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ABSTRACT The ascomycete Truncatella angustata has a worldwide distribution. Commonly,
it is associated with plants as an endophyte, pathogen, or saprotroph. The genome assembly
comprises 44.9 Mbp, a G1C content of 49.2%, and 12,353 predicted genes, among them
12 unspecific peroxygenases (EC 1.11.2.1).

T runcatella angustata (Pers.) S. Hughes 1958 (1) belongs to the Sporocadaceae, a family
of coelomycetous fungi with appendage-bearing conidia within the ascomycetous order

Xylariales (2). It is common as an endophyte or pathogen of vascular plants in both temperate
and tropical regions (3, 4). It infects stems (Vitis [5, 6], Vaccinium [7]), leaves (Rosa [8],
Parthenocissus [3], Populus [9]), fruits (Malus [10], Olea [11]), and roots (Vitis [12]) and is also
a candidate for biological control of plant diseases (9, 12). In addition to plants, this fungus
was also isolated from marine sponges (13), humans (4), and as a pathogen from insects
(14). T. angustata cultures showed several secondary metabolites with potential for application
in biotechnology or medicine, e.g., a-pyrone-based analogs (15), phenazine-1-carboxylic acid
with antifungal activity (6), ramulosin derivates with a broad range of biological activities
(14, 16), and truncateols, isoprenylated cyclohexanols with antiviral activity (15, 17). In
culture supernatants, isolate S358 showed activities of several oxidoreductases, including
those of unspecific peroxygenase and laccase. Its genome will be useful for identifying
biotechnologically relevant enzymes or biosynthetic clusters.

T. angustata isolate S358 (rRNA genes and internal transcribed spacer [ITS], GenBank
accession number OL604502) was collected from a fruiting body of the basidiomycetous
species Psathyrella conopilus, which was growing on soil mulched with Robinia pseudoaca-
cia wood chips (Bernsdorf, Germany; 51°23951.10N, 14°01942.20E). The fungus was cultured
at 24°C and 120 rpm for 3 days in a synthetic medium (18) inoculated with a conidiospore
suspension. Mycelium was harvested by vacuum filtration, washed twice, and lyophilized.
Genomic DNA was extracted using the FastDNA Spin kit for soil (MP Biomedicals, Germany)
from 30 mg of the harvested material. Sequencing libraries were prepared using the NEBNext
Ultra II DNA library prep kit (New England Biolabs, Frankfurt, Germany), and genome sequenc-
ing was performed using an Illumina NextSeq 500 instrument in 2 � 150-bp paired-end read
mode. After quality and adapter filtering using BBDuk v38.84, a total of 26 million reads were
used for de novo assembly using SPAdes v3.15.2 (19) with default parameters. The assembly
consists of 853 contigs with a total length of 44.9 Mbp. The assembly was verified using
QUAST v5.0.2 (20) and has an N50 value of 102,256 bp and a G1C content of 49.2%; the larg-
est contig has a size of 376,640 bp. The completeness of the assembly was verified using
BUSCO v5 (data set, ascomycota_odb10) and determined to be 93.8% (21). Gene prediction
was performed using AUGUSTUS v3.4 (22) (predictor: Fusarium graminearum, both strands,
only complete genes, without in-frame stop codons) and resulted in 12,353 protein-coding
genes. The genes were annotated using OmicsBox v2.0.36 (23) (BioBam, Valencia, Spain)

Editor Jason E. Stajich, University of California,
Riverside

Copyright © 2022 Kellner et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Harald Kellner,
harald.kellner@tu-dresden.de.

The authors declare no conflict of interest.

Received 22 January 2022
Accepted 23 May 2022
Published 6 June 2022

July 2022 Volume 11 Issue 7 10.1128/mra.00052-22 1

GENOME SEQUENCES

https://orcid.org/0000-0002-0026-2145
https://www.ncbi.nlm.nih.gov/nuccore/OL604502
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mra.00052-22
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.00052-22&domain=pdf&date_stamp=2022-6-6


following a pipeline of blastp-fast search (E value, 1.0E-3; word size, 6), InterProScan (all
member databases), and GO mapping (Goa v2021.11). Carbohydrate-active enzymes
(CAZymes) were identified using dbCAN2 (HMMdb v10; E value, ,1e-15; coverage, .0.35)
(24). Altogether, 366 glycoside hydrolases, 65 carbohydrate esterases, 29 polysaccharide
lyases, 102 glycosyltransferases, 183 enzymes with auxiliary activities, and 15 carbohydrate-
binding modules (CBM) were identified (Table 1).

Using the unspecific peroxygenase (UPO; EC 1.11.2.1) reference sequence from Cyclocybe
(Agrocybe) aegerita (GenPept accession number CBJ94532), 12 putative UPO genes were
detected in T. angustata. Further, 19 multicopper oxidases were identified, among them 12
laccases. Moreover, 82 secondary metabolite biosynthetic gene clusters (BGCs) were pre-
dicted using antiSMASH v6 (25) (using contigs; detection strictness, relaxed), among them
40 related to the synthesis of polyketides, 35 to nonribosomal peptides, and 11 to terpenes.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under the accession number JAJJMK000000000. The version described in
this paper is version JAJJMK010000000. The Sequence Read Archive (SRA) accession number
is SRR16694223.
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