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Abstract
A quantitative systems pharmacology model for metastatic melanoma was developed 
for immuno- oncology with the goal of predicting efficacy of combination checkpoint 
therapy with pembrolizumab and ipilimumab. This literature- based model is devel-
oped at multiple scales: (i) tumor and immune cell interactions at a lesion level; (ii) 
multiple heterogeneous target lesions, nontarget lesion growth, and appearance of 
new metastatic lesion at a patient level; and (iii) interpatient differences at a popula-
tion level. The model was calibrated to pembrolizumab and ipilimumab monotherapy 
in patients with melanoma from Robert et al., specifically, waterfall plot showing tar-
get lesion response and overall response rate (Response Evaluation Criteria in Solid 
Tumors [RECIST] version 1.1), which additionally considers nontarget lesion growth 
and appearance of new metastatic lesions. We then used the model to predict wa-
terfall and RECIST version 1.1 for combination treatment reported in Long et al. A 
key insight from this work was that nontarget lesions growth and appearance of new 
metastatic lesion contributed significantly to disease progression, despite reduction 
in target lesions. Further, the lesion level simulations of combination therapy show 
substantial efficacy in warm lesions (intermediary immunogenicity) but limited ad-
vantage of combination in both cold and hot lesions (low and high immunogenicity). 
Because many patients with metastatic disease are expected to have a mixture of these 
lesions, disease progression in such patients may be driven by a subset of cold lesions 
that are unresponsive to checkpoint inhibitors. These patients may benefit more from 
the combinations which include therapies to target cold lesions than double check-
point inhibitors.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
The pathophysiology of immuno- oncology (IO) failure is complex and not fully 
understood. Several companies and academic groups are developing mechanistic 
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INTRODUCTION

Immune therapy has shown great promise in the treatment of 
metastatic melanoma. However, many patients on immune 
therapies develop disease progression. Quantitative systems 
pharmacology (QSP) modeling can be used to understand 
clinical drug failure with immuno- oncology (IO) therapies 
and inform combination strategies that address the causes 
of progression (lack or loss of response). Several IO QSP 
models have been published and have been comprehensively 
reviewed elsewhere.1,2 QSP models generally focus on av-
erage target lesion dynamics, with little or no modeling of 
nontarget or new metastatic lesions.

In oncology clinical trials, disease progression is defined 
by diagnosis of progressive disease (PD) using Response 
Evaluation Criteria in Solid Tumors (RECIST) version 1.1 
criterion. Patients are classified as having PD due to target le-
sion progression (aggregate growth of multiple target lesions), 
nontarget progression (unequivocal growth of at least one non- 
target lesion), the appearance of a new metastatic lesions, or 
any combination of these three determinations. Recent analysis 
by our group3,4 has shown that growth of nontarget lesions and 
the appearance of new metastatic lesions can contribute signifi-
cantly to PD, despite stabilization or reduction in target tumor 
burden. Furthermore, these analyses with pembrolizumab clin-
ical data have also shown that different lesions within a patient 

can respond differently (i.e., some lesions may shrink, and oth-
ers may grow). This emphasizes that the need to account for 
lesion- to- lesion heterogeneity and the appearance of new met-
astatic lesions to better characterize the mechanisms of drug 
failure. Such a characterization of treatment failure can inform 
novel combinations to treat patients with cancer.

Here, we propose an IO QSP modeling framework ac-
counting for lesion level description of the therapeutic ef-
fect in order to model clinical response to pembrolizumab 
(anti- PD1 monoclonal antibody [mAb]) and ipilimumab 
(anti- CTLA4 mAb) therapy in metastatic melanoma. This 
model, to our knowledge, is the first to incorporate intrapa-
tient (lesion- to- lesion) variability in the pathophysiology of 
immune- mediated tumor killing. Further, we have considered 
all aspects of RECIST version 1.1 progression: target, nontar-
get, and new metastatic lesions. It is important to emphasize 
that a detailed representation of how immune system is mod-
ulated by IO therapies is beyond the scope of this work. Such 
a “bottom up” model, with multiple biological uncertainties 
and lack of quantitation of aspects of tumor- immune interac-
tions, can be used to identify gaps in knowledge and guide 
further biological investigations. Here, we implement a “top 
down” model with the purpose to describe clinical efficacy 
data using a minimal (and lumped) description of underlying 
biological mechanisms. The model was calibrated to clini-
cal data from monotherapy studies of pembrolizumab and 

quantitative systems pharmacology (QSP) models to facilitate pathophysiology- 
driven decision making. Most of these models have focused on immune pathophysi-
ology in a single average lesion and have not integrated tumor- to- tumor variability, 
and secondary causes for progression, such as growth of nontarget lesions, or new 
metastatic lesions into their clinical trial simulations.
WHAT QUESTION DID THIS STUDY ADDRESS?
How do patients develop progression on pembrolizumab and ipilimumab? Does the 
combination treatment address the causes of failure? Can a QSP approach enable ra-
tional decision making in checkpoint therapies (and more generally in IO) by predict-
ing responses to combinations with anti- PD1 (first line therapy) and helping prioritize 
targets? Can we use this approach to identify potential responders to combination 
therapies?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Lesion- to- lesion heterogeneity plays a critical role in the pathophysiology of drug 
failure. Most patients with melanoma with progression display a reduced tumor bur-
den. For most patients, disease progression is either driven by nontarget progression 
and/or the appearance of new lesions. Few clinical studies or QSP models have fo-
cused on these aspects of disease progression. In addition, this study suggests that 
patients may display both hot and cold lesions; potentially limiting the efficacy of 
checkpoint inhibitor combinations.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
These finding should increase focus on intrapatient heterogeneity in tumor response 
to therapy.



686 |   KUMAR et Al.

ipilimumab and was tested by comparing model predictions 
(tumor size changes and RECIST version 1.1 score) of their 
combination in melanoma.5– 8 Overall, this work highlights 
the complexity of RECIST version 1.1 progression and its 
implications. Our work shows the need for novel combi-
nations to address multiple heterogeneous tumors within a 
single patient suggesting that combinations with orthogo-
nal mechanisms (i.e., immune and nonimmune approaches) 
may be more promising than combinations that target simi-
lar mechanisms (i.e., double immune checkpoints) of tumor 
killing.

METHODS

Model hierarchy

QSP model development typically proceeds in stages and 
involves integration of physiological knowledge across mul-
tiple scales.9 This model begins with a description of CD8 T 
cell mediated tumor killing within a single tumor (Figure 1). 
Virtual patients are then created with multiple such target 

lesions. Progression due to nontarget causes (such as appear-
ance of new metastatic lesions) is captured by a probabilistic 
model (Figure 2). Finally, multiple such virtual patients are 
integrated into a virtual population.

Lesion- level model structure

Model equations described hypothesized 
interactions in the tumor microenvironment of a 
single target lesion

A lesion is assumed to be a well- mixed volume of tumor cells 
and tumor infiltrating lymphocytes (TILs). The model of the 
lesion contains 5 ordinary differential equations to track time 
trajectories of the numbers of these cells: (1) tumor cells, (2) 
activated CD8 T cells, (3) inactivated CD8 T cells, (4) helper 
cells, and (5) regulatory cells over time. The latter 4 cell 
types -  CD8 T cells (active and inactive), helper and regula-
tor cells are together referred to as the TILs. Model structure 
is shown in Figure 1 and underlying mathematical equations 
are laid out in Figure 3.

F I G U R E  1  Model with 5 variables (shown as bolded ovals) and 11 reactions (shown as numbered circles). (1) Growth of tumor cells. (2) 
Tumor cells are killed by interaction with Active CD8 that is upregulated by helper and downregulated by regulator cells. (3) Active CD8 cells are 
inactivated on interaction with tumor cells due to the PD1- PDL1 interaction. (4) Proliferation of active CD8, increased by helpers, and decreased 
by regulators. (5) Recruitment of active CD8 into tumor microenvironment (TME). (6) Recruitment of CD4 helpers. (7) Recruitment of CD4 
regulators. (8) Clearance of active CD8. (9) Clearance of inactive CD8. (10) Clearance of CD4 helpers. (11) Clearance of CD4 regulators. The 
model equations are outlined in Figure 3 and the detailed explanations of the modeling assumptions are in the Supplementary Section titled “Model 
Design.” Pembrolizumab is modeled as decreasing inactivation of CD8 (rate of reaction 3), increasing CD8 proliferation (rate of reaction 4), and 
recruitment (rate of reaction 5). Ipilimumab is modeled as functioning in the lymph node and increasing influx of active CD8 and CD4 helpers into 
the TME (rates of reactions 5 and 6) and decreasing influx of CD4 regulators (rate of reaction 7)
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Tumor cells can grow exponentially or can be killed by 
activated CD8 T cells. Activated CD8 T cell are function-
ally active cells that are capable of cytotoxicity (secrete 
Granzyme B and IFN- g) and proliferate.10 Activated CD8 
T cells are taken into an anergic state by the interaction be-
tween checkpoint receptor and its ligand (e.g., PD- 1 in the 
T cell and PD- L1 in the tumor). This anergic pool of CD8 T 
cells are defined as inactivated CD8 T cells in the model are 
incapable of cytotoxicity or proliferation.8,11 Additionally, 
helper cells aid activated CD8 T cells to perform with more 
efficacy, whereas regulatory cells impede the activity of ac-
tivated CD8 T cells.

As a simplification, all functionally active tumor an-
tigen specific CD8 T cells are aggregated into one en-
tity and their tumor killing rate into a single parameter. 
Future versions of the model may consider various sub-
sets of CD8 T cells as well as consider a range of PD- 1 
and PD- L1 expressions explicitly. Helper cells are a 
pool of pro- inflammatory immune cell types— currently 
identified with data from CD4 T helpers. They upregu-
late CD8 T cells’ cytotoxicity as well as increase their 
proliferation. Regulator cells are anti- inflammatory im-
mune cell types— currently identified with regulatory 
T cells (Tregs) but can also include mechanisms impli-
cated by myeloid- derived suppressor cells, other anti- 
inflammatory mediators. They downregulate CD8 T 
cells’ cytotoxicity as well as decrease its proliferation. 
Additional details of modeling assumptions, mathemati-
cal description, and parameterization of the target lesion 
model are in the Supplementary section titled “Model 
Design.”

Initial fraction of the TILs (TILs =  inactive CD8 + ac-
tive CD8 + helper cells + regulator cells, TIL% = 100* TIL/
[TIL + tumor cells]) is an important metric, which determines 
immunogenicity of the tumor and response to IO therapy.

Implementation of anti- PD1 and anti- CTLA4 
mechanisms of action

Mechanism of action of anti- PD- 1 is modeled as a decrease in 
the rate of conversion of active CD8 T cells to inactive CD8 
T cells (due to blocking of PD- 1::PD- L1 interaction) in a le-
sion.12,13 This results in increased cytotoxicity, infiltration, 
and proliferation of the CD8 T cell population. The effect 
of anti- CTLA4 is modeled as increased infiltration of pro- 
inflammatory helper (CD4 T helpers) and CD8 T cells, and de-
creased infiltration of regulators (CD4 Tregs) in a lesion.12,13 
Because pembrolizumab concentrations during chronic dos-
ing are considered to be well above half- maximal effective 
concentration, pharmacokinetics, and receptor occupancy 
have not been explicitly modeled here.14 The data used to esti-
mate treatment effects are detailed in the Supplementary sec-
tion titled “Clinical data used to develop virtual population.”

Patient and population level model structure

Generating multiple lesions per virtual patient

A single virtual patient (VP) in the model consists of multiple 
target lesions as in real- world clinical trials. These lesions 

F I G U R E  2  Schematic to show general method to show model development to be consistent with pembrolizumab and ipilimumab 
monotherapy clinical trial data. Parameterization starts with target lesion and cumulatively to virtual patient (VP) with multiple target lesions. A 
virtual population’s response to therapy depends on target lesion response (constrained by waterfall data) and appearance of metastases or nontarget 
lesion growth (constrained by Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1 scores)
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within a patient have variable initial conditions (size, initial 
TIL%) and some variable parameters (e.g., growth rate, CD8 
T cell proliferation rate, etc.). Details on which parameters 
are held constant and which are varied are in Tables S1– S3. 
We generate multiple tumors within a VP, and then multiple 
VPs to generate a candidate virtual population.

The following data are used to estimate the initial condi-
tions of the cell types of the first target lesion of a VP.

• Based on metastatic melanoma samples collected from 
patients with stage III/IV melanoma, the cell density is as-
sumed to be 235 million cells/ml and is fixed for all lesions 
and all VPs (inclusive of tumor cells and TILs15).

• Based on baseline distributions reported in clinical tri-
als,5,16 lesion diameters of the VPs in the model are log-
normally distributed with a mean of 20  mm and SD of 
8 mm (estimated to match reported range) and minimum 
of 10 mm (according to RECIST version 1.1 criteria, the 

minimum size for a non- nodal target lesion and nodal tar-
get lesion is 10 mm and 15 mm, whereas we have not made 
this distinction and have the minimum size set at 10 mm).

• Once a lesion diameter is picked, volume is calculated 
(assuming the lesion is spherical) and the total number 
of cells are calculated (number of cells = density × vol-
ume). Details of the calculation of initial cell numbers is in 
Supplementary subsection titled “Initial conditions in the 
lesions of a virtual patient.”

• Next, multiple such target lesions are assigned to a single 
VP. Based on internal data from Merck Sharp & Dohme 
Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, 
USA.,3 the median number of target lesions in a VP is 3 
and varies from 1– 12 (see Figures S3 and S4).

• Based on melanoma biopsies, the initial TIL% for a single 
lesion of a VP15 is estimated from a long- tailed distribution 
with median 12%8 and SD of 10%. Further, the fraction of 
CD8 T cells among TILs is 70%10 and helpers are 20% and 

F I G U R E  3  The model equations for interactions within a single target lesion. Five species interact in a well- mixed volume: tumor cells (T), 
activated CD8 T cells (aCTL), inactive CD8 T cells (iCTL), helper cells (H), and regulatory cells (R), as shown in Figure 1. Therapy effect is 
turned on or off using switch parameters (Rxapd1, Rxactla4) and the therapy effect is modeled as affecting various rates (Rxeff

apd1_pdl1
: decreases rate of 

conversion from iCTL to aCTL, Rxeff
apd1

: increases killing rate, infux rate into TME of aCTL, Rxeff_ctl

actla4
, Rxeff_h

actla4
, Rxeff_r

actla4
: respectively, increase influx 

rate into TME of aCTL, H and R). H_eff_C and R_Eff_C, are functions capturing saturating effect of H and R on aCTL, and CTL effect on H and 
R are captured by CTL_eff_H, CTL_eff_R (details in Supplementary section titled: “Role of immune cells in the model of target lesion”)
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the remaining TILs are regulators (based on breakdown of 
CD4 T cells in15; Figure S1).

• Based on the observation that immunogenic lesions have 
greater fraction of anergic CD8 T cells,10 the fraction of 
inactive CD8 (reported as partially exhausted CD8 T cells) 
is modeled as a function of TIL% and varies from 90% to 
10% as seen in data (Figure S2).

The other target lesions of a VP are generated similarly. 
The initial TIL% is varied by 25% around the TIL% of the 
first target lesion in a given VP (this within patient hetero-
geneity parameter “h” has been empirically fixed at 25%). 
Figure 4a, shows first the number of target lesions per VP 
(for only 10% of the virtual population used in this anal-
ysis, for clarity). Figure 4b shows the initial TIL% in the 
multiple target lesions (141 lesions in 25 VPs are shown 
in the figure and there are altogether 930 lesions in the 
entire set of 250 VPs; see Figure S4). The sum of the lon-
gest diameters (SLDs) of these lesions in a VP are tracked 
to be compared with the change in sum of longest diame-
ters (dSLDs) reported in the waterfall plot in the clinical 
literature.

The parameters of the target lesions are determined 
from clinical data as much as possible. For example, 

median tumor proliferation rate for metastatic melanoma is 
assumed to be is 0.01/day with a range of 0.005 to 0.04/
day.17,18 Some parameters, such as rate of conversion from 
active to inactive CD8 T cell is modeled as being correlated 
to initial TIL% (based on data that in melanoma tumor 
immunogenicity is correlated with PDL1+ status8). Other 
mechanistic parameters are kept invariant across all lesions. 
For example, parameters determining the half- maxima of 
the saturating Hill function effects of immune cells (helper 
and regulator) on CD8 T cell, clearance rate constants of 
the various immune cells from the lesion. Details of avail-
able literature support for these parameters has been laid 
out in Tables S1– S3.

Matching the waterfall to generate a 
virtual population

Prior work19– 21 has reported generating virtual populations 
by assigning weights either to clinical readouts or mecha-
nistic axes (parameters), or alternatively by generating them 
from an ensemble of physiologically plausible VPs and only 
including those that are consistent with clinical constraints, 
in a computationally efficient manner.

F I G U R E  4  These figures show initial conditions for multiple target lesions for 25 virtual patients (VPs) for clarity (10% of the virtual 
population [every 10 VP when arranged in the order of their target response as shown in the waterfall], used in this study). Median value for the 
virtual population (solid line) and minimum and maximum (dashed lines) are shown in the figures (data sources shown in the Supplementary 
material). Within patient variability for initial tumor infiltrating lymphocyte (TIL% = 100* TIL/[TIL + tumor cells] is set to 25% [heterogeneity of 
target lesions]). (a) Number of target lesions per VP. (b) Initial TIL% per target lesion. Distribution of number of lesions per VP and initial TIL% 
for the first lesion of a VP are shown in Figures S3 and S1b
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Our method is similar to the latter, where there is no 
weighting of mechanistic axes but rather candidate virtual 
populations are generated a priori with initial conditions, 
parameter distributions, and correlations consistent with 
data (or model hypotheses; Supplementary section titled 
“Development of virtual population” and table of VP pa-
rameters in supporting content). We changed the following 
parameters to generate multiple VPs for the candidate vir-
tual populations: the number of lesions per VP, the initial 
conditions of all lesions (the number of tumor cells and 
the TIL%), parameters dependent on TIL%, tumor growth 
rates, maximum value (Vmax) of helper and regulator effects 
on CD8 T cell. As mentioned, patient heterogeneity param-
eter “h” that determines variability in parameters among 
the target lesions of a VP, was fixed at 25%. Parameters 
characterizing monotherapy effects of anti PD1 and anti 
CTLA4 were then optimized to simultaneously match 
target dynamics seen in the waterfall plot (waterfall plots 
capture the dSLD over 1 year per VP). This process is re-
peated for multiple candidate virtual populations and the 
population with the closest fit to the waterfall data of both 
therapies is picked.

Matching the RECIST version 1.1 score to 
estimate growth of nontarget lesions and 
new metastases

Radiographic progression according to RECIST version 1.1 
is defined as greater than 20% growth in the SLD of target 
lesions from the nadir. Further, patients with unequivocal 
growth in any of the nontarget lesions (lesions not selected 
to be quantitatively tracked in the beginning of the trial) and/
or the occurrence of a new metastatic lesion are also classi-
fied as “progressive disease.”22 These secondary causes of 
disease progression are captured in a probabilistic model de-
pendent on the tumor burden (sum of diameters of all target 
lesions). This probability of PD due to non- target growth or 
appearance of metastases is estimated every 12 weeks. The 
parameters of the probabilistic model are estimated by simul-
taneously matching RECIST version 1.1 for both monother-
apy trials at once.

Optimization for waterfall and RECIST version 1.1 
was performed via a genetic algorithm (Matlab Global 
Optimization Toolbox) designed to minimize the distance 
between simulation results and calibration datasets. The 
objective function to be minimized was the difference 
in the data and virtual population of the fraction of pa-
tients in each of the dSLD buckets in the waterfall plots 
(dSLD < −30, −30 < dSLD < 20, dSLD > 20) and each of 
the RECIST version 1.1 classifications (complete response 
[CR], partial response [PR], stable disease [SD], and PD). 
In all cases, simulations were run for a year. The initial 

conditions and parameters for all target lesions for all VPs 
used in this analysis is provided in the Supplementary 
content.

Model assumptions and knowledge gaps

The following are major knowledge gaps that limit our abil-
ity to predict clinical outcome for novel therapeutic strategies 
using our approach.

(i)  Within patient distribution of TIL% across lesions: 
lesion- to- lesion response to pembrolizumab is highly 
variable. This implies lesion- to- lesion heterogeneity in 
pathophysiology such as TIL density. Given the paucity 
of data available about the heterogeneity of lesions in 
each patient, unimodal distributions for TILs with vari-
ances from 20%– 60% was tested in the simulations. The 
current simulation results shown here assume a fixed 
variation of 25%.

(ii) Nontarget lesion growth and metastases: public litera-
ture generally reports the overall RECIST version 1.1 
progression (overall response rate and progression- free 
survival) but generally do not report the cause of pro-
gression (target PD, nontarget PD, rebound, or new 
metastatic lesion). At this time, nontarget lesion growth 
and metastases in the model are assumed to be a single, 
probabilistic, sigmoidal function dependent only on the 
total tumor burden in a patient, regardless of treatment 
with pembrolizumab, ipilimumab, or their combina-
tion. Physiological correlates of nontarget and meta-
static lesion growth are critical in understanding disease 
progression and these may include length of disease, 
location of new metastases, and mechanism of action of 
the therapy.

(iii) Patient discontinuation due to dropouts: in cancer trials, 
patients often dropout due to multiple reasons, such as 
clinical progression, radiographic progression, protocol 
violation, death, withdrawal by patients, and adverse 
events. The present model only incorporates dropout due 
to radiographic progression evaluated at a fixed time (end 
of the year). Matching dynamic progression- free survival 
and overall survival curves over time will constrain dy-
namics of progression and this will be addressed in future 
efforts.

(iv) Multiple levels of “activated” CD8 when combination 
therapies interact: two populations of CD8 T cells— active 
and inactive are being tracked in the model. However, 
the activation state for CD8 is unlikely to be binary like 
we have modeled, and there could be graded increase in 
activation, which results in higher proliferation rates and 
cytotoxicity. Markers for these are not explicit, however, 
they may be critical in determining response.
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RESULTS

Model simulations for monotherapies 
(pembrolizumab and ipilimumab)

The model was designed to capture the clinical responses, 
measured in terms of waterfall plots and objective response 
rates (ORRs) in RECIST version 1.1 in stages III and IV mel-
anoma to IO treatments with pembrolizumab and ipilimumab. 

Plots of time- course of change in target tumor- size (“spider” 
plots, shown as sum of target lesions within a VP) across VPs 
on treatment with pembrolizumab and ipilimumab were sim-
ulated (Figure 5 [P1 blue,I1 brown]). The model can capture 
the diversity in tumor response observed clinically in response 
to pembrolizumab and is also consistent with the reported 
clinical changes in CD8 T cell densities for pembrolizumab 
(shown in Figure S6, reported data for subset of patients and 
time- course was only reported for pembrolizumab).

F I G U R E  5  P1 and I1 show the simulated time dynamics over a year of the change in sum of longest diameters (dSLDs) for 250 virtual patients 
(VPs; each shaded differently) in response to pembrolizumab and ipilimumab, respectively, with median simulated response in a darker shade. Data 
for buckets of dSLD (<−30, −30 < dSLD < 20, dSLD > 20) are digitized from waterfall plots and are compared against the dSLD from 1 year of 
simulations, and these are shown in P2 and I2. P3 and I3 show comparison between model and simulation for Response Evaluation Criteria in Solid 
Tumors (RECIST) scores. The classification of disease progression may be due to target lesion dSLD > 20 during a year and/or a probabilistic 
event (such as metastases). All data are from ref. 4
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Simulated waterfall plots for monotherapy pembroli-
zumab and ipilimumab are consistent with clinical data (cat-
egorized as dSLD < −30, −30 < dSLD < 20, dSLD > 20), 
shown in Figure 5 (P2, I2). Furthermore, Figure 5 (P3, I3) 
show consistency between model simulations and clinical 
data of RECIST version 1.1 scores of CR, PR, SD, and PD for 
pembrolizumab and ipilimumab, respectively. Importantly, in 
patients who received pembrolizumab treatment, ~ 45% re-
port RECIST version 1.1 PD and only ~ 15% of them showed 
an increase in target tumor burden (dSLD > +20% as mea-
sured from baseline). This shows that, in most patients, dis-
ease progression is driven by growth of a subset of lesions 
(nontarget progression) or the appearance of new metastatic 
lesions.

Tumor- size changes at lesion level are shown in Figure 6 
for pembrolizumab and ipilimumab. The heterogeneity in 
response (i.e., patients having both shrinking and growing 
lesions), is evident from these simulations. Although clini-
cal data at lesion level is not reported for comparison, this 
was consistent with internal data.3 Similar heterogeneity in 
response to treatment has also been previously reported for 
pembrolizumab in patients with non- small cell lung cancer.23

It is unclear which patients develop new metastatic le-
sions. Here, we assume that the probability of developing 
new metastatic lesions is proportional to tumor burden and 

calibrate that model to match the overall rates of overall pro-
gression. Figure  6 also shows the effect of our metastases 
model with 46% of patients on pembrolizumab and 53% of 
patients on ipilimumab predicted to have metastases (VPs 
with metastases are circled in the waterfall).

Model predictions for combination 
(pembrolizumab + ipilimumab) therapy

The model, calibrated to pembrolizumab and ipilimumab 
monotherapies, was used to predict the clinical response to 
combination of these two therapies, without adjustments. The 
same virtual population was used to predict combination and 
assumptions on initial conditions (number of lesions, TIL%, 
etc.) and model parameters (rate of growth of new lesions, 
metastases model, etc.) were identical to the virtual popula-
tion calibrated to the two monotherapies.

Consistent with the hypotheses on mechanisms of actions 
included in the model, simulations show that pembrolizumab 
leads to a greater fraction of active CD8 T cells from 3% to 
12% (population median), and ipilimumab leads to a greater 
influx of CD8 T cells, helper and reduced influx of regula-
tory cells leading to increase in total T cells from 8% to 15% 
(population median) within a lesion. Combined together, 

F I G U R E  6  These figures show the behavior for the individual lesions in the 250 virtual patients (VPs). The unbroken line shows the 
simulated waterfall (change in sum of longest diameters [dSLDs]) for the patients. The lighter dots show the change in tumor size for each of the 
lesions. The circled VPs are those that were simulated to also have nontarget growth or appearance of metastases
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these two effects lead to an increase in active CD8 T cells (as 
a result of higher fraction of active CD8 T cells and higher 
total T cells) and their functionality (greater cytotoxicity as 

a result of higher helper and lower regulatory cells) to drive 
reduction of lesion size.

Figure  7a shows that the predictions for dSLD of the 
target lesions were comparable to the clinical data reported 
in ref. 6. Figure  7b shows that the ORR (CR  +  PR) was 
underestimated— predicted ORR was 52% in simulations 
versus 62% in clinical trials.6

The model was able to predict dynamics of target lesions, 
but overestimated the percentage of patients who are classi-
fied as PD. When we use the probabilistic model calibrated to 
monotherapy RECIST version 1.1 score, without adjustment, 
to predict combination response, 40% of VPs are predicted to 
be classified as PD (vs. only 19% in the data). A model ad-
justed to specifically match RECIST version 1.1 score in the 
combination trial (Figure 7c) assumes lower probabilities of 
nontarget growth and appearance of metastases (9% vs. 36% 
as maximum probability) and can then match the combina-
tion RECIST version 1.1 data. This suggests that growth of 
nontarget lesions or appearance of new metastases may have 
additional mechanistic underpinnings than the simple depen-
dence on the target lesion burden that we have proposed (as a 
surrogate for response to therapy).

Model simulations to guide 
patient selection for combination 
(pembrolizumab + ipilimumab) therapy

To assess the advantage of combination over pembroli-
zumab monotherapy, 1000 hot lesions with initial TIL% 

F I G U R E  7  Percent change predicted by combining treatment 
parameters for pembrolizumab and ipilimumab with no further 
adjustments. (a) show good fits to the waterfall plots reported in ref. 
6. (b) Bar chart comparing simulated Response Evaluation Criteria 
in Solid Tumors (RECIST) version 1.1 scores using unadjusted 
metastases model underestimates of objective response rates (ORRs; 
complete response [CR] + partial response [PR]) and overestimates 
of progressive disease (PD). The simulations from the adjusted model 
match the data (c) event probability (for example, probability that 
a virtual patient [VP] gets new metastatic lesion) is assumed to be 
a sigmoidal function of SLD and it is computed every 12 weeks. 
Model adjusted to match combination (pembrolizumab + ipilimumab) 
RECIST suggests fewer events on combination compared to 
monotherapy and that needs to be investigated further

F I G U R E  8  Comparison of simulated mean percent change (+ 
1SD) in tumor diameter in response to pembrolizumab monotherapy 
(light blue) and pembrolizumab + ipilimumab combination therapy 
(black), by varying baseline tumor infiltrating lymphocytes (TILs) in 
the tumor microenvironment (TME) with combination therapy. We 
have defined cold as TIL less than 1.5% and hot as TIL greater than 
5% and warm are intermediary TIL%. dSLD, change in sum of longest 
diameter; ORR, objective response rate; PD, progressive disease; 
RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable 
disease; Sims, simulations
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greater than 5%, 1000 cold lesions with initial TIL% less 
than 1.5% and 1000 warm lesions with intermediary TILs 
were simulated. The lesions were distributed uniformly 
over the TIL% range in each bucket. The model was sim-
ulated such that each lesion was treated for 1  year with 
pembrolizumab monotherapy and the combination of pem-
brolizumab and ipilimumab (Figure 8). This shows that the 
advantage of combination over pembrolizumab is small 
in both hot and cold lesions. Warm lesions show substan-
tial change in tumor diameter reduction from 0% to −40% 
(mean across 1000 lesions) in response to pembrolizumab 
and combination, respectively.

Mechanistically, the model showed T cell infiltration in 
median cold lesions was ~ 1% for pembrolizumab, increasing 
to only ~ 1.7% in response to combination treatment. For hot 
lesions, the T cell infiltration was 20% for pembrolizumab 
and increased to 32% in response to combination treatment, 
showing some enhancement in efficacy due to combination. 
In warm lesions, the model showed that T cell infiltration 
doubled from 8% with pembrolizumab treatment to 16% with 
combination treatment. However, in the clinical setting, be-
cause most patients with warm lesions (as in Figure 8, me-
dian change in warm lesions diameter = 0%) also have cold 
lesions (median change in cold lesions diameter > +20%), 
combination therapy is predicted to both reduce average 
tumor burden (via shrinking of warm lesions) and fail to pre-
vent progression (as cold lesions continue to grow).

DISCUSSION

The goal of adding a combination agent is to improve the 
efficacy of pembrolizumab, which is increasingly becom-
ing the first line of treatment across cancer types.24 Guiding 
combination strategy requires characterization of lesion level 
response to pembrolizumab. A QSP model of melanoma was 
developed and calibrated to the clinical efficacy outcomes 
(change in tumor size from waterfall plots and RECIST 
version 1.1 scores) reported with pembrolizumab and ip-
ilimumab monotherapies in melanoma.5,7,14 In this model, 
heterogeneous target lesions, nontarget lesion growth, and 
appearance of new metastatic lesions were considered to 
mathematically model determination of PD. Simulations 
show that most patients with PD display a mix of growing 
(nonresponding) and shrinking (responding) lesions as well 
as can become progressive due to reasons other than target 
lesion growth. In other words, thinking of PD simplistically 
in terms of growth of a single, average tumor in a patient can 
be misleading.

Without changing any parameter, the model was able to 
predict the tumor- size change reported clinically with the 
combination of pembrolizumab and ipilimumab.6 However, 
the model underestimated the ORR in combination. This 

discrepancy lies in the model’s inability to characterize pro-
gression due to growth of nontarget lesions or the appearance 
of new metastatic lesions in combination. For example, there 
is clinical evidence suggesting that the appearance of meta-
static lesions may be delayed with the combination relative 
to pembrolizumab.6 This change in appearance of metastases 
and its mechanistic underpinning, which may depend on fac-
tors other than target lesion response alone, will be investi-
gated in future work.

The incorporation of intrapatient lesion level heterogene-
ity in our simulations provided insights into the limitations 
of combinations of checkpoint inhibitors. Most patients with 
PD display a mix of growing and shrinking lesions. The le-
sion level simulations of pembrolizumab and ipilimumab 
combination therapy show substantial efficacy in warm le-
sions (intermediary immunogenicity) but limited advantage 
of combination in both cold (low immunogenicity) and hot 
lesions (high immunogenicity). The combination advantage 
in hot lesions is limited as pembrolizumab on its own is ex-
pected to effectively shrink these lesions. These simulation 
results provide insights of future combinations. Specifically, 
disease progression in many patients in the metastatic setting 
can be driven by a subset of cold lesions that are unrespon-
sive to checkpoint inhibitors.

IO QSP models will be able to better predict clinical out-
comes if they can consider the impact of therapies at lesion 
level versus the aggregate change in the dSLA of all lesions. 
However, there are limited lesion level data in the public lit-
erature on the heterogeneous causes of PD other than aver-
age target lesion growth. This work develops a mathematical 
framework that will be improved with proprietary, individual 
patient data in the future.

CONCLUSIONS

Checkpoint inhibitors have shown remarkable efficacy in 
melanoma. However, disease progression is still a problem 
for many patients. Combinations with IO treatments are 
needed to improve clinical outcome. A clinical QSP model 
was developed to mechanistically assess the pembrolizumab 
and ipilimumab combination benefit in melanoma. Many 
patients with cancer have heterogeneous lesions (i.e., cold, 
warm or hot lesions),23 as well as reach disease progression 
due to reasons such as nontarget lesion growth and/or ap-
pearance of a lesion growth.3 The combination of check-
point inhibitors, such as pembrolizumab and ipilimumab, is 
not sufficient to shrink all lesions, in particular cold lesions, 
which ultimately leads to disease progression. A combina-
tion strategy of orthogonal therapies (e.g., combination of 
pembrolizumab with non- IO drugs) that can also target cold 
lesions is needed to expand clinical benefit of IO therapies in 
a wider patient population.



   | 695HETEROGENEITY IN RESPONSE TO IO THERAPY

ACKNOWLEDGEMENTS
The authors thank Tamara Ray and Mrittika Roy, Vantage 
Research, for clinical and biological data extraction and Aparna 
Mohan, Vantage Research, for simulation support in figures for 
the paper revision. The authors also thank Daniel Rosenbloom, 
Merck & Co., Inc., Kenilworth, NJ, USA, and Aparna Mohan, 
Vantage Research, for reviewing the model scripts.

CONFLICT OF INTEREST
B.T., K.M., and D.A. are employees of Merck Sharp & 
Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, 
NJ, USA (MSD). L.L. was an employee of MSD at the 
time of this work. R.K. and K.T. are employees of Vantage 
Research. L.J. was employed at Vantage Research at the time 
of this work.

AUTHOR CONTRIBUTIONS
R.K., K.T., B.T., and K.M. wrote the manuscript. R.K., D.A., 
K.M., and B.T. designed the research. R.K. and K.T. per-
formed the research. L.J. and L.L. analyzed the data.

REFERENCES
 1. Chelliah V, Lazarou G, Bhatnagar S, et al. Quantitative Systems 

Pharmacology approaches for Immuno- oncology: adding virtual 
patients to the development paradigm. Clin Pharmacol Ther. 
2021;109(3):605- 618.

 2. Peskov K, Azarov I, Chu L, et al. Quantitative mechanistic mod-
eling in support of pharmacological therapeutics development in 
immuno- oncology. Front Immunol. 2019;10:924.

 3. Topp B, Kumar R, Mayawala K, de Alwis D, Hellmann M, Snyder 
A. "Inter- tumoral heterogeneity of progressive disease in mela-
noma patients treated with pembrolizumab," in Cancer Res (AACR 
Virtual Special Conference on Tumor Heterogeneity: From Single 
Cells to Clinical Impact), Virtual, September 17– 18, 2020.

 4. Channavazzala M, Thiagarajan K, Ray T, et al. Using an IO QSP 
model to re- define efficacy, discontinuation criteria, and bio-
marker analysis. ACoP11. 2020;2:325. ISSN:2688- 3953.

 5. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilim-
umab in advanced melanoma. N Engl J Med. 2015;372:2521- 2532.

 6. Long GV, Atkinson V, Cebon JS, et al. Standard- dose pembroli-
zumab in combination with reduced- dose ipilimumab for patients 
with advanced melanoma (KEYNOTE -  029): an open label, phase 
1b trial. Lancet Oncol. 2017;18(9):1202- 1210.

 7. Robert C, Ribas A, Wolchok JD, et al. Anti- programmed- death- 
receptor- 1 treatment with pembrolizumab in ipilimumab refractory 
advanced melanoma: a randomised dose- comparison cohort of a 
phase 1 trial. Lancet. 2014;384:1109- 1117.

 8. Tumeh PC, Harview CL, Yearley JH, et al. PD- 1 blockade in-
duces response by inhibiting adaptive immune resistance. Nature. 
2014;515(7528):568- 571.

 9. Gadkar K, Kirouac DC, Mager DE, van der Graaf P, Ramanujan S. 
A six- stage workflow for robust application of systems pharmacol-
ogy. CPT Pharmacometrics Syst Pharmacol. 2016;5(5):235- 249.

 10. Daud AI, Loo K, Pauli ML, et al. Tumor immune profiling predicts 
response to anti- PD- 1 therapy in human melanoma. J Clin Invest. 
2016;126(9):3447- 3452.

 11. Huang AC, Postow MA, Orlowski RJ, et al. T- cell invigoration 
to tumor burden ratio associated with anti- PD- 1 response. Nature. 
2017;545(7652):60- 65.

 12. Buchbinder E, Desai A. CTLA- 4 and PD- 1 pathways: similarities, 
differences and implications of their inhibition. Am J Clin Oncol. 
2016;39(1):98- 106.

 13. Seidel JA, Otsuka A, Kabashima K. Anti- PD- 1 and Anti- CTLA- 4 
therapies in cancer: mechanism of action, efficacy and limitations. 
Front Oncol. 2018;8:86.

 14. Patnaik A, Kang SP, Rasco D, et al. Phase I study of pembroli-
zumab (MK3475; anti- PD- 1 monoclonal antibody) in patients with 
advanced solid tumors. Clin Cancer Res. 2015;21(19):4286- 4293.

 15. Erdag G, Schaefer JT, Smolkin ME, et al. Immunotype and immu-
nohistologic characteristics of tumor- infiltrating immune cells are 
associated with clinical outcome in metastatic melanoma. Cancer 
Res. 2012;72(5):1070- 1080.

 16. Ribas A, Hamid O, Daud A, et al. Association of pembrolizumab 
with tumor response and survival among patients with advanced 
melanoma. JAMA. 2016;315(15):1600- 1609.

 17. Carlson JA. Tumor doubling time in cutaneous melanoma and its 
metastasis. Am J Dermatopathol. 2003;25(4):291- 299.

 18. Hamid O, Robert C, Daud A, et al. Safety and anti- tumor responses 
with lambrolizumab (anti- PD- 1) in melanoma. N Engl J Med. 
2013;369(2):134- 144.

 19. Klinke D 2nd. Integrating epidemiological data into a mechanistic 
model of Type 2 diabetes: validating the prevalence of virtual pa-
tients. Ann Biomed Eng. 2008;36(2):321- 334.

 20. Schmidt B, Casey F, Paterson T, Chan J. Alternate virtual popula-
tions elucidate the type I interferon signature predictive of the re-
sponse to rituximab in rheumatoid arthritis. BMC Bioinformatics. 
2013;14:221.

 21. Allen RJ, Rieger TR, Musante CJ. Efficient generation and selec-
tion of virtual populations in quantitative systems pharmacology 
models. CPT Pharmacometrics Syst Pharmacol. 2016;5:140- 146.

 22. Schwartz LH, Seymour L, Litière S, et al. RECIST 1.1 -  standard-
isation and disease- specific adaptations: perspectives from the 
RECIST Working Group. Eur J Cancer. 2016;62:138- 145.

 23. Osorio JC, Arbour KC, Le DT, et al. Lesion- level response dy-
namics to programmed cell death protein (PD- 1) blockade. J Clin 
Oncol. 2019;37(36):3546- 3555.

 24. FDA. “Highlights of prescribing information,” FDA, 2019. 
[Online]. Available at: https://www.acces sdata.fda.gov/drugs 
atfda_docs/label/ 2019/12551 4s040 lbl.pdf

SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

How to cite this article: Kumar R, Thiagarajan K, 
Jagannathan L, et al. Beyond the single average tumor: 
Understanding IO combinations using a clinical QSP 
model that incorporates heterogeneity in patient 
response. CPT Pharmacometrics Syst. Pharmacol. 
2021;10:684–695. https://doi.org/10.1002/psp4.12637

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125514s040lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125514s040lbl.pdf
https://doi.org/10.1002/psp4.12637

