, playing a role in alleviating hunger, increasing satiety and 
taste, supplementing nutrition, and promoting digestion and absorption 
(Shewry & Hey, 2015). 

In order to improve the appearance of wheat flour and reduce costs, 
there are still some inappropriate or illegal behaviors in the market, such 
as the use of low-cost, substandard raw materials or the addition of 
inferior raw materials in flour to increase profits, which often results in 
poor nutrition, taste and safety issues of flour. According to the reports, 

flour adulterants often include talcum powder, benzoyl peroxide (BPO), 
and other powders (Pastor, Ačanski, & Vujić, 2019). Using HIT to 
identify and detect these adulterants is of great practical significance. 
Zhao et al. (2019) investigated the potential of HIT combined with a 
small number of feature wavelengths (<10, 1158–1700 nm) to detect 
low-level peanut powder (0.01–10 %, w/w) mixed in different varieties 
of whole wheat flour. For both spring and winter wheat flour, the peanut 
powder in the low concentration was detected with high precision (R2

P >

0.99). Defatted peanut flour with a concentration range from 0.02 % to 
20 % mixed in wheat flour was used to verify the detection performance 
of HIT in tandem with a developed Matched Subspace Detector (MSD) 
algorithm and a global adulteration of 0.2 % of peanut in wheat flour 
proved the best detection accuracy (Laborde et al., 2020). HIT was used 
to detect two adulterants, peanut flour and walnut flour, mixed in wheat 
flour and achieved excellent performance (R2

P = 0.987, RMSEP = 0.373 
%) along with a detection limit as low as 1 % (Zhao et al., 2018). In 
another study, three adulterants, such as BPO + alloxan monohydrate +
L-cysteine (0.05–1.5 %, w/w) mixed in wheat flour was also detected 
with a high precision (R > 0.98), using Raman HIT in short wave NIR 
region (740–1010 nm) (Lohumi et al., 2019). Similarly, a high accuracy 
of over 92.45 % was observed in detecting another combination of three 
adulterants (BPO + peanut flour + walnut flour) in wheat flour (Zheng 
et al., 2022). 

Several countries, especially the European Union and China, have 
banned talcum powder and BPO in wheat flour production (Liu et al., 
2023). Talcum powder is white and tasteless and can be used to improve 
the flour appearance. The appropriate addition of BPO as a bleaching 
agent can enhance the flour’s appearance and storage. Using HIT com-
bined only four feature wavelengths (907.135, 1339.866, 1392.573, 
1394.22 nm) to detect wheat flour adulterated with talcum powder has 
yielded good results (RP = 0.98, RMSEP = 2.88 %) (He et al., 2023). 

Table 4 
Applications of HIT for identification of non-mildew damage in wheat kernels.  

Sample Target index Wavelength 
range 

Best spectral 
preprocessing 
method 

Modeling 
algorithm 

Selection 
method 

Feature wavelengths (regions) Best performance Reference 

Wheat 
kernel 

Germinated 
wheat grain 
Shriveled wheat 
grain 

866.4–1701 
nm 

None CNN None None Accuracy increased 
from 79.17 % to 
96.67 % 

Li et al., 
2022 

Wheat 
kernel 

Rice-weevil 866.4–1701 
nm 

SNV LDA SPA 8 wavelengths Accuracy, sensitivity 
and specificity of 97 
%, 98 % and 96 %, 
respectively. 

Zhang 
et al., 2021 

Wheat 
kernel 

Slightly sprout 866.4–1701 
nm 

S-G smoothing DF CARS 976.4, 986.6, 1024.1, 1027.5, 
1030.9, 1044.5, 1047.9, 1088.5, 
1091.8, 1098.6, 1102, 1118.8, 
1122.2, 1125.5, 1128.9, 1132.3, 
1155.7, 1159.1, 1169.1, 1209.2, 
1245.8, 1288.8, 1361.1, 1364.4, 
1423.1, 1445.8, 1526.4, 1529.6, 
and 1564.8 nm 

Full wavelengths 
(254) 
Classification 
accuracy of 94.5 % 

Zhang 
et al., 2020 

Feature wavelengths 
(29) 
Classification 
accuracy of 93 % 

Wheat 
kernel 

Black point 
Broken 

900–1700 nm PCA LS-SVM X-loadings X-loadings 
937, 965, 1129, 1176, 1217, 1340, 
1411, and 1677 nm 

LS-SVM 
Classification 
accuracy of 100 % 

Shao et al., 
2020 

Wrinkle 
Healthy 

PLS SPA SPA 
935, 961, 1130, 1207, 1300, 1370, 
1449, and 1672 nm 

PLS 
Classification 
accuracy of 100 % 

Wheat 
kernel 

Germinated 
wheat grain 
Shriveled wheat 
grain 

866.4–1701 
nm 

MSC SVM PC loading Reverse side Reverse side Zhang & Ji, 
2019 1105.3, 1199.2, 1305.3, 1321.7, 

1439.3, 1458.7, and 
Average 
classification 
accuracy of 98.5 % 

1478.1 nm  
Ventral side Ventral side 
1112.1, 1202.5, 1298.7, 1341.4, 
1458.7, and 1484.6 nm 

Average 
classification 
accuracy of 97.4 % 

Wheat 
kernel 

Sprout 528–1785 nm None None None None Classification 
accuracy of 
97.2–98.9 % 

Barbedo 
et al., 2018  
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With eight feature wavelength regions involved, a short-wave HIT sys-
tem was developed to detect BPO content (50–6400 ppm) in wheat flour 
with high accuracy (R2

P > 0.985) (Kim et al., 2022). In addition to being 
successfully detected individually, these two indicators can be predicted 
when combined. Talcum powder mixed with BPO, as binary adulterants 
at low levels (<5.0 %) in wheat flour was effectively discriminated by 
HIT in the 900–1700 nm range combined with different spectral analysis 
methods (Fu et al., 2020; Fu et al., 2021) (shown in Table 5). In general, 
adulterants at low levels can be detected by HIT with good accuracy, 
which demonstrates a high potential of HIT for discriminating different 
powder particles in wheat flour. 

It is worth noting that HIT provides a detailed spectral signature for 
each pixel in an image, covering a broad NIR range of wavelengths, for 
wheat flour quality analysis, with different performance achieved for 
different range data, which is mainly due to the interaction between NIR 
spectra and different functional groups of biomacromolecules of wheat 
compositions. After being absorbed by the NIR light, the spectral points 
located at different locations produce different vibrations and overtones 
for these chemical groups (Zhang et al., 2022). The main components of 

wheat flour include water, starch, protein, ash, and some functional 
substances, which are closely related to its nutritional and processing 
properties. The hydrogen-containing groups such as O–H, N–H, C–H, 
S–H bonds in wheat flour components have characteristic absorption 
peaks in NIR region, which is the basis of HIT to detect the chemical 
composition of wheat flour (Salgó & Gergely, 2012). The absorption 
bands in NIR region are sensitive to the chemical compositions of wheat 
flour, and the presence of adulterants may introduce spectral interfer-
ence, causing overlapping or shifting of absorption bands in the NIR 
spectra, which complicate the interpretation of the spectra and require 
advanced data analysis techniques, commonly including chemometrics 
and machine learning algorithms, to extract relevant information from 
the spectra, and distinguish and quantify different adulterants in wheat 
flour (Liu et al., 2023). The impact of adulterants on NIR spectra de-
pends on various factors, such as the type and concentration of adul-
terants, the specific characteristics of wheat flour, and the measurement 
conditions. Detection and analysis of adulterants in wheat flour using 
HIT often involve comparing observed spectra with reference spectra of 
known adulterants or using chemometric models trained on authentic 

Table 5 
Applications of HIT for detection of wheat flour adulteration.  

Sample Target index Wavelength 
range 

Best spectral 
preprocessing method 

Modeling 
algorithm 

Selection 
method 

Feature wavelengths 
(regions) 

Best 
performance 

Reference 

Wheat 
flour 

Talcum 
powder 

900–1700 nm SNV PLSR CARS 907.135, 1339.866, 
1392.573, and 1394.22 nm 

RP = 0.98 
RMSEP = 2.88 % 
RPD = 5.09 

He et al., 
2023 

Wheat 
flour 

BPO 1000–2500 
nm 

Smoothing, mean 
normalization, maximum 
normalization, 

PLSR RMSEV 
values 

937.5–1062.5 nm, 
1062.5–1187.5 nm, 
1312.5–1436.5 nm, 
1436.5–1562.5 nm, 
1562.5–1687.5 nm, 
1812.5–1937.5 nm, 
1937.5–2062.5 nm, 
2062.5–2187 nm 

R2
P > 0.985 Kim et al., 

2022 

range normalization, 
MSC, SNV, 
Savitzky–Golay 1st 
derivative, 
Savitzky–Golay 2nd 
derivative 

Wheat 
flour 

Peanut flour 
Walnut flour 
BPO 

380–1030 nm None gcForest EMCVS 487, 704, and 883 nm Accuracy > 92.45 
% 

Zheng 
et al., 2022 

Wheat 
flour 

Talcum 
powder 
BPO 

900–1700 nm mean-centre 
normalisation, 
1st derivative 

None None None None Fu et al., 
2021 

Wheat 
flour 

Defatted 
peanut flour 

1200–2200 
nm 

S-G smoothing, 
SNV 

MSD algorithm None None Detection 
concentration of 
0.2 % 

Laborde 
et al., 2020 

Wheat 
flour 

Talcum 
powder 
BPO 

900–1700 nm mean-centred 
normalisation, 
1st derivative 

Talcum powder 
1st derivative 
band difference 
method 

None None Detection 
concentration of 
0.02–5 % 

Fu et al., 
2020 

BPO 
spectral 
correlation 
measurement 

Wheat 
flour 

peanut 
powder 

1158–1700 
nm 

S-G + 1st derivatives PLSR CARS Spring wheat flour 
1,196, 1,354, 1,411, 1,478, 
1,482, 1,492, and 1545 nm 

Spring wheat flour 
R2

P = 0.993 
RMSEP = 0.251 % 

Zhao et al., 
2019 

SNV Winter wheat flour 
1,200, 1,203, 1,242, 1,245, 
and 1249 nm 

Winter wheat 
flour 
R2

P = 0.991 
RMSEP = 0.285 % 

Wheat 
flour 

BPO 
Alloxan 
monohydrate 
L-cysteine 

740–1010 nm None SAM None None R > 0.98 
Detection 
concentration of 
0.05–1.5 % (w/w) 

Lohumi 
et al., 2019 

Wheat 
flour 

Peanut 
powder 

950–1700 nm SNV + 1st Der PLSR SPA, UVE SPA 
1064, 1127, 1203, 1365, 
1368, 1464, 1574, 1581, 
1585, 1606, 1624 

SPA 
R2

P = 0.960 
RMSEP = 0.645 % 

Zhao et al., 
2018 

Walnut 
powder 

UVE 
1022, 1186, 1193, 1196, 
1200, 1203, 1207, 1210, 
1231, 1249, 1252, 1256 
1372, 1390, 1606, 1613, 
1638 

UVE 
R2

P = 0.987 
RMSEP = 0.373 %  
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samples. The imaging function in HIT allows for the spatial visualization 
of adulterant changes in terms of concentration and distribution in 
wheat flour. 

Compared with other imaging techniques, such as computer vision 
(Goyal, Kumar, & Verma, 2022), HIT offers unique advantages for 
detecting flour adulteration, such as detailed spectral information and 
spatial resolution. X-ray and CT imaging may offer better penetration 
depth and can be more effective in detecting internal structures and 
foreign objects (Sivakumar et al., 2023), but is rarely used. Although, 
HIT still comes with challenges related to data complexity, equipment 
cost, and specific calibration requirements. Continuous research and 
development efforts, along with advancements in technology and 
methodology, are essential for improving the capabilities of HIT in 
detecting flour adulteration. The software and hardware improvements 
will contribute to the overall reliability, accuracy, and applicability of 
hyperspectral imaging systems in the food industry. 

4. Limitations and challenges 

Although HIT has been studied and proven to possess great potential 
for the quality evaluation of wheat quality, a lot of research is still 
required before achieving the real industrial detection application of 
wheat quality. Some restrictions and challenges remain and should be 
addressed to overcome the existing barriers (shown in Fig. 4). Firstly, 
HIT has achieved certain valuable results in detecting the main chemical 
components such as ash, protein, starch, moisture and other micro-
nutrients of wheat grains, but few or no outcomes of stability time, 
cellulose, thousand-grain weight, and precipitation value. Besides, HIT 
also has some problems in the classification and identification of wheat 
varieties in terms of effectiveness and stability, originating from the 
inconsistencies of samples, which is mainly caused by planting region, 
production year, storage conditions, transportation and circulation en-
vironments, increasing the difficulty and uncertainty of HIT modeling. 
As the characteristic wavelengths vary for different wheat varieties, 
there is still a problem of low reliability of established models in the 
qualitative identification or quantitative determination of wheat quality 
by HIT. 

Secondly, there are limitations in the functionality of HIT equipment 
used for assessing wheat quality. Current devices cannot simultaneously 
acquire spectra, process data, and perform intelligent analysis. Addi-
tionally, HIT equipment suitable for laboratory use is bulky and 

challenging to transport for field use. The processing speed for vast 
amounts of HIT data varies significantly with software versions, result-
ing in the non-universality of a constructed model. This variability 
hampers the universal application of HIT in wheat quality assessment. 

Finally, the existing HIT equipment is still expensive, compared with 
other detection techniques, because of the high cost of sophisticated 
spectrometers and high-definition cameras embedded in the HIT system. 
Due to the huge amount of data collected by HIT systems, more storage 
and processing power, that is, computing power, is required. This 
requirement directly impacts the broader adaptation and future appli-
cation of HIT. It is worth noting that the resolution of hyperspectral 
images collected from the HIT system is limited because HIT requires 
more spectral bands and the image resolution of each band is relatively 
low, which may influence the data accuracy and application of HIT. HIT 
demands specific working conditions, particularly about lighting. 
Adequate illumination is essential for effective HIT operation; without 
it, imaging quality may be compromised, requiring additional effort in 
data processing. This requirement for optimal lighting conditions is a 
significant factor in the practical use of HIT. 

5. Trends and future prospects 

Scientists are expecting many significant advancements in HIT in the 
coming days. One of the key developments in this technology would be 
the miniaturization of hyperspectral cameras and sensors. Current HIT 
devices are bulky and expensive. Miniaturization would make this 
technology more accessible and affordable for a wide range of applica-
tions for the end users (Kamruzzaman, 2023). Smaller and cheaper 
cameras may be integrated into many consumer devices like smart-
phones. Electronic and sensor devices are rapidly growing, and these 
advancements are expected to lead to the development of more 
advanced hyperspectral cameras with higher spectral and spatial reso-
lution. This will allow for capturing more detailed and precise image 
data from the tested objects. Ultimately, it will help to improve the 
sensitivity to detect subtle differences in the spectral signatures for 
various applications. ML/AI fields are rapidly evolving, and integrating 
ML/AI with HIT data will likely become more common in the coming 
days. Due to miniaturization and lightweight hyperspectral cameras, 
more field applications are expected. Drones equipped with hyper-
spectral cameras can cover large areas very quickly. The manufacturers 
will use miniature hyperspectral cameras in various processing and 

Fig. 4. Limitations, challenges, developing trends, and future prospects of HIT in the evaluation of wheat quality.  
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production systems stages for real-time data processing capabilities, 
better visualization, and user-friendly interfaces for various applica-
tions. These anticipated developments reflect a trend towards more 
versatile, efficient, and accessible HIT, with potential impacts across 
various fields and industries. 
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