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Abstract: Climate and plant community composition (PCC) modulate the structure and function of
microbial communities. In order to characterize how the functional traits of bacteria are affected,
important plant growth-promoting rhizobacteria of grassland soil communities, pseudomonads,
were isolated from a grassland experiment and phylogenetically and functionally characterized. The
Miniplot experiment was implemented to examine the mechanisms underlying grassland ecosystem
changes due to climate change, and it investigates the sole or combined impact of drought and PCC
(plant species with their main distribution either in SW or NE Europe, and a mixture of these species).
We observed that the proportion and phylogenetic composition of nutrient-releasing populations
of the Pseudomonas community are affected by prolonged drought periods, and to a minor extent
by changes in plant community composition, and that these changes underlie seasonality effects.
Our data also partly showed concordance between the metabolic activities and 16S phylogeny.
The drought-induced shifts in functional Pseudomonas community traits, phosphate and potassium
solubilization and siderophore production did not follow a unique pattern. Whereas decreased soil
moisture induced a highly active phosphate-solubilizing community, the siderophore-producing
community showed the opposite response. In spite of this, no effect on potassium solubilization
was detected. These results suggest that the Pseudomonas community quickly responds to drought
in terms of structure and function, the direction of the functional response is trait-specific, and the
extent of the response is affected by plant community composition.

Keywords: Pseudomonas; grassland; phosphate solubilization; potassium solubilization; siderophore
production

1. Introduction

Species of the genus Pseudomonas are ubiquitously present in soils. More than 220 species
have been reported in the literature from this diverse genus, with validated taxonomic
names [1]. Capable of utilizing a wide range of organic and inorganic compounds, ex-
pressing both genetic and metabolic versatility, and being relatively easy to isolate and
cultivate, they are among the best-studied bacteria in soil [2]. Several root-associated
Pseudomonas strains are able to stimulate plant growth, and therefore are classified as
plant growth-promoting rhizobacteria (PGPR). The beneficial effects rest upon various
direct and indirect mechanisms, such as inducing or increasing plant disease resistance [3],
producing phytohormones such as auxin [4], or decreasing plant ethylene levels and, thus,
plant stress by ACC-deaminase production [5]. In addition to this, pseudomonads play a
crucial role for plant nutrient acquisition [6]. In fact, the majority of essential micro- and
macronutrients in soils are bound in mineral and organic complexes, and in this form are
not available for plants. For instance, in an average soil, P content is about 0.05% (w/w),
from which only 0.1% is in an available form for direct uptake [7]. The contribution of
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pseudomonads to mineral P and also K solubilization is primarily based on the exudation
of organic acids [8–10], which lower the pH and thus accelerate the process of weather-
ing [10–12]. Unlike the need for the macronutrients P and K, plant demand for iron is lower.
Nevertheless, iron is often poorly available in soils. Some species of the genus Pseudomonas
can mobilize iron by exuding siderophores, which are low-molecular weight compounds
with a high affinity for Fe(III)-ions [13], thus supporting iron nutrition of plants [14,15].
Notwithstanding their relevance for ecosystem productivity and functioning, the impact of
the ongoing climate change on Pseudomonas communities in soils is still not fully resolved.

Warming and changed precipitation have a profound impact on the structural and
functional diversity of soil microbial communities [16,17], i.e., not only on the structure
of soil microbial communities, but also on microbe-mediated soil processes, such as de-
composition or nutrient mineralization. Besides the direct effects caused by changed
temperatures and soil moisture, soil microorganisms are also affected by indirect impacts
of climate change, mainly in the form of altered plant community composition [18,19].
Due to the changed climatic conditions, the geographical distribution patterns of plant
populations change and plant species establish themselves in novel regions to maintain
optimal conditions for growth [20]. For instance, the plant community composition of
endemic grassland floras in Central Europe are expected to change to resemble commu-
nities currently established in Southern Europe. Shifts in plant community composition
lead to alterations in the quality and quantity of root exudates as well as plant litter com-
position. Under these unsettled conditions, the abundance of microbial generalists in
the soil might be promoted, which can cope with a broad range of resources, and the
abundance of specialists might be reduced [21]. For pseudomonads, the P. putida and P.
koreensis strains, which have previously been reported as common members of the plant
growth-promoting and drought-tolerant Pseudomonas community [22,23], are expected to
dominate the Pseudomonas community. In this respect, the mediating role of plant com-
munity composition on the impact of climate change on soil pseudomonades, such as
important plant growth-promoting soil bacteria [24,25], is of particular interest.

To study the structural and functional responses of soil pseudomonads to climate
change, we used the “Miniplot” grassland experiment located in Bad Lauchstädt (Germany),
which was designed to examine the mechanisms underlying grassland ecosystem changes
due to climate change. Two factors directly and indirectly related to climate change were
manipulated, namely precipitation pattern (drought vs. ambient rain) and plant com-
munity composition (mixtures of grassland species with a predominant distribution in
Northeast (NE) or Southwest (SW) Europe). Thereby, the NE species are seen as potential
losers due to climate change in the experiment, expected to have a lower adaptability to
longer drought periods and higher temperatures. In contrast, the SW plant community may
buffer the impact of drought stress on the microbial community, since they are adapted
to warmer and dryer conditions and therefore can be seen as the potential winners in
the experiment.

We hypothesized that the Pseudomonas community will be dominated by generalists,
which can cope with the conditions of different plant community compositions and drought.
In the second hypotheses, we stated that severe drought will influence the Pseudomonas
community composition and reduce the activity of P, K and Fe-mobilizing Pseudomonas
strains. Finally, we hypothesized that, due to their better adaptation to drought, the SW
plant communities mitigate the negative impact of drought on the Pseudomonas community.
To address these hypotheses, a total of 464 Pseudomonas strains were isolated from the
Miniplot experiment, grouped into phylogenetic clusters and tested for their potential to
solubilize tricalcium phosphate and potassium silicate, as well as to produce siderophores.

2. Materials and Methods
2.1. Experimental Design and Soil Sampling

The so called “Miniplot experiment” was established in 2010 at the field research
station of the Helmholtz-Center for Environmental Research in Bad Lauchstädt (central
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Germany, 11◦53′E, 51◦24′N). The site is characterized by an annual precipitation of about
480 mm and a mean annual temperature of 8.7 ◦C. The experiment comprised a total of
80 plots (1 m2), delimited to each other by stainless steel frames up to a depth of 60 cm
(Figure S1). The plots were filled with soil from the experimental site, which is charac-
terized as a humus- and nutrient-rich Haplic Chernozem [26]. To induce drought, half
of the plots were roofed in 2012 for five weeks in May/June as well as for six weeks in
July/August/September (D, drought treatment), whereas the other half of the plots were
exposed to ambient precipitation (C, control treatment). The total amount of intercepted
precipitation was 96.2 and 70.8 mm during the first and second roofing periods, respec-
tively. The plant treatment comprised two pools of either 32 Northeast European (NE) or
Southwest European (SW) plant species (eight grasses, eight small herbs, eight tall herbs
and eight legumes). The 80 plots were sown with either 16 randomly partitioned Northeast
European (NE) or Southwest European (SW) species (four of each functional group), or
with a representative mix (8 NE, 8 SW) of both plant species pools (Table S1). Soil samples
were collected from 15 control and 15 drought plots (5 SW, 5 NE, 5 Mix, each), which
showed the lowest weed fraction in the plant communities (Table S2).

Soil samples were taken immediately after the roofing periods, i.e., on the 27th of June
and the 6th of September in 2012. For this, 18 soil cores (0–10 cm, 12 mm diameter) from
each plot were pooled, sieved (2 mm) and stored at −20 ◦C for soil chemical analysis, as
well as for the isolation of pseudomonads.

2.2. Soil Parameters

Soil carbon (C) and nitrogen (N) contents were determined by dry combustion in
triplicate using a Vario EL III C/H/N analyser (Elementar, Hanau, Germany). Since the
carbonate concentration of the soils was negligible (<2%), the total C concentration mea-
sured was considered to represent total organic carbon (TOC). Available soil phosphorus
was determined after extraction with double lactate (pH 3.6, 90 min; [27]) using the molyb-
denium blue method [28]. Gravimetric soil moisture contents were determined using a
fully automatic moisture analyzer (Kern DBS60–3, Kern & Sohn GmbH, Germany). Soil pH
was measured with a pH electrode (Mettler Toledo InLab Expert Pro-ISM) after shaking
the soil for 1 h in 0.01 M CaCl2 (1:2.5 w/v).

At the time of soil sampling in June 2012, the average gravimetric soil moisture was
7.7% in the drought and 15.1% in the control samples and, in September, 6.7% in the
drought and 11.1% in the control samples (Figure S2). Soil properties were comparable
between seasons, plant community compositions and drought or control treatments. In
addition, TOC increased from June to September, and P availability was higher in plots
with drought compared to control treatment (Table S3).

2.3. Selective Isolation and Cultivation of Pseudomonas Bacteria

For selective isolation of Pseudomonas spp. from the soil samples, we used “Pseu-
domonas Selective Isolation Agar (PSIA)” [29]. It was described as being highly specific for
pseudomonads suppressing other bacterial and fungal growth by the addition of crystal
violet (2 mg/L), nitrofurantoin (350 mg/L) and cycloheximide (100 mg/L) to soybean
casein digest agar. From each sample, 0.5 g of soil was suspended in 50 mL of sterile water,
stirred with a magnetic stirrer for 15 min, and incubated at room temperature for 20 min.
Three replicates of 100 µL supernatant were plated on PSIA. Inoculated agar plates were
incubated at 25 ◦C for three days. Up to 15 colonies were picked per soil sample. The
isolated strains were cultivated on YME agar (4 g/L yeast extract, 10 g/L malt extract,
4 g/L glucose and 20 g/L agar).

2.4. DNA Extraction and Partial 16S rRNA Gene Sequencing

Three-day-old colonies from YME agar were transferred into Eppendorf tubes with
300 µL of 60% polyethylenglycol 200 and a glass bead. The bacterial cell walls were me-
chanically lysed by vortexing and the cell suspensions were 1:50 diluted with sterile water
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before PCR amplification. 16S rRNA gene fragments were amplified using Promega Green
(Promega, Madison, WI, USA) with primers 27f (10 µM–5′-AGAGTTTGATCMTGGCTCAG-
3′ [30]) and 1492r (10 µM—5′-GGTTACCTTGTTACGACTT-3′ [30]) with the following PCR
program: initial denaturation at 95 ◦C for 7 min, 4 cycles of denaturation at 94 ◦C for 30 s,
annealing at 56 ◦C for 30 s, elongation at 72 ◦C for 75 s, 31 cycles of denaturation at 94 ◦C
for 30 s, annealing at 54 ◦C for 30 s, elongation at 72 ◦C for 75 s, and a final elongation step
at 72 ◦C for 15 min. After quality checking PCR products on a 1.5% agarose gel, they were
purified with ExoSAP (Affymetrix, Santa Clara, CA, USA) and cycle sequenced with BAC
341f primer (10 µM—5′-CCTACGGGAGGCAGCAG-3′ [31]) using Big Dye Termination
Mix (GeneCust Europe, Dudelange, Luxemburg). DNA was ethanol precipitated, dried
and solubilized in highly deionized formamide. DNA fragments were visualized by an ABI
3730xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA) and quality checked by
manually comparing the sequences with the individual chromatograms in BioEdit (Ibis
Biosciences, Carlsbad, CA, USA). All 16S rRNAgene sequences were deposited in the NCBI
database: MZ541103-MZ541566.

For cluster analysis, sequences were trimmed in BioEdit to a defined length of
720 nucleotides starting from the sequence position 387 of E. coli 16S rRNA gene. Trimmed
sequences were clustered with CD-Hit Est [32] using an identity cut off 99.5%. Phylogenetic
trees of cluster and reference sequences were constructed with Neighbor Joining Method
(NJ, bootstrap = 1000) in MAFFT server [33] and drawn with Archaeopterix [34].

2.5. Quantification of P- and K- Solubilizing Activity and Siderophore Production

Phosphorus solubilization activities of the bacterial isolates were tested with three
replicates for each strain on Pikovskaya medium [35]. This consisted of 10 g/L glucose,
0.2 g/L NaCl, 0.5 g/L (NH4)2SO4, 0.2 g/L KCl, 2 mg/L FeSO4 × 7 H2O, 2 mg/L MnSO4
× H2O, 5 g/L Ca3(PO)4, 10 mg/L bromophenol blue and 15 g/L agar, pH 7. The insoluble
tri-calcium phosphate caused the medium to have a milky appearance. The solubilizing
activities were assessed by clear zones around the bacterial colonies, termed “halo” in the
following text.

Siderophore production was investigated with three replicates on CAS agar according
to Louden et al. [36]. In the medium, the ferric iron is tightly bound to CAS/HDTMA,
producing the green-blue color of the medium. The color of the medium changes to orange
when the iron–CAS/HDTMA complex is dissolved by the siderophores. After three days
(iron) or two weeks (phosphorus) of incubation at 25 ◦C, the diameter of the halos around
the colonies and the diameter of the bacterial colonies were measured. Activity levels
were defined by calculating the area of the halo formation (including the colonies), as this
area is correlated with the amount of released P and the amount of released iron from the
CAS/HDTMA complexes by siderophores.

Potassium solubilization from K-feldspar was investigated with three replicates in
liquid Aleksandrov medium [37], which consisted of 5 g/L glucose, 0.5 g/L MgSO4 ×H2O,
0.1 g/L CaCO3, 6 mg/L FeCl3, 2 g/L NaH2PO4, and 3 g/L K-feldspar. Bacterial colonies
were suspended with an inoculation loop in 400 µL sterile water and subsequently 100 µL
of the bacterial suspension were used to inoculate 15 mL Aleksandrov medium in 50 mL
conical tubes. The tubes were placed on a shaker (100 rpm) and incubated at 25 ◦C for
two weeks with intermittent opening under sterile conditions to achieve gas exchange after
one week. After incubation, the tubes were centrifuged at 9000 rpm to remove K-feldspar
and cells from the medium and the content of soluble potassium in the supernatant was
determined with a K+ sensitive electrode (perfectION, Mettler-Toledo, Gießen, Germany).

2.6. Statistical Analysis

All statistical analyses were performed in R version 3.6.2 [38]. The effects of drought
treatment, plant community composition as well as the sampling date (season) on the
relative abundance and activities of Pseudomonas strains were assessed using analysis
of variance (ANOVA). Tukey’s honestly significance difference (HSD) post hoc test was
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then implemented to find means that are significantly different from each other. The
effects of soil parameters and biomass on the activities were assessed using Spearman’s
rank correlations.

3. Results
3.1. Isolation of Pseudomonas Strains

Using a Pseudomonas-selective isolation agar (PSIA), in total, 604 bacterial isolates
were obtained from soil samples taken during the June and September sampling. Out of
the 604 isolates, 464 (77%) were assigned to the genus Pseudomonas by partial sequencing
of the 16S rRNA gene, which demonstrated the high selectivity of the PSIA medium for
pseudomonads (full list of isolates provided in Supplementary Table S4). We isolated
247 and 217 Pseudomonas strains from the June and September sampling, respectively.
Throughout the two sampling points, 265 and 199 strains were obtained from soil samples
of control and drought plots, as well as 152, 149 and 163 strains from plots with NE, Mix
and SW plant species, respectively.

3.2. Phylogenetic Classification and Distribution of the Isolates

Partial 16S rDNA gene sequencing, sequence clustering and phylogenetic tree con-
struction were used to reveal the phylogenetic relationships among the Pseudomonas isolates.
To avoid biases due to low-quality sequences, only sequences with at least 720 bp were
considered (excluding five sequences, n = 459). Cluster analysis with a similarity thresh-
old of 99.5% assigned the Pseudomonas 16S sequences to 14 clusters. A phylogenetic tree
was constructed by neighbor-joining method with one representative sequence from each
cluster as well as corresponding reference sequences (Figure 1). The analysis revealed
that the vast majority of isolated strains were related to P. koreensis (cluster C1), P. putida
(C2, more distant C4), P. helmanticensis (C3) and P. vancouverensis (C5). Rare sequence
types represented by only one strain each were also identified, such as P. chlororaphis (C11),
P. abietaniphila (C13) and P. azotoformans (C14).

The relative abundance of the Pseudomonas clusters was influenced by drought treat-
ment and season (Figure 2). For instance, strains associated with clusters C1 and C5 were
isolated more often from plots with drought treatment, whereas C2 and C4 representatives
were primarily obtained from ambient precipitation plots. While the C4 strains were
primarily isolated in June, most of the C2 strains were obtained from the September sam-
pling. Plant community composition also had an effect on cluster representation. Fewer
C1 sequences were isolated from plots with SW than from plots with Mix or NE plant
communities, and for C2 sequences, the relative abundance was decreased in Mix plant
community plots.

3.3. Impact on Functionality of the Isolated Pseudomonas Strains

P-solubilization activity (Figure 3) of strains from the experimental plots with drought
treatment was higher (p = 0.01) than that of strains isolated from control plots, whereas
an opposing pattern was observed for siderophore production levels (p < 0.001). This was
related to soil moisture contents and available phosphate concentrations (Table 1).

The negative impact of drought for siderophore production was prominent in both
June and September. Regarding the influence of plant community composition, K- (p = 0.02)
and P-solubilizing (p = 0.008) activities were highest in NE plant community plots. Season
influenced the pseudomonads’ activity only to a minor extent, but the results reveal
a higher K-solubilization activity in September than in June (p = 0.01). Furthermore,
interactions between plant community composition and drought treatment indicated
lower K solubilization activity under drought conditions in mixed communities, but
no differences in the response between SW and NE plant communities were observed
(p = 0.03).
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3.4. Relationships between Phylogenetic Classification and Functional Traits of the Isolates

The determined activity traits of the isolated Pseudomonas strains were related to
their respective 16S rRNA cluster representation for the most abundant clusters, C1–C5
(Figure 4). The results reveal a relationship between functional and structural diversity.
For P-solubilization, the highest activities were found for clusters 1, 3 and 5, whereas the
activities in cluster 2 and 4 were significantly lower. Siderophore production was high for
strains in clusters 2 and 5 and low for 1 and 4. Average K-solubilization activity was almost
completely unaffected by structural diversity (Figure 4).
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pH Moisture Soil P TOC TN PB RB
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Figure 3. Mean ± standard error biological activities of the isolated Pseudomonas strains. Influence of
treatment (C, control; D, drought), plant community composition (SW, Southwest European plant
species; NE, Northeast European plant species; Mix, SW and NE plant species) and season (June and
Sept, September) on potassium (AcK) and phosphate (AcP) solubilization, as well as siderophore
(AcFe) production activities of the Pseudomonas strains. Significant differences (p <0.05) according to
ANOVA and Tukey’s HSD test are indicated by different letters.
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4. Discussion

While soil moisture and plant species distribution affect the structure and function of
bacterial communities, the respective and interacting impacts on specific genera with great
importance for plant nutrient acquisition have not been determined. The present study
shows that the abundance, phylogenetic composition and traits of the soil Pseudomonas com-
munity are affected by drought periods and differences in plant community composition,
and that these changes are affected by season.

4.1. Phylogenetic Identity of Pseudomonads

Pseudomonads were grouped into 14 clusters, and each represented distinct species
of the genus. According to our first hypothesis stating that frequently isolated generalists
occur in the Pseudomonas community, clusters 1–5 represented species with occurrence in
all or most treatments, and clusters 6–14 represented less abundant taxa. The functional po-
tential of these rare strains in culture collection should not be underestimated. For instance,
the two strains of cluster 11 had the highest identity cover with Pseudomonas chlororaphis
16S rDNA and were only isolated from one plot of the experiment. Bloemberg and Lugten-
berg [39] categorized strains of this species as efficient root colonizers and producers of
antifungal substances such as phenazine-1-carboxamide (PCN), cyanide, chitinases and
proteases, indicating that cluster 11 strains should be tested against plant pathogens.
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The most abundant clusters (cluster 1–5) included generalists such as P. koreensis
(166 isolates) and P. putida (85 strains), which both exert plant growth-promoting activities.
In a recent study, the interacting effects of potassium-solubilizing P. koreensis and phosphate-
solubilizing P. putida, among others, as a bacterial fertilizer could improve the performance
of basil under water limiting conditions [40]. P. koreensis has been characterized from
agricultural soil [41]. Many strains of this species express plant growth-promoting activities,
such as P and K solubilization, as well as siderophore and IAA production [4,42]. P. putida is
a widely studied species with a highly versatile metabolism, that solubilizes K and P [43,44],
and produces siderophores [45]. Mazzola and Gu [46] reported that wheat cropping of
apple orchard soils led to an increase in the proportion of P. putida strains, but in our work,
we did not find any PCC-dependent distribution of the P. putida.

4.2. Effects of the Experimental Treatments on Functional Properties of the
Pseudomonas Community

Some studies have indicated that the soil microbial populations in a grassland ecosys-
tem are resilient to climatic extremes [47–49]. This suggests the presence of microorganisms
adapted to regular, seasonal fluctuations in temperature and precipitation. According
to this suggestion, we observed an effect of season on K-solubilizing activities, as well
as a moisture-related activity shift in the Pseudomonas community resulting in a more
active phosphate-solubilizing population. Drought decreases P availability to plants and
microorganisms [50], suggesting that the increased potential for P solubilization by the
pseudomonads may be important for P availability. The suggestion that biological P miner-
alization is beneficial for plant growth is supported by the work of Marasco et al. [25], who
presented evidence that the recruitment of P-solubilizing bacteria by root systems is an
important factor for plant survival in a desert ecosystem. In contrast, the siderophore pro-
duction potential of the strains decreased during drought treatments in all PCC types. Iron
acquisition is necessary for bacterial growth [51], and since the synthesis of siderophores
is energy-intensive [52], it is under the control of available iron. When the availability of
iron is low in dry soils, one would expect an increase in siderophore production potential
by the bacteria from roofed plots. As such, siderophore-producing Azotobacter strains in-
creased iron concentrations in maize leaves after inoculation and when exerted to drought
conditions [53]. Co-inoculation of Bacillus amyloliquefaciens NBRISN13 and Pseudomonas
putida NBRIRA with multiple beneficial traits, e.g., mineral solubilization and siderophore
production, ameliorated drought stress response in chickpea [54], whereby specific mech-
anisms could not be fully resolved. In contrast, our data indicate that the Pseudomonas
community may be iron limited in dry soil due to reduced siderophore production.

In this dataset, modified plant community composition was clearly a less impacting
factor than soil moisture structuring the Pseudomonas population. In accordance with our
observations, Latour et al. [55] revealed that both the host plant and the soil type affected
the Pseudomonas community profile. Contrary to that, Schreiter et al. [56] investigated
specific traits of Pseudomonas sp. RU47 in a pot experiment, and found that functionality
was not affected by either plant species or soil type at all. However, our third hypothesis,
stating that the negative impacts of drought on Pseudomonas community might be mitigated
in SW plant community composition plots, could not be confirmed, as we did not find an
interacting effect of drought and SW. Furthermore, the K- and P-solubilizing activity was
strongest in strains from the endemic NE plant communities. This result may be based on
either the different litter or rhizodeposit quality of NE and SW plant communities [57,58],
and suggests better adaptation of the K- and P-solubilizing bacteria to endemic NE plant
communities than SW communities.

4.3. Links between Phylogeny and Function

Partial agreement between 16S rRNA cluster distribution and metabolic properties of
the corresponding strains suggests that the ability to solubilize P or to produce siderophores
for iron acquisition can, in part, be predicted from Pseudomonas phylogeny. In general, such
correspondence has been suggested for such genetically simple traits and taxonomic posi-
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tion of bacteria [59]. When Latour et al. [55] investigated plant root-associated Pseudomonas
populations, the phenotypic clustering of isolates, based on the growth on different car-
bon sources, correlated well with genotype patterns. By contrast, no clear relationship
between the distribution of the metabolic types and the distribution of Pseudomonas species
was found by Clays-Josserand et al. [60]. The 16S phylogeny and the metabolic property
datasets were also not in agreement in a collection of pseudomonads from alpine soils, an
environment that is characterized by dramatic seasonal shifts in physical and biochemical
properties, and a heterogeneous resource distribution [61]. We assume that the level of
diversity–function relationships of pseudomonads depends on the function in question,
and may be influenced by environmental parameters.

In this report and in accordance with our assumptions in hypothesis two, the relative
abundances of the more closely related clusters 1 and 5 decreased, as well as those of
2 and 4 increased under drought conditions compared to control plots. Interestingly, these
combinations showed a complementary behavior at the two different sampling time points.
As such, the fact that each cluster was either dominant during June (cluster 4 and 5) or
September sampling (cluster 1 and 2) suggests seasonal variation among the Pseudomonas
taxa. Seasonal differences may be associated with changes in the quantity and quality
of organic carbon available from plant litter inputs or root exudation [62,63], but also
with responses to temperature- and precipitation-induced changes in soil edaphic and
plant phenotypic properties [64]. Recently, we investigated the potential of cultivable
bacterial species for phosphate solubilization in the rhizosphere of winter wheat. Wheat
stem elongation stage was associated with a high abundance of Pseudomonas, but also at
the grain filling stage with Phyllobacterium [65]. Since the members of the clusters 1 and 2
also responded to PCC, both plant-derived compounds and changes in soil properties and
temperature may play out in the differential seasonal distribution of this group.

5. Conclusions

We linked the structural and functional response of the soil Pseudomonas community
to two drivers of global change: prolonged drought periods in the growing season and
climate change-affected plant community structure. Our work demonstrated the negative
impact of drought on the number and activity of siderophore producers, but increased
activity for inorganic phosphate solubilization, which is an important trait for plant growth
promotion. Contrary to our assumptions, SW plant communities did not mitigate effects
of drought on bacterial activity levels. This might indicate a strong adaptation of the
Pseudomonas community to the endemic NE plant communities to promote plant growth
under drought conditions. However, in a next step, individual strains or consortia should
be tested in a pot experiment or under field conditions to prove the observed patterns and
possible plant growth promotion.
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bacterial isolates.
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