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Blood malignancies provide unique opportunities for longitudinal tracking of disease
evolution following therapeutic bottlenecks and for the monitoring of changes in anti-
tumor immunity. The expanding development of multi-modal single-cell sequencing
technologies affords newer platforms to elucidate the mechanisms underlying these
processes at unprecedented resolution. Furthermore, the identification of molecular
events that can serve as in-vivo barcodes now facilitate the tracking of the trajectories
of malignant and of immune cell populations over time within primary human samples, as
these permit unambiguous identification of the clonal lineage of cell populations within
heterogeneous phenotypes. Here, we provide an overview of the potential for
chromosomal copy number changes, somatic nuclear and mitochondrial DNA
mutations, single nucleotide polymorphisms, and T and B cell receptor sequences to
serve as personal natural barcodes and review technical implementations in single-cell
analysis workflows. Applications of these methodologies include the study of acquired
therapeutic resistance and the dissection of donor- and host cellular interactions in the
context of allogeneic hematopoietic stem cell transplantation.

Keywords: copy number variants (CNV), somatic nuclear mutation, mitochondrial DNA mutation, single nucleotide
polymorphism, B cell receptor sequence, T cell receptor sequence, allogeneic hematopoietic stem cell
transplantation (allo-HCT), single-cell sequencing
INTRODUCTION

After decades of research, cancer has remained a formidable enemy with relapse as an all too
frequent outcome despite advances in treatment approaches. Deeper elucidation of the underlying
malignant cell states and reprogrammed immune circuits will help to overcome current therapeutic
limitations and improve long-term outcomes. Single-cell sequencing technologies are providing
capabilities to understand cellular states at unprecedented depth, which has greatly accelerated our
understanding of hematopoiesis (1–7) and haematological malignancies (8–14). Certainly, the
dense cellular sampling of biospecimens, afforded by single-cell epigenomics and transcriptomics,
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has allowed the inference of trajectories of cell differentiation
from primary human samples and has deepened our
understanding of the disruption between physiologic and
malignant states (15).

A growing area of interest is the use of molecular barcodes to
corroborate these insights experimentally. Technologies that
introduce artificial barcodes such as fluorescence-based labeling,
viral barcoding, Cre-Lox-based approaches and CRISPR-Cas9
genome editing enable prospective lineage tracing (16, 17) and
permit the characterization of the phenotype of defined genotypes
in great detail (18, 19). However, these studies are limited by the
experimental models they employ. In addition, the introduction
of barcodes may lead to unintended perturbation of cell states and
off-target effects, thus skewing the studied phenotypes.

An alternative approach is to leverage naturally occurring
molecular barcodes to perform retrospective in-vivo lineage
tracing in unaltered primary human cells. This approach has
already proven to be a powerful strategy for deconvoluting clonal
cancer fractions from bulk sequencing data through the analysis
of evolving variant allele frequencies of single nucleotide variants
(20, 21). When coupled with single-cell analyses, the use of
natural barcodes provides the potential for delineating the
phylogeny of cell populations at much greater resolution, and
depending on the technology may link the genotypes of
individual cells to distinct phenotypic cell states (22).

Here we review the growing number of single-cell
methodologies for exploiting such natural barcodes. As
examples, we describe the utility of T or B cell receptor (TCR,
BCR) sequences and copy number changes, somatic nuclear and
mitochondrial DNA (mtDNA) mutations for lineage tracing. We
further discuss specific opportunities in the setting of allogeneic
hematopoietic stem cell transplantation (HSCT).
TOOL KITS FOR LONGITUDINAL
TRACKING OF DISEASE EVOLUTION AT
THE SINGLE-CELL LEVEL

Efforts to utilize natural barcodes to elucidate the developmental
history of individual cells have preceded the availability of current
single-cell sequencing modalities. Despite their low throughput,
these early attempts laid the groundwork for our understanding
how allelic variants can serve to track cell populations
longitudinally over months or years at single-cell resolution.
They have included techniques such as red blood cell
phenotyping (23, 24), fluorescence in-situ hybridization (FISH)
using probes specific for X and Y chromosomes and cell type-
specific staining (25, 26), analysis of sex-linked electrophoretic
variants of glucose-6-phosphate dehydrogenase (27) or clinical
karyotyping (28). Although these techniques are amenable to
single-cell sequencing approaches (29), they are mostly
constrained to specific contexts that limits their wider applicability.

Physiologic Natural Barcodes
The TCR and BCR are examples of physiologic molecules with
high diversity which lend themselves as natural barcodes that can
Frontiers in Immunology | www.frontiersin.org 2
be used for lineage tracing purposes (Figure 1A). Each unique
TCR arises from a combination of a/b or g/d chains with highly
variable sequences due to V(D)J rearrangement and junctional
diversification (30). Single-cell sequencing of TCR now enables
phenotyping of individual T cell clones (31, 32) and permits
tracking of antigen-specific T cells across tissue compartments
and following therapeutic interventions such as immune
checkpoint blockade or vaccination (33–35). Further, TCR is
used to phenotype malignant T cells, for example in
angioimmunoblastic (36) or cutaneous T cell lymphoma (37, 38).

Compared to T cells, B cells additionally undergo affinity
maturation through somatic hypermutation (SHM), which
renders the BCR repertoire even more dynamic (Figure 1B)
(39, 40). Besides applications to understanding immunoglobulin
responses to viral or tumor-specific antigens (41–43), the
ongoing changes in BCR enable lineage tracing of post-
germinal center B cell malignancies that have undergone V(D)J
rearrangement and SHM (44). Sequencing of follicular
lymphoma (45), DLBCL (46) and multiple myeloma (47) has
demonstrated intraclonal BCR heterogeneity that can shed light
on clonal evolution following malignant transformation. Further,
BCR sequences can be used to dissect disease pathogenesis
(48, 49) or mechanisms underlying differential therapeutic
sensitivity (50) of B cell malignancies.

Several RNA-based single-cell TCR/BCR sequencing
platforms exist that differ in the length of covered sequence
and error rate. 5’ short read droplet-based sequencing yields
CDR3 sequences by amplifying cDNA using primers specific for
TCR and immunoglobulin constant regions, but is unable to
cover most of the V region. This approach currently has the
highest throughput and can resolve phenotypes of TCR/BCR
clonotypes with detailed resolution. Smart-seq2 with
computational reconstruction of TCR/BCR sequences leads to
better coverage, but has a higher cost per sample and lower
throughput (51–53). These limitations are being improved with
the development of smart-seq3 (54, 55). Long-read sequencing
can provide full-length TCR/BCR sequences in a large number of
cells, although with higher error rates (56, 57). These
technologies are therefore suited for studies that require
information on regions outside the CDR3 sequence. Finally,
cost-effective targeted approaches with multiplexed PCR can be
an option for analysis of rare cells or little starting material
(47, 58). Different analysis pipelines for these platforms have
been developed that include cellranger (5’ scRNA-seq with VD(J)
enrichment) (59), MiXCR (60) or TRUST4 (61).

Copy Number Changes
Chromosomal copy number variations (CNV) can provide robust
signals that are detectable with RNA- and DNA-based sequencing
platforms (Figure 1C). The high prevalence of CNV changes in
blood malignancies and the genomic instability associated with
relapse following therapy (62–65) render them as useful barcodes
for lineage tracing and phylogenetic dissection of subclones within
malignant cell populations. Examples of recurrent CNV events
include del(5q) and del(7q) in myeloid disease or tri(12) and del
(17p) in CLL. A strength of lineage tracing based on CNV changes
is the shallow sequencing depth required for detection (66),
January 2022 | Volume 12 | Article 788891
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which allows greater numbers of cells to be analyzed. Limitations for
the utility of CNV changes for lineage tracing are either the
common absence of chromosomal aberrations as in diseases such
as AML with normal karyotype (67) or their omnipresence within
monoclonal populations, if they are early founding events.

DNA-based single-cell assays can detect CNV in targeted
regions of interest (scDNA-seq) or globally across the entire
nuclear genome [e.g. single-cell whole genome (scWGS-seq)
(68–70), assay for transposase-accessible chromatin using
sequencing (scATAC-seq) (71, 72) or single-cell sequencing of
DNA methylation (scDNAme) (73)]. Targeted approaches enable
Frontiers in Immunology | www.frontiersin.org 3
detection of CNV changes at higher coverage and better cost
efficiency, but require design of primers for these target regions,
which can be accomplished either through large panels for recurrent
genetic events or personalized solutions based on previous analyses
(9, 74). While scDNA-seq and scWGS-seq profiles are unable to
natively identify cell types and thus require either purification of cell
populations prior to sequencing or additional detection of cell
surface marker expression, scATAC-seq and scDNAme have the
advantage of providing combined information on CNV and cell
state, for example through capture of accessible chromatin (75). A
major technical hurdle is the fact that detection of subchromosomal
A B

D

E

C

FIGURE 1 | Tool kits for lineage tracing with single-cell sequencing. Physiologic barcodes (A) T cell receptor (TCR) sequencing detects clonal expansion of T cells
based on VDJ rearrangement and junctional diversification. TCR can help to identify and phenotype antigen-specific T cells or track malignant T cells. (B) B cell
receptor (BCR) sequences arise due to VDJ rearrangement and ongoing somatic hypermutation. BCR can provide insight into physiological antigen responses and
intraclonal heterogeneity in post-germinal B cell malignancies. Both BCR and TCR are best read out with RNA-based single-cell platforms due to the high number of
BCR/TCR mRNA templates per cell. Acquired barcodes (C) Chromosomal copy number variants (CNV) are common aberrations in blood malignancies. CNV can
provide robust signals with DNA- and RNA-based sequencing platforms that allow to dissect subclonal structure of cancer and can be detected using most single-
cell sequencing platforms. (D) Somatic nuclear mutations (single somatic-nucleotide variant, sSNV) can track clonal evolution in cancer longitudinally. Different classes
of somatic mutations are distinguished such as germline variants, cancer initiating mutations, mutations associated with therapeutic resistance and sporadic
mutations unrelated to the disease pathogenesis. (E) Mitochondrial DNA mutations are progressively acquired as cells divide. This allows to link physiologic or
malignant cells to a common ancestor and to resolve phylogeny. As coverage of mitochondrial transcripts tends to be incomplete, they can be best read out from
DNA-based sequencing platforms. scDNA-seq, single-cell DNA sequencing; scWGS-seq, single-cell whole genome sequencing; scATAC-seq, single-cell Assay for
Transposase-Accessible Chromatin with high-throughput sequencing; scDNAme, single-cell sequencing of DNA methylation; scRNA-seq, single-cell RNA
sequencing; mtscATAC-seq, mitochondrial scATAC-seq; scBCR-seq, single-cell B cell receptor sequencing; scTCR-seq, single-cell T cell receptor sequencing.
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CNV is prone to false positive calls due to effects such as unequal
coverage of genomic regions or PCR amplification bias. To address
this, several computational methods have been developed to
overcome these challenges (72, 76, 77).

For transcriptomic data, the tool inferCNV, which is based on
comparison of read coverage between target and reference cell types,
has gained wide usage (78, 79). The main limitations of inference of
CNV from transcriptomic data are cell type-specific expression
profiles and the unequal gene coverage biased towards the 3’ or 5’
end, which can lead to false-positive results, especially for smaller
CNV regions (80). It is therefore recommended to establish ground
truth knowledge of CNV changes using orthogonal technologies
such as whole exome sequencing (WES) or clinical karyotyping.
Other tools for inferring CNV from single-cell transcriptomes
include HoneyBADGER (81), scCNAutils (82), CaSpER (83),
DENDRO (84) or CopyKAT (85).

Somatic Nuclear DNA Mutations
Together with CNV, single somatic-nucleotide variants (sSNVs) of
nuclear DNA have been at the center of numerous efforts to
understand cancer evolution using bulk sequencing approaches
(86). Although somatic mutations are less frequent in blood
malignancies compared to solid tumors (87), they often can be
linked to altered gene function implicated in tumorigenesis such as
mutations inTET2 (88),DNMT3A (89) (MDS/AML), SF3B1 (90, 91)
(CLL,MDS)or JAK2 (92) (MPN)andacquired therapeutic resistance
(BCR-ABLT315i, BTKC481S, PLCG2R665W) (93, 94) (Figure 1D).
While bulk sequencing infers clonal structures bioinformatically,
single cell sequencing can directly measure coexistence of mutations
within individual cells. Currently, two major strategies for
identification of somatic mutations exist. These include either
targeted scDNA-seq with a primary focus on variant calling or
genotyping of single cell transcriptomics. The advantage of
scDNA-seq is the ability to genotype dozens of loci in thousands
of single cells, which provides very high resolution for tracking of
mutation dynamics across cell compartments and time. RNA-based
approaches are less efficient but can establish links between altered
cell states and somatic mutations, for example through
deconvolution of differential gene expression between mutated and
non-mutated cells within the same cluster (8, 95). Importantly, both
approaches are prone to allelic dropout, an inherent limitation of
PCR amplification from limited starting material (96).

For targeted scDNA-seq platforms, primer panels for recurrent
somatic mutations facilitate identification of these disease-specific
variants (9, 22, 97). However, this approach is unable to target
personal mutations and less frequent variants (98, 99) that would
otherwise substantially increase the resolution of leukemic evolution
(100, 101). This shortcoming can be addressed either through
screening of personal mutations with WES and subsequent
targeted single-cell sequencing (102, 103), or with unbiased
scWGS-seq. Similar to the analysis of CNV, a critical step in the
identification of somatic nuclear mutations from scWGS-seq
involves stringent filtering of false positive results (104). Mutation
calling can be performed with the Tapestri pipeline, which is based
on the variant caller GATK4 (105).

The calling of somatic nuclear mutations from short-read
transcriptomic sequencing libraries is conceptually feasible but in
Frontiers in Immunology | www.frontiersin.org 4
actuality faces several challenges. Due to the 3’ or 5’ bias and
shallow coverage of individual transcripts, somatic mutations
can only be reliably called in a minority of cells (<5%) from
unmodified single-cell gene expression profiles. Targeted
amplification of regions of interest can increase the coverage of
mutated loci and enables mutation calling in a higher percentage
of cells, ranging from <10 to >50% depending on the underlying
sequencing platform, such as 3’ or 5’ bias for short-read
sequencing, the location of the mutation within the transcript
and its expression level (8, 75, 106). For processing of amplicons,
custom solutions have been developed (8, 95). At the present
time, this approach works best for loci close to the end of the
cDNA template, while for mutations that are more distant, long-
read sequencing can increase their coverage (56, 95).

Mitochondrial DNA Mutations
While CNV and somatic nuclear mutations are well-established
approaches to lineage tracing, recently it has been recognized that
mitochondrial DNA (mtDNA) mutations have the potential to
serve as phylogenetic barcodes (Figure 1E) (107, 108). This provides
opportunities for lineage-tracing at increased resolution within cell
populations defined by the same set of somatic mutations or even in
absence of such genetic events. Compared to somatic nuclear
mutations, mtDNA mutations have various advantages.
Mitochondria can replicate independently of the cell cycle, and
thus mtDNA may be present in hundreds of copies per cell. In
combination with the small size (~16.6 kB), mtDNA can therefore
be sequenced with high coverage at single-cell resolution. Finally,
mtDNA has a considerably higher mutation rate compared to
genomic DNA (109, 110).

In principle, mtDNA mutation can be read out with the same
approaches that apply to somatic nuclear mutations, however
due to the unique biology of mtDNA, specific tools are being
developed: mtscATAC-seq is a multi-omics platform that
provides the feasibility of integrating information on cell state,
CNV and mtDNA mutations of the entire mtDNA genome at
single-cell resolution. For these studies, mgatk is an optimized
variant caller which utilizes strand concordance of forward and
reverse reads as well as mean variance ratio to enrich for true-
positive mtDNA mutations (77).

The detection of mtDNA mutations from single-cell
transcriptomic profiles is challenging as the coverage of
mitochondrial transcripts is typically heterogeneous and
insufficient to call mutations for large parts of the mtDNA
genome, with a tendency for better coverage using full-length
RNA-sequencing (108, 111). The MAESTER protocol overcomes
these hurdles through a 65-primer multiplexed PCR
amplification of mitochondrial transcripts to achieve sufficient
coverage for mutation calling (112). By excluding UMIs with
fewer than 3 reads and through consensus calling of reads from
the same UMI, the variant caller optimized for MAESTER
(maegtk) reduces false-positive mtDNA mutations deriving
from PCR errors, and paves the way for more consistent
calling of mtDNA mutations.

While studies onmtDNAmutations in blood malignancies are
still in their infancy, it is already clear that they (i) are able to
define subclonal structure within monoclonal cell populations,
January 2022 | Volume 12 | Article 788891
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(ii) remain stable over time in absence of strong selective pressure
and (iii) change in frequency following therapeutic bottlenecks
(75, 77, 106). Further, there is evidence that mtDNA and somatic
nuclear mutations provide complementary information on clonal
evolution in leukemia (106). However, many open questions
remain such as whether mtDNA mutations provide selective
advantage for example through alteration of oxidative
phosphorylation (113, 114) or whether they are sufficiently
sensitive and specific for the tracking of malignant clones in the
context of low disease burden such as minimal residual disease.

In the non-malignant context, mtDNA mutations offer a
possibility to track lineage within cell populations that lack
natural barcodes such as monocytes or natural killer cells and
enable to link differentiated cells to their progenitor and stem cell
populations (115). There are also examples of how mtDNA
mutations can track clonal expansion of T cells and further
subdivide T cells with the same T cell receptor sequence,
potentially providing an avenue to dissect dynamics within a T
cell clone (75, 108).
LINEAGE-TRACING IN THE CONTEXT OF
ALLOGENEIC STEM CELL
TRANSPLANTATION

HSCT is arguably the longest standing and the most successful
immunotherapy with the graft-versus-leukemia/lymphoma
Frontiers in Immunology | www.frontiersin.org 5
(GvL) effect at its core (116). Research into target antigens of
GvL and processes such as donor reconstitution or
immunomodulat ion post-HSCT have advanced our
understanding of fundamental immune processes (117–119).
Despite these insights, many questions remain unanswered
such as the exact mechanisms of response to immune
modulation post-HSCT like donor-lymphocyte infusion (DLI)
or interactions between donor and host under conditions of
mixed chimerism. Lineage-tracing approaches are an
opportunity to address these questions, leveraging the
coexistence of donor- and recipient-derived cells but also
require robust annotation of these two populations (Figure 2A).

Sex Mismatch
In the case of sex-mismatched HSCT (120), annotation of cells to
donor and recipient can be based on expression of Y
chromosomal genes including RPS4Y1 and DDX3Y or genes
implicated in X-inactivation such as XIST (121). As scRNA-seq
data are typically sparse, with dropout of gene expression, higher
accuracy can be expected from annotation using multiple genes.
The strength of this approach is that no additional sequencing is
needed and that it allows for annotation of even rare cells
through a simple but robust analysis. Examples include
tracking of circulating host tissue-resident T cells following
myeloablative conditioning (122) or donor-derived immune
cells following solid organ transplant (123). A limitation is that
sex mismatch only occurs in a subset of transplants.
A B

FIGURE 2 | Lineage-tracing in the context of allogeneic hematopoietic stem cell transplantation. (A) Technical approaches to annotation of donor- and recipient-
derived cells. Y chromosomal gene expression is able to robustly separate donor and recipient in the context of sex-mismatched transplantation. mtDNA haplotypes
leverage germline single nucleotide polymorphisms in the mitochondrial genome and can distinguish between matched-unrelated donor and recipient. Single
nucleotide polymorphisms distinguish between all donor and recipient pairs except for identical twins. (B) The post-transplant setting harbors context-specific
questions in the 4 stages following stem cell infusion. These include (1) the mechanisms of initial stem cell engraftment, (2) the interaction of host and recipient as
basis for GvL and GvHD, (3) immune escape leading to disease relapse, and (4) reinvigoration of GvL following effective immunotherapeutic intervention. mtDNA,
mitochondrial DNA; IS, immunosuppression; DLI, donor-lymphocyte infusion; aPD-1, antibody against programmed cell death protein 1 (PD-1); aCTLA-4, antibody
against cytotoxic T-lymphocyte-associated protein 4; HSCT, hematopoietic stem cell transplantation; GvL, graft-versus-leukemia; GvHD, graft-versus-host disease;
PC1/2, principal component 1/2.
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Single Nucleotide Polymorphisms
Germline single nucleotide polymorphisms (SNP) can be used to
distinguish donor and recipient unambiguously. Due to the large
number of more than 1 million SNPs in the human genome (124),
even siblings, except for identical twins, differ in their set of SNPs,
thus allowing to identify the origin of single-cells from sparse
scRNA-seq data with shallow coverage of individual loci. This can
be achieved either through annotation with a genotype reference
obtained using WES of purified donor or recipient-derived cells
(125, 126) or with reference-free approaches that are based on
statistical modeling. Tools that implement the latter strategy for
scRNA-seq were originally developed for deconvolution of
samples from different donors but can be used for assignment
of donor and host at single-cell resolution (127–130). For scWGS-
seq and scATAC-seq data, a similar approach is possible (131,
132), but has not been implemented yet.

mtDNA Haplotypes
Reference-free SNP-based annotation of donor- and recipient-
derived cells from sparse single-cell data is based on clustering of
similar cells and therefore accurate annotation of rare cells can be
challenging. A possible alternative is to utilize mtDNA
haplotypes for this purpose that arise from SNPs in the
mitochondrial genome (133). From a technical standpoint this
approach has the advantage that owing to the small size of the
mtDNA genome and its high density of SNPs, the mtDNA
haplotype is very informative and allows to unambiguously
annotate the cell origin even from sparse single-cell data. This
can be achieved either using the mtscATAC-seq protocol or with
targeted amplification from scRNA-seq libraries (see Section
“Mitochondrial DNA Mutations”). The only limitation is that
due to the matrilineal inheritance of mitochondria, this approach
is mainly useable for transplants from matched-unrelated or
certain haploidentical donors.

Opportunities for Understanding HSCT
With Single-Cell Sequencing
As a complex immunotherapy, there are many open questions
regarding HSCT than can be divided by the 4 stages of the post-
transplant setting: (1) engraftment (134) and immune
reconstitution (135) following HSCT, (2) GvL and GvHD
when stable engraftment has been achieved (136), (3) immune
escape mechanisms leading to relapse (137), and (4) immune
modulation approaches to reinstate effective GvL (117)
(Figure 2B). Single-cell sequencing offers windows into gaining
broad understanding of these processes in detail and can
potentially leverage all lineage-tracing approaches discussed in
this text. Although progress in these directions has been made
(75, 100, 138), the envisioned efforts are still in their infancy.

Single-cell transcriptomics are currently underway to describe
immune cell populations implicated in GvHD such as B cells (139),
regulatory T cells (140), or cytotoxic CD4+ T cells (141). In the latter
example, the authors tracked expansion of a mutation in themTOR
genewithindonor-derivedTcellswhich theyassociatewithpersistent
immune activation andGvHD. Lineage-tracing approaches have the
potential to deepen the understanding of GvHD by dissecting the
contribution of donor and recipient-derived T cells to GvHD target
Frontiers in Immunology | www.frontiersin.org 6
organs. An example of this approach demonstrated that tissue-
resident memory T cells can retain a large fraction of host cells
despite full systemic chimerism (122).

More generally, conditions of mixed chimerism are an area
where high-throughput distinguishing of donor and recipient
will be able to address questions that so far have been difficult to
answer, for example whether recipient-derived cells persist in
specific T cell subsets such as CD8+ T cells of patients with
aplastic anemia (142). Similarly, lineage-tracing will allow the
understanding of the engraftment of hematopoietic stem cells in
more detail, for example in the context of donor clonal
hematopoiesis of indeterminate potential (CHIP) where
somatic mutations can serve as barcodes (143).

Finally, mechanisms that underly disease relapse following
HSCT (75, 100, 144) and response to therapies that reinstate GvL
through DLI (145) or checkpoint immune blockade (119, 146) are
increasingly characterized using single-cell sequencing. Lineage-
tracing has many potential applications in these studies, for
example finer dissection of intraclonal evolution (147) or tracking
of exhausted T cells before and after immunomodulation, as has
been demonstrated in a large-scale characterization of bone
marrow-derived T cell states following effective DLI (145, 148).
DISCUSSION

In-vivo lineage tracing approaches using natural barcodes are
seeing breathtaking progress and technological advances of
single-cell sequencing are enabling studies that seemed
inconceivable only a few years ago. While technical hurdles are
being removed, new questions are becoming relevant. With multi-
omics sequencing platforms pushing the boundaries of what is
possible, these technologies are also associated with unprecedented
costs per analyzed sample, thereby leading to focus on select
samples. Undoubtedly, high-resolution and multi-modal analyses
of individual samples are exciting, yet true advances will depend on
applying these novel technologies on well-designed clinical cohorts
with longitudinal sampling, for example in the setting of clinical
trials that aim to answer specific biological questions. With the
prospect of single-cell sequencing achieving hundreds of
thousands of cells per sample throughput, clinical applications
that leverage longitudinal lineage-tracing approaches such as the
measuring of minimal residual disease become a possibility.
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