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Abstract

In this paper, we evaluate the uniqueness of several information-theoretic measures for graphs based on so-called
information functionals and compare the results with other information indices and non-information-theoretic measures
such as the well-known Balaban J index. We show that, by employing an information functional based on degree-degree
associations, the resulting information index outperforms the Balaban J index tremendously. These results have been
obtained by using nearly 12 million exhaustively generated, non-isomorphic and unweighted graphs. Also, we obtain
deeper insights on these and other topological descriptors when exploring their uniqueness by using exhaustively
generated sets of alkane trees representing connected and acyclic graphs in which the degree of a vertex is at most four.
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Introduction

To quantify the topology of networks, numerous topological

descriptors, which are also often referred to as graph measures or

indices, have been developed [1–7]. A property thereof called the

uniqueness, discriminative power or degeneracy has been investigated

extensively in mathematical chemistry and structure-oriented drug

design in the context of characterizing the structure of molecules

quantitatively. In general, a descriptor is called degenerate if it

possesses the same value for more than one graph. In this paper

our main task is to examine the extent to which topological indices

are degenerate.

We briefly review the most important contributions to tackle

this problem, and start with a classical contribution due to

Bonchev et al. [8,9]. They proposed the so-called magnitude-

based information indices for improving the discriminative power

of other classical descriptors for alkane trees [8] and isomers [9].

Alkane trees are connected and acyclic graphs in which the degree

of a vertex is at most four [10]. Following this, Raychaudhri et al.

[11] analyzed the discriminative power of information-theoretic

measures based on distances for chemical graphs containing one

ring. Konstantinova et al. [12] explored the uniqueness of various

information-theoretic and non-information-theoretic measures by

using polycyclic structures representing cata-condensed benzenoid

hydrocarbons. As a result, the Balaban J index (see equation 20),

the sum of local vertex entropies due to Konstantinova [12,13]

and the magnitude-based information indices turned out to be

unique for this class of graphs; see [12]. However, note that the

sizes of the corresponding sets Ci, denoted by jCij, were rather

small, 2ƒjCijƒ1681. Diudea et al. [14] recently explored a novel

super-index based on shell matrices and polynomials. By applying

this index to the heterogeneous graph database MS2265 [15]

containing 2265 non-isomorphic skeleton graphs, inferred from

chemical compounds, and to chemical isomers, it turned out

that this index does not have any degeneracy [14]. Other re-

sults obtained when applying further topological descriptors to

chemical graph databases can be also found in [14]. Hu and Xu

[16] applied an index using layer matrices and powers of extended

adjacency matrices to over two million weighted alkane isomers.

The index was unique for all graph classes used [16], but we point

out that the developed index is based on using bond types and 3D

information.

In order to underpin the practical importance of exploring

uniqueness, it seems reasonable that an appropriate graph measure

to characterize the structure of networks quantitatively should be

able to discriminate graphs properly (e.g., when slightly changing

the structure of a network). Note that this problem has already been

discussed in the context of complex networks; see [17]. As to

applications thereof, Dehmer et al. [15] have already outlined that

unique measures can serve as candidates for calculating the

identification codes of networks (e.g., chemical structures), which

could be used to perform fast structure searches in large databases.

Also, such highly discriminating measures representing graph

invariants (the measured value is invariant under graph isomor-

phisms [10]) can be useful to tackle the graph isomorphism

problem, because, if the values of two graphs with the same number

of vertices are different, they must be non-isomorphic. Hence, such

indices could be employed to tackle the graph isomorphism problem

in large databases, as the computational complexity of the measures

is polynomial. That means instead of performing a thorough

isomorphism test which may be computationally costly, highly

unique graph measures could be used to filter out non-isomorphic

graphs. Note that the time complexity of some of these measures has

already been discussed in [15].
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The main contribution of this paper is to evaluate the

discriminative power of selected topological indices in the context

of complex networks, i.e., graphs that are neither regular nor

random [18]. We applied several information-theoretic and non-

information-theoretic measures, such as the Balaban J index [19],

to nearly 12 million exhaustively generated, non-isomorphic and

unweighted graphs with the same number of vertices (see

‘Numerical results and interpretation’). Importantly, we only use

unweighted graphs in this study, as it poses an extra challenge to

the underlying descriptors to discriminate such graphs on a large

scale. We emphasize that the Balaban J index has often been

referred to as one of the most discriminative indices (see e.g. [20]),

as it is powerful when applied to several classes of isomers and

alkane trees. Our study highlights the limitations of the Balaban J
index and other topological descriptors in terms of their ability to

discriminate non-isomorphic graphs uniquely.

We prove that one of the information indices due to Dehmer

et al. [15,21], which uses the information functional f D based on

degree-degree associations, outperforms the Balaban J index

tremendously when these measures are applied to exhaustively

generated graphs. We also employ other information measures for

graphs using so-called information functionals that have been

developed by Dehmer et al. [15,21]. The discriminative power of

some of these information measures and classical ones has already

been evaluated in [22] specifically for chemical graphs possessing

structural constraints. By contrast, we perform a large-scale study

to compare the discriminative power of these information mea-

sures by employing three information functionals (see equations 7,

8, and 18) and non-information-theoretic indices such as the

Balaban J index using exhaustively generated graphs without

structural constraints. The discriminative power by employing

these particular information functionals and Balaban J index has

not yet been investigated on a large scale.

The results can be interpreted as an attempt to evaluate the

uniqueness of quantitative graph measures in the context of

complex networks. To the best of our knowledge, very little work

has so far been done to tackle this problem. One exception is the

work of Kim et al. [17], who evaluated the discriminative power of

graph complexity measures that were developed in the context of

network physics. As a result, most of the complexity measures

proposed in [17] turned out to show little discriminative power.

This paper is organized as follows. In the section ‘Topological

descriptors’ we briefly recall the definitions of the information-

theoretic measures due to Dehmer et al. and the other graph

measures that we are going to use. The ‘Data and software’ section

describes the datasets and sketches the steps to calculate the

topological descriptors. In ‘Numerical results and Interpretation’,

we present and interpret the numerical results when evaluating the

discriminative power of the measures. This includes a statistical

analysis to investigate the dependence of the uniqueness of the

Balaban J index and Il
f D on the sample size by using exhaustively

generated graphs with 10 vertices. The paper finishes with a

‘Summary and conclusion’.

Methods

Topological Descriptors
In this section, we briefly recall the definition of the information

measures [4,15,21] that we are going to use in this study. Further,

we outline the concept of distance-based descriptors, including the

well-known Balaban J index. In summary, Table 1 gives an

overview of the descriptors that we use.

Information Indices. To start, we point out that, besides

empirical properties of information measures for graphs [1,4,15,21]

(such as determining correlations between the measures [1]),

mathematical problems (such as proving various upper and lower

bounds of the measures) have also been explored; see [23,24]. Note

that the correlation ability between two graph measures generally

relates to the problem of whether they capture structural

information similarly [1,9]. The so-called implicit information

inequalities have been investigated extensively in [21,25,26]. Also,

the class of graph entropy measures obtained by using certain

information functionals based on the metric properties of graphs

(such as the neighborhoods of atoms) has been used to solve

problems in quantitative structure–activity relationships (QSARs)

and quantitative structure–property relationships (QSPRs) [27]. In

particular, Dehmer et al. [28] classified the mutagenicity of

molecules by using these measures and employing supervised

learning techniques.

Let G~(V ,E) be an arbitrary, finite, and unweighted graph; jV j
denotes the number of vertices and jEj the number of edges,

respectively. Throughout this paper, we use the symbol jAj to

express the cardinality (also called the size) of a set A. We denote by

r(G) the diameter of G; see [29]. The abstract information

functionals [21] f : V?z play a critical role when defining

information measures on graphs. Based on these functionals, vertex

Table 1. The topological indices used and their symbols.

Index Name Symbol

Balaban index [19] J

Balaban-like 1 [36] U

Balaban-like 2 [36] X

Bertz index [46] CB

Magnitude-based Entropy [8] ID

Magnitude-based Entropy [8] IW
D

Compactness [7] C

Complexity Index [2] B

Vertex Complexity [11] IV

Harary index [7] H

Hyper Distance Path index [7] DP

Sum of Vertex Entropies [13] Iloc

Normalized Edge Complexity [2] En

Prod. of Row Sums [7] PRS

Radial Centric index [1] IC,R

Top. Information Content [31] Ia

Index of total adjacency [2] A

Degree Information index [1] Id

Zagreb 1 [7] Z1

Zagreb 2 [7] Z2

Information index using f V [15,21] Il
f V
lin

Information index using f V [15,21] Il
f V
quad

Information index using f V [15,21] Il
f V
exp

Information index using f P [15,21] Il
f P
lin

Information index using f P [15,21] Il
f P
quad

Information index using f P [15,21] Il
f P
exp

Information index using f D [21,34] Il
f Dexp

doi:10.1371/journal.pone.0031214.t001
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probabilities [21]

pf (vi) : ~
f (vi)PjV j

j~1 f (vj)
ð1Þ

have been assigned to each particular vertex of G. This makes the

resulting measure independent of determining partitions of graph

invariants [1,8,30,31], which might be computationally difficult to

obtain. By definition,

pf (v1)zpf (v2)z � � �zpf (vjV j)~1, ð2Þ

and (pf (v1), . . . ,pf (vjV j)) therefore forms a probability distribution.

Using this approach and recalling Shannon’s entropy [32] defined

by

I~
Xn

i~1

pi log(pi), ð3Þ

the families of information measures

If (G) : ~{
XjV j
i~1

f (vi)PjV j
j~1 f (vj)

log
f (vi)PjV j

j~1 f (vj)

 !
, ð4Þ

Il
f (G) : ~l log(jV j)z

XjV j
i~1

f (vi)PjV j
j~1 f (vj)

log
f (vi)PjV j

j~1 f (vj)

 ! !
ð5Þ

have been developed [4,15,21]. These measures are families of

entropic measures representing the structural information content

of G. Here lw0 is a scaling constant, If is the mean entropy of G,

and Il
f its information distance between maximum entropy and If .

In our analysis, we define three distinct functionals f V , f P, and

f D, and the relative information measures Il
f V , Il

f P , and Il
f D

[4,5,21]. To define f V , we first define the j-sphere of a vertex

vi [ V by [21]

Sj(vi,G): ~fv [ V jd(vi,v)~j, j§1g: ð6Þ

jSj(vi,G)j are just the j-sphere cardinalities. In general, d(vi,vj) is

the shortest distance between the vertices vi,vj [ V ; see [33]. Then,

f V (vi): ~c1jS1(vi,G)jzc2jS2(vi,G)jz � � �zcr(G)jSr(G)(vi,G)j,

ckw0, 1ƒkƒr(G):
ð7Þ

To define f P, the pathlengths for j~1,2, . . . ,r(G) of the local

information graph LG(vi,j) starting from a particular vertex have

been used; see [21] for its detailed definition. For example,

P(LG(vi,j)) is the sum of all pathlengths starting from vi [ V by

inducing shortest paths for j~1,2, . . . ,r(G). We obtain

f P(vi): ~c1l(P(LG(vi,1)))zc2l(P(LG(vi,2)))

z � � �zcr(G)l(P(LG(vi,r(G)))),

bkw0, 1ƒkƒr(G):

ð8Þ

Finally, we define f D (see [34]), let G be an undirected and

unweighted graph, and set Sj(vi,G): ~fvaj
,vbj

, . . . ,vzj
g,

1ƒjƒr(G), 1ƒiƒjV j. For vi [ V , we define the sets of shortest

paths [34]

Pj
1(vi): ~(vi,v

j
a1

,vj
a2

, . . . ,vj
aj

), ð9Þ

Pj
2(vi): ~(vi,v

j
b1

,v
j
b2

, . . . ,v
j
bj

), ð10Þ

..

.

Pj
kj

(vi): ~(vi,v
j
z1

,vj
z2

, . . . ,vj
zj

), ð11Þ

and the corresponding degree sequences [34]

s
j
1(vi): ~(d(vi),d(vj

a1
),d(vj

a2
), . . . ,d(vj

aj
)), ð12Þ

s
j
2(vi): ~(d(vi),d(v

j
b1

),d(v
j
b2

), . . . ,d(v
j
bj

)), ð13Þ

..

.

s
j
kj

(vi) : ~(d(vi),d(vj
z1

),d(vj
z2

), . . . ,d(vj
zj

)): ð14Þ

The quantities [34]

DG(vi,1)~jd(vi){d(v1
a1

)jz � � �zjd(vi){d(v1
z1

)j, ð15Þ

DG(vi,2)~jd(vi){d(v2
a1

)jz � � �zjd(vi){d(v2
z1

)j

z � � �zjd(v2
z1

){d(v2
z2

)j,
ð16Þ

..

.

DG(vi,r(G))~jd(vi){d(vr(G)
a1

)jz � � �zjd(vr(G)
ar(G){1

){d(vr(G)
ar(G)

)j

zjd(vi){d(vr(G)
z1

)jz � � �zjd(vr(G)
zr(G){1

){d(vr(G)
zr(G)

)j
ð17Þ

have been used to define the information functional f D; see equation

18. As we employ the differences jd(v){d(u)j, the resulting graph

entropies I
fD

and Il

fD
have been called degree–degree association indices;

see [34]. Now, f D has been defined by [34]

f D(vi): ~a
c1D

G (vi ,1)zc2D
G (vi ,2)z���zcr(G)D

G (vi ,r(G))
,

ckw0, 1ƒkƒr(G), aw0:
ð18Þ

We see that f D is well defined for any aw0. Since f V , f P and f D as

well as the resulting entropies are parametric, we need to choose the

Information Indices with High Discriminative Power
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coefficients ci for weighting the structural differences or character-

istics of a graph. Note that the ck must be chosen such that at least

two coefficients ci,cj are distinct. This includes the parameter

settings, e.g.,

c1wc2w � � �wcr or c1vc2v � � �vcr, ð19Þ

which have already been used in [15]. Other configurations of the ci

have also been investigated to determine the structural complexity

of chemical structures meaningfully [15].

Distance-Based Topological Descriptors. Numerous top-

ological descriptors have been explored by employing distances in

a graph [7,19,29]. Seminal work was done by Skorobogatov and

Dobrynin [29], who developed a theory on the metric properties

of graphs. Also, several distance-based graph measures have been

developed and analyzed where these indices have shown that

distances in graphs capture significant information when applied

in QSAR/QSPR; see [1,7,11,19,27].

We recall the definition of the Balaban J index [7,19] in detail

as we place emphasis on comparing its discriminative power with

Il
f V , Il

f P , and Il
f D

on a large scale by using exhaustively generated

graphs. The names and symbols of the remaining descriptors used

in this study can be found in Table 1. For their formal definitions,

see [1,2,7,27].

Now, we define the distance matrix [35] of a graph G as

DS~(d(vi,vj))i,j . For each vertex vi [ V , DSi denotes the distance

sum (row or column sum) obtained by adding the entries in the

corresponding row or column of the distance matrix DS. In

addition, m: ~jEjz1{jV j is the cyclomatic number [36]. Then,

the Balaban J index is defined by [19]

J(G): ~
jEj

mz1

X
(vi ,vj ) [ E

½DSiDSj �{1=2: ð20Þ

Results

Data and Software
Let us now state the definitions and generation procedure of the

graphs for performing our analysis.

Definition 1 Ni is the set of all exhaustively generated non-isomorphic

and connected graphs with i vertices.

Practically, these sets have been generated by using the program

geng from the Nauty package [37]. In this study we use the classes

N5, . . . ,N10 and obtain their cardinalities as follows: jN5j~21,

jN6j~112, jN7j~853, jN8j~11117, jN9j~261080, and

jN10j~11716571. These numbers are in accordance with the

results due to McKay [37,38].

Definition 2 Ci is the set of all exhaustively generated non-isomorphic

alkane trees graphs with i vertices.

The chemical structures represented by alkane trees with a

carbon backbone have been generated with Molgen [39]. In

particular, we generated the classes C19, . . . ,C22; their cardinali-

ties are jC19j~148284, jC20j~366319, jC21j~910726, and

jC22j~2278658.

Then for both classes (see Definitions 1 and 2), the structure

information has been converted into the graphNEL format to

calculate the descriptors in R [40] by employing the QuACN

package [41]. This package contains R functions of over a

hundred topological descriptors.

Numerical Results and Interpretation
In this section, we present the numerical results when evaluating

the discriminative power of the information indices, Balaban J

index and other topological descriptors. Results on exhaustively

generated graphs are summarized in Tables 2 and 3, while those

on alkane trees are given in Table 5. In total, we evaluated the

discriminative power of 27 graph measures.

Evaluation of the Discriminative Power Using Ex-

haustively Generated Graphs. To interpret the numerical

results, we start by considering Table 3 and observe that the

sensitivity values due to Konstantinova [12], S~(jGj{ndv)=jGj,
for Balaban J decreases with increasing number of vertices; see

also the ‘Statistical analysis’ section. Throughout this paper, ndv

(non-distinguishable values) stands for the number of non-

isomorphic graphs whose values cannot be distinguished by a

particular index [12]. For example, by considering the class N8,

61.6623% of the graphs could be distinguished (i.e., have unique

values) by the Balaban J index. For N10, only 20.5633% out of

Table 2. N5, N6 and N7 are exhaustive sets of non-
isomorphic and connected graphs. jN5j~21, jN6j~112 and
jN7j~853.

N5 N6 N7

Index ndv S ndv S ndv S

J 0 1,000000 10 0,910714 155 0,818288

U 0 1,000000 10 0,910714 155 0,818288

X 0 1,000000 10 0,910714 155 0,818288

CB 20 0,047619 111 0,008929 852 0,001172

ID 15 0,285714 100 0,107143 826 0,031653

IW
D

14 0,333333 94 0,160714 811 0,049238

C 16 0,238095 108 0,035714 847 0,007034

B 2 0,904762 34 0,696429 486 0,430246

IV 10 0,523810 91 0,187500 797 0,065651

H 14 0,333333 100 0,107143 828 0,029308

DP 14 0,333333 101 0,098214 837 0,018757

Iloc 2 0,904762 34 0,696429 450 0,472450

En 19 0,095238 110 0,017857 851 0,002345

PRS 2 0,904762 38 0,660714 486 0,430246

IC,R 20 0,047619 111 0,008929 852 0,001172

Ia 20 0,047619 111 0,008929 852 0,001172

A 19 0,095238 110 0,017857 851 0,002345

Id 20 0,047619 111 0,008929 852 0,001172

Z1 19 0,095238 110 0,017857 851 0,002345

Z2 0 1,000000 37 0,669643 750 0,120750

Il
f V
lin

4 0,809524 37 0,669643 485 0,431419

Il
f V
quad

4 0,809524 37 0,669643 452 0,470106

Il
f V
exp

4 0,809524 37 0,669643 454 0,467761

Il
f P
lin

9 0,571429 38 0,660714 312 0,634232

Il
f P
quad

2 0,904762 23 0,794643 97 0,886284

Il
f P
exp

2 0,904762 5 0,955357 7 0,991794

Il
f D
exp

6 0,714286 16 0,857143 34 0,960141

doi:10.1371/journal.pone.0031214.t002

Information Indices with High Discriminative Power

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e31214



almost 12 million exhaustively generated non-isomorphic graphs

could be distinguished by J. But we can see in Table 3 that the

information indices using the information functional approach

[4,15,21] sketched in the ‘Information indices’ section can

discriminate our graphs comparatively well. In particular, Il
f D

,

with an exponential weighting scheme

c1 : ~r(G), c2 : ~r(G)e{1, . . . , cr(G) : ~r(G)e{r(G)z1, ð21Þ

denoted by Il

fDexp
, discriminates 94.8005% out of almost 12 million

exhaustively generated graphs successfully. In view of the large

number and complexity of the graphs (see jN8j, jN9j and jN10j), the

uniqueness of Il

fD
is striking. Observe that, for all weighting schemes

[15], i.e., lin, quad, and exp, Il
f V is much less discriminative. We

realize that the underlying information functional f is crucial for

reaching uniqueness of the information index. Also, we can clearly see

that the uniqueness of other indices shown in Table 3 is quite low. We

see that the Balaban U and X indices are among the best out of the

set of known measures that we have chosen to perform this study.

Interestingly, the situation is somewhat the opposite when

considering Table 2. Namely, for N5 and N6, the discriminative

power of the Balaban J index is higher than by using some of the

information measures based on the information functional approach

(e.g., Il
f V
lin

and Il
f P
lin

). Also, we see that the underlying weighting scheme

for the coefficients matters a lot, because Il
f P
exp

has a higher

discriminative power than the Balaban J index for N6 and N7. In

summary, we hypothesize that the Balaban J index performs well if

the cardinality of the underlying graph set and the order of the

involved graphs is rather small. By using a statistical approach, we will

verify this hypothesis in the ‘Statistical analysis’ section. Let us give

another example to shed light on the degeneracy of the measures

when applying them to graphs [ N10, see Figure 1 and Table 4.

Figure 1 shows four sample graphs [ N10 where G3 and G4 are

structurally quite similar in the following sense. If we remove the edge

f2,10g in G3 and the edge f6,10g in G4, the resulting graphs are

isomorphic. From Table 4, we see that these graphs can only be fully

distinguished by the degree-degree association index. Evaluating the

Balaban J index on these graphs gives two degenerate graphs namely

G1 and G2. In contrast to this, Iloc due to Konstantinova can not

discriminate G3 and G4. Finally, we observe that Ia can not

Table 3. Exhaustive sets of non-isomorphic graphs. jN8j~11117, jN9j~261080, jN10j~11716571.

N8 N9 N10

Index ndv S ndv S ndv S

J 4262 0,616623 156674 0,399900 9307263 0,205633

U 4093 0,631825 148132 0,432618 8812811 0,247834

X 4093 0,631825 148132 0,432618 8812810 0,247834

CB 11116 0,000090 261079 0,000004 11716570 0,000000

ID 11070 0,004228 260971 0,000417 11716339 0,000020

IW
D

11014 0,009265 260803 0,001061 11715858 0,000061

C 11110 0,000630 261072 0,000031 11716564 0,000001

B 8384 0,245840 237199 0,091470 11472695 0,020815

IV 10958 0,014302 260650 0,001647 11715029 0,000132

H 11076 0,003688 261018 0,000237 11716455 0,000010

DP 11100 0,001529 261054 0,000100 11716541 0,000003

Iloc 8305 0,252946 235233 0,099000 11395248 0,027425

En 11115 0,000180 261078 0,000008 11716569 0,000000

PRS 9376 0,156607 252262 0,033775 11672850 0,003732

IC,R 11116 0,000090 261079 0,000004 11716570 0,000000

Ia 11116 0,000090 261079 0,000004 11716570 0,000000

A 11115 0,000180 261078 0,000008 11716569 0,000000

Id 11116 0,000090 261079 0,000004 11716570 0,000000

Z1 11115 0,000180 261078 0,000008 11716569 0,000000

Z2 10996 0,010884 260931 0,000571 11716379 0,000016

Il
f V
lin

9165 0,175587 249439 0,044588 11640381 0,006503

Il
f V
quad

8300 0,253396 235044 0,099724 11385762 0,028234

Il
f V
exp

8300 0,253396 235055 0,099682 11385730 0,028237

Il
f P
lin

4989 0,551228 158391 0,393324 9479777 0,190909

Il
f P
quad

1699 0,847171 58196 0,777095 4243499 0,637821

Il
f P
exp

478 0,957003 27017 0,896518 2619898 0,776394

Il
f D
exp

385 0,965368 6016 0,976957 609204 0,948005

doi:10.1371/journal.pone.0031214.t003

Information Indices with High Discriminative Power

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e31214



discriminate any of the four example graphs. This implies that every

measure captures structural information differently and, hence, its

discriminative power can differ dramatically because of

N the underlying paradigm to define a graph measure, e.g.,

information-theoretic vs. non-information-theoretic indices or

partition-based vs. non-partition-based

N the underlying graph invariant to define a measure, e.g.,

degrees or distances or several graph invariants etc.

A comparison of the measures with others (e.g., see Table 3) is

critical, as the measures rely on different concepts (e.g.,

information-theoretic vs.non-information-theoretic indices). In

the following, we give plausible reasons why the measures using

the information functional approach often capture structural

information of exhaustively generated graphs more uniquely and

significantly than other information measures for graphs that are

based on determining partitions of graph invariants. This can also

be underpinned by the numerical results; see Tables 2 and 3.

Examples of the latter measures are the magnitude-based

information indices ID and IW
D due to Bonchev et al. [8], the

degree information index Id [1] and the topological information

content of a graph Ia [31,42].

To construct classical partition-based measures of a graph G, we

start with a graph invariant X and induce a partitioning according

to an equivalence criterion. This results in the equivalence classes

X1, . . . ,Xk being obtained. The mean entropy is then given by

I(G)~{
Xk

i~1

jXij
jX j log

jXij
jX j

� �
: ð22Þ

The process of inducing the partitionings might be the reason for

obtaining non-unique indices, as many structurally different

graphs could possess the same or similar partitionings when using

a certain equivalence criterion, e.g., vertex degree equality [1] or

topologically equivalent vertices [31,42].

In order to derive information measures using the information

functional approach, we assign a probability value (see equation 1)

to each individual vertex in a graph by using a certain information

functional f capturing its structural information. Examples thereof

are equations 7 and 18. That means the information measures

given by equations 4 and 5 can be understood as a cumulation of

local quantities representing the vertex probabilities. Clearly, each

such quantity captures a certain percentage rate of the structure of

G. As the numerical results show, these measures conserve

structural information more properly than the partition-based

ones and result in highly discriminating measures for several graph

classes. Note that other classical descriptors (see Tables 2 and 3),

such as the Harary index, Randic’ index [43,44] and the

complexity index B etc., rely on the simple derivation of structural

quantities (e.g., distances or degrees) to obtain a single numerical

value characterizing the complexity the graph. Consequently, their

discriminative power is very low; see Tables 2 and 3.

When evaluating the uniqueness (see ndv or S values) of Il
f V
exp

and Il
f D
exp

(see Table 3), we observe that the difference between the

resulting values is tremendous. Note that the graphs of N8,N9, and

N10 contain cycles. A plausible reason for this is given in Figure 2.

We see on the left-hand side that the j-sphere cardinalities are

rather small if j goes to r(G) and, hence, their contribution to the

value of the particular functional for vi is small too. Also, there is

not much variation between the j-sphere cardinalities. This could

be a reason that the resulting probability values

pf V
(vi)~

f V (vi)PjV j
j~1 f V (vj)

,

are quite similar to each other and, thus, this has a direct influence

on the resulting value of the information index and on its

uniqueness. In contrast, the right-hand side of Figure 2 shows that

the values of DG(vi,j) are more diverse and, in particular, those

values when j goes to r(G) are larger than the j-sphere car-

dinalities. This might be a plausible reason why the corresponding

vertex probability values are more different and, hence, the

resulting entropies as well. As Tables 2 and 3 show, we again

emphasize that the discriminative power of an index clearly

depends on the underlying graph class.

Evaluation of the Discriminative Power by Using

Chemical Graphs. Here we evaluate the uniqueness of the

Balaban J index, the information measures using the information

functional approach, and the remaining topological descriptors

shown in Table 1 by also using chemical graphs. Table 5 depicts

the numerical results when applying the measures to chemical

alkane trees representing the skeletal graphs. The number of

Figure 1. Four example graphs Gi [ N10.
doi:10.1371/journal.pone.0031214.g001

Table 4. Index values for the four example graphs depicted
in Figure 1.

Il
f D
exp

J Iloc Ia

G1 0.0002695 2.639475 31.16882 3.121928

G2 0.8801102 2.633647 30.90633 3.321928

G3 0.2076738 2.564776 30.92375 3.321928

G4 0.0017872 2.564776 30.92375 3.321928

doi:10.1371/journal.pone.0031214.t004
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vertices ranges from 19 to 22. We see again that the discriminative

power of the Balaban J index decreases when the number of graphs

and vertices increase. The Balaban-like indices possess high

discriminative power for all four graph classes. Also, we observe

that the sum of the local vertex entropies (Iloc) due to Konstantinova

[13,45] has high uniqueness. Interestingly, it is as good as Il
f V
exp

and

Il
f P
exp

. It can be easily shown that, for trees, the information indices

using f V and f P have equal discriminative power. In particular,

Il
f V
exp

, Il
f P
exp

and the just mentioned indices clearly outperform the

Balaban J index by using the chemical alkane trees.

Finally, the numerical results show again that the discriminative

power of a structural index strongly depends on the underlying

graph class. See, for instance, the results when comparing the

uniqueness of Il
f Dexp

for the alkane trees and exhaustively generated

graphs (see Table 3).

Descriptive Statistical Analysis. In order to provide further

evidence for stability of the uniqueness of Il
f D by using exhaustively

generated graphs, we perform a statistical analysis by using

boxplots. The graph class to perform the study is N10. It is clear

that, for computational reasons, the statistical analysis cannot be

performed by using the entire set N10. Hence, we choose subsets of

N10 whose sizes are called sample sizes. Also, we perform the

boxplot analysis for Balaban J as well, and present the resulting

plots to investigate the dependence between uniqueness and

sample size; see Figure 3. Concretely, 100 samples of 1100, 3300,

11 000, 33 000, 100 000, and 333 000 randomly chosen graphs

out of N10 have been analyzed by standard R boxplot routines.

That means the medians have been calculated and plotted, with

the first and third quantiles as hinges. The whiskers represent the

calculated borders of the 95% confidence interval.

As we can see in Figure 3 the uniqueness values are not

dispersed for a given sample size, but they depend on the sample

size. Further, we observe that the uniqueness of the Balaban J
index is not stable when the sample size is varied. In general, we

call a measure I unstable if there is a strong dependency between

the uniqueness of I and the sample size to perform the statistical

analysis. In contrast, I is stable if there is only a very little

dependency between the uniqueness of I and the sample size.

We see from the boxplot that the uniqueness decreases if the

sample size increases. Based on our intuition, it seems reasonable

that, the smaller the sample size, the better is the discriminative

power of the measure under consideration. Thus Il
f D

possesses a

non-trivial property, namely a very high discriminative power for

exhaustively generated graphs that is almost independent of

sample size. By using the above stated definition, we see that Il
f D

is

stable on N10 as the uniqueness is constantly high and does not

depend much on the sample size. We see from Table 3 that Il
f D
exp

is

the only topological descriptor possessing this property. Other

topological measures, and particularly the Balaban J index, have

the trivializing property that, for exhaustively generated graphs,

the uniqueness is only reasonable for small sets of graphs.

Hence some of the entropy measures using the information

functional approach could be applied successfully for discriminat-

ing sets of large complex networks as well. Keep in mind that in

fact such classes of exhaustively generated complex networks

possess huge cardinalities. Note that the cardinality of the

exhaustively generated non-isomorphic graphs with 10 vertices is

already greater than 11 million. As we conclude from this

statistical analysis, Il
f D
exp

possesses the stability property that is

necessary to achieve feasible results when applied to sets of large

complex networks.

Summary and Conclusion
In this paper, we have dealt with the problem of evaluating the

discriminative power of topological graph measures by using

exhaustively generated, non-isomorphic graphs without vertex and

edge weights. We have made an attempt to translate topological

indices into the field of complex networks when evaluating their

uniqueness. We found that one of the information measures for

graphs using the information functional based on degree–degree

associations outperformed the Balaban J index tremendously.

Also, by using the graph class N10, we found that the uniqueness of

the Balaban J index is quite sensitive to varying sample size when

performing the statistical analysis; see ‘Statistical analysis’ section.

In particular, the uniqueness of the Balaban J index deteriorated

when increasing the sample size. This makes Balaban J in

particular non-feasible for discriminating complex networks

structurally as they are multicyclic, do not have structural

constraints, and the cardinality of an underlying set of such

networks is huge. This property was also observed by using other

topological indices shown in Table 1. The numerical results when

Figure 2. Left: A cyclic graph and its values of f V for each vertex. Right: Values of f D for each vertex for the same graph.
doi:10.1371/journal.pone.0031214.g002
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Table 5. Chemical alkane trees T~(V ,E) with jV j~19, . . . ,22. jC19j~148284, jC20j~366319, jC21j~910726, jC22j~2278658.

C19 C20 C21 C22

Index ndv S ndv S ndv S ndv S

J 5967 0,959760 44800 0,877702 45703 0,949817 306911 0,865311

U 0 1,000000 12 0,999967 4 0,999996 82 0,999964

X 0 1,000000 12 0,999967 4 0,999996 82 0,999964

CB 148278 0,000040 366312 0,000019 910718 0,000009 2278645 0,000006

ID 68030 0,541218 171655 0,531406 452442 0,503207 1140578 0,499452

IW
D

39731 0,732061 97815 0,732979 277238 0,695586 702776 0,691583

C 148267 0,000115 366289 0,000082 910713 0,000014 2278626 0,000014

B 5959 0,959814 44752 0,877833 45667 0,949857 306469 0,865505

IV 104790 0,293316 279826 0,236114 730474 0,197921 1942075 0,147711

H 125290 0,155067 319121 0,128844 813614 0,106631 2081153 0,086676

DP 147946 0,002279 365914 0,001106 910290 0,000479 2278165 0,000216

Iloc 0 1,000000 12 0,999967 4 0,999996 84 0,999963

En 148283 0,000007 366318 0,000003 910725 0,000001 2278657 0,000000

PRS 5967 0,959760 44810 0,877675 45701 0,949819 306953 0,865292

IC,R 148283 0,000007 366318 0,000003 910725 0,000001 2278656 0,000001

Ia 148278 0,000040 366312 0,000019 910718 0,000009 2278645 0,000006

A 148283 0,000007 366318 0,000003 910725 0,000001 2278657 0,000000

Id 148283 0,000007 366318 0,000003 910725 0,000001 2278657 0,000000

Z1 148283 0,000007 366318 0,000003 910725 0,000001 2278657 0,000000

Z2 148282 0,000013 366317 0,000005 910724 0,000002 2278656 0,000001

Il
f V
lin

5006 0,966241 37820 0,896757 39210 0,956946 263231 0,884480

Il
f V
quad

42 0,999717 268 0,999268 324 0,999644 1752 0,999231

Il
f V
exp

0 1,000000 12 0,999967 4 0,999996 84 0,999963

Il
f P
lin

5006 0,966241 37820 0,896757 39210 0,956946 263231 0,884480

Il
f P
quad

42 0,999717 268 0,999268 324 0,999644 1752 0,999231

Il
f P
exp

0 1,000000 12 0,999967 4 0,999996 84 0,999963

Il
f D
exp

67176 0,546977 196124 0,464609 544432 0,402200 39396 0,982711

doi:10.1371/journal.pone.0031214.t005

Figure 3. Boxplots to investigate the dependency of the uniqueness of Balaban J and Il
f D from the sample size by using

exhaustively generated graphs with ten vertices.
doi:10.1371/journal.pone.0031214.g003
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using exhaustively generated graphs and alkane trees can be found

in Tables 2, 3, and 5.

Altogether, this study clearly shows the limitations of topological

indices and restrictions when applying them on a large scale. A

topological index can be unique for a particular graph class but it

fails when applying the measure to another class. In this sense, it is

far from trivial that we obtained an index (see the definition of Il
f D )

that turned out to be highly discriminating for exhaustively

generated graph classes. Note that the underlying graphs do not

possess structural constraints.

As to future work, we will evaluate further topological indices on

a large scale to obtain deeper theoretical insights. From such an

analysis, one can also learn how the measures capture structural

information. This relates to better understanding of their structural

interpretation. We are convinced that these developments could

also trigger future developments positively when developing and

investigating topological graph measures in the context of complex

networks.
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