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Abstract

The non-integrin laminin receptor, here designated the 37-kDa/67-kDa laminin receptor (LRP/LR), is involved in many
physiologically relevant processes, as well as numerous pathological conditions. The overexpression of LRP/LR on various
cancerous cell lines plays critical roles in tumour metastasis and angiogenesis. This study investigated whether LRP/LR is
implicated in the maintenance of cellular viability in lung and cervical cancer cell lines. Here we show a significant reduction
in cellular viability in the aforementioned cell lines as a result of the siRNA-mediated downregulation of LRP. This reduction
in cellular viability is due to increased apoptotic processes, reflected by the loss of nuclear integrity and the significant
increase in the activity of caspase-3. These results indicate that LRP/LR is involved in the maintenance of cellular viability in
tumorigenic lung and cervix uteri cells through the blockage of apoptosis. Knockdown of LRP/LR by siRNA might represent
an alternative therapeutic strategy for the treatment of lung and cervical cancer.

Citation: Moodley K, Weiss SFT (2013) Downregulation of the Non-Integrin Laminin Receptor Reduces Cellular Viability by Inducing Apoptosis in Lung and
Cervical Cancer Cells. PLoS ONE 8(3): e57409. doi:10.1371/journal.pone.0057409

Editor: Elad Katz, AMS Biotechnology, United Kingdom

Received November 21, 2012; Accepted January 21, 2013; Published March 5, 2013

Copyright: � 2013 Moodley, Weiss. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: NRF, South Africa. MRC, South Africa. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: stefan.weiss@wits.ac.za

Introduction

Laminins belong to a large family of extracellular matrix

proteins that are involved in a number of biologically significant

processes, including cell differentiation, migration, adhesion,

growth and signalling [1]. The effects of laminins are often

mediated through their interaction with integrin and non-integrin

laminin-binding proteins, which function as receptors and link

laminin in the extracellular matrix to intracellular signalling

cascades [1].

A major laminin binding partner is a multifunctional protein,

designated here as the 37-kDa/67-kDa laminin receptor (LRP/

LR). The 67-kDa laminin receptor is formed from the 37-kDa

laminin receptor precursor [2,3]. The exact mechanism of this

conversion is currently still elusive, however, some studies have

suggested that the unglycosylated 37-kDa form becomes acylated

at Ser2 through the action of fatty acids; and this acylation is

a critical step in the conversion of the 37-kDa form to the 67-kDa

form [4,5].

LRP/LR is a non-integrin cell surface receptor exhibiting a high

affinity to laminin-1 [6], and has been found to localize in the

cytoplasm [7,8,9], on the cell surface [10,11], in the perinuclear

compartment [7,12,13] and in the nucleus [12,13]. In each of

these locations, LRP/LR is involved in numerous physiological

processes including protein synthesis [8], the maturation of the

40S ribosomal subunit [8], acting as a receptor for extracellular

matrix components e.g. carbohydrates and elastin [14], interac-

tions with cellular prion protein [13,15] and associations with the

histones [12].

In addition to its numerous physiological roles, LRP has been

implicated in a number of pathological processes - it serves as

a receptor for infectious prions [16], certain bacteria [17], and

various viruses [18,19,20]. Most notably, a number of cancer

types, such as gastric [21], colon [22], colorectal [23], cervical

[24], breast [25], lung [26], ovarian [27], pancreatic [28] and

prostate [29] cancers, reveal an overexpression of the 67-kDa LR

on their cell surface, the use of anti-LRP/LR specific antibodies

significantly reduced the adhesion and invasion of cancer cells

in vitro [6,30], key components of metastasis. A strong correlation

has also been established between LRP/LR and cancer angio-

genesis, with expression of this protein correlating to increased

tumour angiogenesis [31]; we recently discovered that that the

LRP/LR specific antibody, W3, blocked angiogenesis [32].

Since the targeting of LRP/LR on cancerous cells has been

proven to be successful with respect to the reduction of tumour

metastasis [6,30], the role of this receptor on cancer cell viability

and survival has become a topic of great interest. This study,

therefore, aimed to assess the effect of the siRNA-mediated

knockdown of LRP on the viability and survival of lung and

cervical cancer cells and to determine the possible the mechanistic

approaches of the observed effects. Lung and cervical cancer cells

were chosen for this study as they represent the top two diagnosed

cancer types in Southern African men and women respectively.

We have shown in this study that the siRNA-mediated knockdown

of LRP/LR in A549 and HeLa cells caused a significant reduction

in the viability of these cells. Additionally, it was shown that this

reduction in cellular viability was as a consequence of the cells

undergoing apoptosis.
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Materials and Methods

Cell Culture and Conditions
A549 and HeLa cells were obtained from ATCC, cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% Fetal Calf Serum (FCS) and 1% penicillin/streptomycin and

maintained in a humidified incubator at 37uC with 95% air and

5% CO2.

Flow Cytometry
Flow cytometry was performed to determine the cell surface

levels of LRP on A549 and HeLa cells. Briefly, cells were

detached, pelleted and fixed in 4% paraformaldehyde. Cells were

then incubated in 30 mg/ml of the primary LRP-specific antibody

IgG1-iS18 in EpicsTM Sheath Fluid for 1 h. Cells were then

washed in EpicsTM Sheath Fluid and incubated in 30 mg/ml goat

anti-rabbit IgG human ads-FITC secondary antibody (Beckman

Coulter) in EpicsTM Sheath Fluid. Subsequently the cells were

washed in EpicsTM Sheath Fluid and analysed.

Western Blotting
Western blotting was used to determine the total and down-

regulated protein levels of LRP (b-actin used as a loading control)

post-transfection with siRNA-LAMR1. Briefly, cells were lysed,

protein levels quantified and 5 mg of crude cell lysate resolved on

a 12% polyacrylamide gel. The proteins were subsequently

transferred to a nitrocellulose membrane by semi-dry electro-

blotting for 45 min. The membrane was blocked in 3% BSA,

incubated in a 1:10 000 solution of the LRP-specific primary

antibody IgG1-iS18 in 3% BSA in PBS-Tween for 1 h at 4uC with

shaking. The membrane was subsequently washed in PBS-Tween,

further incubated in a 1:10 000 solution of anti-human POD

secondary antibody in 3% BSA in PBS-Tween for 1 h at 25uC
with shaking, washed as before and analysed.

siRNA-mediated Downregulation of LRP
A549 and HeLa cells were transfected for LRP knockdown with

siRNA purchased from Dharmacon, Cat # J-013303-08, accord-

ing to manufacturers instruction using DharmaFECTH 1 trans-

fection reagent. Control siRNA used – Cat # D-001810-01-05.

MTT Assay
0.66104 A549 and 36103 HeLa cells were seeded in the wells of

a 96 well plate. Cells were then transfected with siRNA-scr or

siRNA-LAMR1, as described, and allowed to incubate in

a humidified incubator at 37uC with 95% air and 5% CO2 for

72 h. 10 mg of MTT dissolved in PBS was then added to each well

an allowed to incubate for 2 h as before. The media was discarded

from each well and the purple formazan crystals dissolved in

200 mL DMSO. The absorbance of each well was measured at

570 nm using an ELISA plate reader.

Immunofluorescence Microscopy
46105 A549 and 3.56105 HeLa cells were seeded onto

coverslips in the wells of a 6 well plate. Cells were transfected

with siRNA-scr and siRNA-LAMR1, as described, and incubated

in a humidified incubator at 37uC with 95% air and 5% CO2 for

72 h. The coverslips were removed and cells fixed in 1%

paraformaldehyde, stained with Hoechst 33342 (1:10 000 in

PBS) and analysed using fluorescence microscopy.

Caspase-3 Activation Assay
46105 A549 and 3.56105 HeLa cells were seeded into the wells

of a 6 well plate. Cells were transfected with siRNA-scr and

siRNA-LAMR1, as described, and incubated in a humidified

incubator at 37uC with 95% air and 5% CO2 for 72 h. The

activity of caspase-3 was analysed using the Caspase-3 Assay Kit

(Sigma-Aldrich) according to the manufacturers instruction.

Statistical Evaluation
Data was statistically analyzed with a Dunnett’s test using

GraphPad InStat. Results were considered statistically significant

when the p-value was less than 0.05.

Results

Lung and Cervical Cancer Cells Display High Cell Surface
Levels of LRP/LR and Total Levels of LRP
Since the overexpression of LRP has been observed in

numerous cancerous cell lines, the cell surface levels of LRP/LR

and total levels of LRP on A549 and HeLa cells was determined

by flow cytometric analysis and western blotting respectively

(Figure 1). Flow cytometry revealed that 83% and 80% of A549

and HeLa cells, respectively, expressed LRP/LR on their cell

surface (Figure 1A and 1B), these values are high in comparison to

the LRP/LR cell surface level (57%) of the non-tumorigenic cell

line, NIH 3T3, (data not shown) and confirms the results obtained

in previous studies [30]. LRP was found to be expressed in both

cell lines by western blotting, additionally, subsequent densitomet-

ric analysis of the obtained western blot signals revealed that A549

and HeLa cells display similar levels of this protein (Figure 1C).

Determination of the siRNA-mediated Downregulation of
LRP Expression in Lung and Cervical Cancer Cells
The level of LRP expression in A549 and HeLa cells post-

transfection with siRNA-LAMR1 was determined using western

blotting and quantified by densitometry (Figure 2). Densitometric

analysis of the obtained western blot signals revealed that A549

(Figure 2A) and HeLa (Figure 2B) cells transfected with siRNA-

LAMR1 expressed 80% and 60% less LRP, respectively,

compared to non-transfected controls which were set to 100%.

The siRNA-mediated Knockdown of LRP Expression
Causes a Significant Reduction in the Viability of Lung
and Cervical Cancer Cells
The effect of the siRNA-mediated downregulation of LRP

protein expression on cellular viability in A549 and HeLa cells was

determined using an MTT assay. Cells were incubated with 8 mM

PCA (a compound known to decrease cellular viability through the

induction of apoptosis [33]) as a positive control and transfected

with a non-targeting siRNA (siRNA-scr) as a negative control.

8 mM PCA and siRNA-LAMR1 values were compared to siRNA-

scr values, which had been set to 100%. The results from this assay

indicate that the significant (* p,0.05, ** p,0.01) decrease in the

viability of A549 and HeLa cells (13% and 18%, respectively) is as

a result of the reduced expression of this protein (Figure 3).

The siRNA-mediated Downregulation of LRP Expression
Causes a Loss in Nuclear Morphology in Lung and
Cervical Cancer Cells
To investigate a possible mechanism for the observed decease in

cellular viability in response to LRP knockdown in A549 and

HeLa cells, the nuclear morphology of the aforementioned cells

was assessed. A549 and HeLa cells were transfected with siRNA-

LRP/LR Mediates Cell Viability
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LAMR1, incubated with 8 mM PCA (a known apoptosis inducer

[33]) as a positive control and transfected with siRNA-scr (negative

control). The cells were then stained with the fluorescent nuclear

dye Hoechst 33324 and viewed on an immunofluorescence

microscope. The nuclear images obtained for siRNA-LAMR1

were compared to siRNA-scr – the nuclei appear constricted and

definite loss of nuclear morphology and integrity is observed

(Figure 4–white arrows). Additionally, the percentage of cells

displaying morphological changes was determined by counting the

number of cells with and without nuclear morphological changes

in 3 micrographs. 56% of A549 cells and 91% of HeLa cells

exhibited nuclear morphological changes in response to siRNA-

LAMR1 treatment (7% and 8% of siRNA-scr treated A549 cells

and HeLa cells, respectively, showed nuclear morphological

changes).

siRNA-mediated Knockdown of LRP Caused a Significant
Increase in Caspase-3 Activity in Lung and Cervical
Cancer Cells
The activity of the apoptosis-associated effector protein,

caspase-3, in response to the siRNA-mediated downregulation of

LRP expression in A549 and HeLa cells was assessed using

a Caspase-3 activation assay. A549 and HeLa cells were

transfected with siRNA-LAMR1, incubated with 8 mM PCA

(an apoptosis inducer [33] - positive control) and transfected with

siRNA-scr (negative control). The activity of caspase-3 from cells

transfected with siRNA-LAMR1 was compared to those trans-

fected with siRNA-scr (which had been set to 100%); these results

reveal a significant (** p,0.01, *** p,0.001) increase in caspase-3

activity in A549 and HeLa cells transfected with siRNA-LAMR1

(9% and 83%, respectively) (Figure 5).

Discussion

The role of the laminin receptor in cancer progression has been

a topic of great interest for many years and has therefore been

extensively investigated. Numerous studies have implicated cell

surface LRP/LR in the progression of cancer – this receptor is

overexpressed on the surface of a number of cancerous cell lines,

affording them the ability to metastasize and invade surrounding

tissues [6,30]. Given that LRP/LR is involved in a number of

cellular processes and is found in numerous cellular locations (the

cell surface, the cytoplasm, the perinuclear compartment and the

nucleus), additional roles of this receptor in cancer progression

have been suggested.

To confirm the expression of LRP/LR in A549 and HeLa cells,

the cell surface and total levels of this protein was investigated

using flow cytometry and western blotting, respectively (Figure 1).

Figure 1. Determination of cell surface LRP/LR and total LRP levels on A549 and HeLa cells. A) 83% of A549 and B) 80% of HeLa cells
displayed LRP/LR on their surface (left and right peaks are representative of non-labelled cells and cells incubated initially with the anti-LRP IgG1-iS18
antibody and subsequently with the goat anti-rabbit IgG human ads-FITC secondary antibody, respectively). C) A549 (lanes 1–3) and HeLa (lanes 4–6)
cells express LRP and densitometric analysis revealed non-significant (p.0.05) differences in total LRP levels between the two cell lines.
doi:10.1371/journal.pone.0057409.g001
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PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e57409



The tumorigenic lung and cervical cancer cells both displayed

LRP/LR on their surface, and the level of this protein on the

surface of these cells was found to be higher than the level

observed in the non-tumorigenic cell line NIH 3T3 (mouse

embryonic fibroblast). This finding confirms previous research,

and suggests a role for this receptor in the progression of cells from

being normal to becoming cancerous. Additionally, the tumori-

genic lung and cervical cancer cells both express LRP internally,

and the difference in the internal level of this protein in these cell

lines is insignificant.

Figure 2. siRNA-mediated downregulation of LRP expression in A549 and HeLa cells. The expression level of LRP in A549 and HeLa cells
was investigated 72 h post-transfection with siRNA-LAMR1. Densitometric analysis of western blot signals revealed a significant (** p,0.01) 83% and
60% reduction in LRP protein expression in A) A549 and B) HeLa cells, respectively, compared to control non-transfected cells (set to 100%).
doi:10.1371/journal.pone.0057409.g002

Figure 3. The effect of siRNA-mediated downregulation of LRP on cell survival in A549 and HeLa cells. The viability of A549 and HeLa
cells was analyzed 72 h post-transfection using an MTT assay. A) A549 and B) HeLa cells transfected with siRNA-LAMR1 revealed a significant (*
p,0.05, ** p,0.01) 13% and 18% decrease in cellular viability, respectively, compared to siRNA-scr which had been set to 100% (8 mM PCA was used
as positive control).
doi:10.1371/journal.pone.0057409.g003
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To investigate the role of LRP/LR in cancer related/cytotoxic

processes, its expression was significantly decreased in the

tumorigenic lung and cervical cancer cells. siRNA directed against

LRP mRNA was transfected into the aforementioned cells and the

percentage of LRP downregulation assessed by densitometric

analysis of obtained western blot signals (Figure 2). The level of

LRP expression was reduced by 83% and 60% in A549 and HeLa

cells, respectively, which indicates the efficacy of the siRNA used.

The effect of the knockdown of LRP expression on the viability

of cancerous cells, which is an important characteristic of the

disease, was investigated. LRP downregulation was found to

correlate with a significant reduction in the viability of A549 and

HeLa cells (Figure 3), indicating a crucial role for LRP in this

process. Since the maintenance of cellular viability is imperative

for the propagation of cancerous cells, the suggestion that LRP is

involved in the maintenance of this process further implicates this

protein in the disease.

A reduction in cellular viability was however also noticed

between non-transfected and siRNA-scr samples in HeLa cells

(data not shown) and the DharmaFECTH 1 transfection reagent

was shown to be the causative agent in this decrease (see

supplementary data - Figure S1).

In order to investigate if apoptosis (a form of programmed cell

death) was induced in tumorigenic lung and cervical cancer cells as

Figure 4. The effect of the siRNA-mediated downregulation of LRP on nuclear morphology. 72 h post-transfection, A549 and HeLa cells
were stained with Hoechst 33342 and viewed by immunofluorescence microscopy. Cells transfected with siRNA-LAMR1 exhibit decreased nuclear
integrity - indicated by white arrows (8 mM PCA was used as positive control).
doi:10.1371/journal.pone.0057409.g004

Figure 5. The effect of the siRNA-mediated downregulation of LRP on caspase-3 activity. The activity of the apoptosis-associated protein,
caspase-3, in A549 and HeLa cells was analysed 72 h post-transfection. A) A549 and B) HeLa cells transfected with siRNA-LAMR1 reveal a significant (*
p,0.05, ** p,0.001) 9% and 83% increase in caspase-3 activity, respectively, compared to the siRNA-scr which has been set to 100% (8 mM PCA was
used as positive control).
doi:10.1371/journal.pone.0057409.g005

LRP/LR Mediates Cell Viability
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a consequence of LRP knockdown, and hence being responsible

for the observed reduction in cellular viability, we assessed possible

changes in the nuclear morphology of the cell and the level of

activity of the apoptosis-associated effector protein – caspase-3 (key

processes indicative of apoptosis induction [34,35,36,37,38]). The

presence of apoptotic A549 and HeLa cells post-transfection with

siRNA-LAMR1 were identified by visible disruptions in their

nuclear morphology (Figure 4) as well as by the significant increase

in the activity caspase-3 (Figure 5).

The role of LRP in the maintenance of cellular viability has

been reported in previous studies [7], additionally, the induction of

apoptosis in cancerous cells in response to LRP downregulation

has also been demonstrated [39]. This study has confirmed the

role of LRP in the maintenance of cellular viability as well as the

induction of apoptosis subsequent to the knockdown of this

protein. Further, this study has revealed that the induction of

apoptosis is mediated by both a loss in nuclear integrity and

significantly increased activity of caspase-3 in these cells.

Since the laminin receptor is physiologically functional in the

perinuclear compartment [7,12,13] and the nucleus [12,13], it was

not surprising that the knockdown of this receptor would affect the

integrity of the nucleus. Both the disruption of nuclear morphology

and the increased activity of apoptosis-associated protein, caspase-

3, are indicative of apoptosis, suggesting a pivotal role for LRP/

LR in the blockage of this form of cell death. However,

quantification revealed that 91% of siRNA-LAMR1 treated HeLa

cells but only 56% of siRNA-LAMR1 treated A549 cells revealed

nuclear morphological changes (7% and 8% of siRNA-scr treated

A549 and Hela cells, respectively, revealed nuclear morphological

changes). Since the knockdown of LRP in HeLa cells (60%) was

lower compared to A549 cells (83%) we suggest that LRP/LR

impedes apoptosis to a greater extent in cervical cancer cells

compared to lung cancer cells. Since 83% of HeLa cells but only

9% of A549 cells revealed increased caspase-3 activity following

siRNA-LAMR1 treatment, we further suggest that apoptosis in

lung cancer cells may occur predominantly via caspase-3 in-

dependent mechanisms such as EndoG and/or AIF mediated

processes.

The functions of LRP/LR in cancer propagation are numerous:

increased invasion [6,30], metastasis [6,30] and cellular pro-

liferation [7] as well as decreased cellular viability [7] and

apoptosis [39] are mediated by this protein. Targeting LRP/LR

can therefore be developed as a strategy to hamper the above-

mentioned processes implicated in cancer progression. Addition-

ally, targeting LRP/LR for the possible treatment of these

processes have been achieved in a number of cancerous cell lines.

This therefore suggests that an LRP/LR related therapy could

potentially be utilized for the treatment of numerous distinct

cancers. It must however be stressed that this receptor is involved

in many physiological processes in normal cells, including cell

growth, differentiation, movement and attachment [9,11], and the

knockdown of LRP in these cells would result in undesirable

homeostatic disruptions. The targeting of LRP solely on cancerous

cells is therefore imperative for its use as a therapeutic alternative.

Supporting Information

Figure S1 The effect of siRNA-scr and DharmaFECTH 1
reagent on cellular viability. Cells were incubated with

siRNA-scr, DharmaFECTH 1 reagent or both, and 72 h later,

cellular viability was assessed using an MTT assay. Cells

transfected with siRNA-scr display similar viability, while

DharmaFECTH 1 and siRNA-scr+DharmaFECTH 1 treated cells

display an 8% and 9% decrease in cell viability, respectively,

compared to control cells (incubated for 72 h in DMEM

containing 10% (v/v) FCS).

(TIF)

Acknowledgments

We thank Uwe Reusch, Stefan Knackmuss and Melvyn Little for assistance

producing IgG1-iS18. We thank Dr Clement Penny for assistance with

immunofluorescence microscopy.

Author Contributions

Conceived and designed the experiments: SFTW. Performed the

experiments: KM. Analyzed the data: KM. Wrote the paper: KM.

References

1. Mercurio AM (1995) Laminin receptors: achieving specificity through co-

operation. Trends in cell biology 5: 419–423.

2. Liotta LA, Horan Hand P, Rao CN, Bryant G, Barsky SH, et al. (1985)

Monoclonal antibodies to the human laminin receptor recognize structurally

distinct sites. Experimental cell research 156: 117–126.

3. Castronovo V, Claysmith AP, Barker KT, Cioce V, Krutzsch HC, et al. (1991)

Biosynthesis of the 67 kDa high affinity laminin receptor. Biochemical and

biophysical research communications 177: 177–183.

4. Landowski TH, Dratz EA, Starkey JR (1995) Studies of the structure of the

metastasis-associated 67 kDa laminin binding protein: fatty acid acylation and

evidence supporting dimerization of the 32 kDa gene product to form the

mature protein. Biochemistry 34: 11276–11287.

5. Buto S, Tagliabue E, Ardini E, Magnifico A, Ghirelli C, et al. (1998) Formation

of the 67-kDa laminin receptor by acylation of the precursor. Journal of cellular

biochemistry 69: 244–251.

6. Zuber C, Knackmuss S, Zemora G, Reusch U, Vlasova E, et al. (2008) Invasion

of tumorigenic HT1080 cells is impeded by blocking or downregulating the 37-

kDa/67-kDa laminin receptor. Journal of molecular biology 378: 530–539.

7. Scheiman J, Jamieson KV, Ziello J, Tseng JC, Meruelo D (2010) Extraribosomal

functions associated with the C terminus of the 37/67 kDa laminin receptor are

required for maintaining cell viability. Cell death & disease 1: e42.

8. Auth D, Brawerman G (1992) A 33-kDa polypeptide with homology to the

laminin receptor: component of translation machinery. Proceedings of the

National Academy of Sciences of the United States of America 89: 4368–4372.

9. Omar A, Jovanovic K, Da Costa Dias B, Gonsalves D, Moodley K, et al. (2011)

Patented biological approaches for the therapeutic modulation of the 37 kDa/

67 kDa laminin receptor. Expert opinion on therapeutic patents 21: 35–53.

10. Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, et al. (2001) The 37-

kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular

prion protein. The EMBO journal 20: 5863–5875.

11. Mbazima V, Da Costa Dias B, Omar A, Jovanovic K, Weiss SF (2010)

Interactions between PrP(c) and other ligands with the 37-kDa/67-kDa laminin

receptor. Frontiers in bioscience : a journal and virtual library 15: 1150–1163.

12. Sato M, Kinoshita K, Kaneda Y, Saeki Y, Iwamatsu A, et al. (1996) Analysis of

nuclear localization of laminin binding protein precursor p40 (LBP/p40).

Biochemical and biophysical research communications 229: 896–901.

13. Nikles D, Vana K, Gauczynski S, Knetsch H, Ludewigs H, et al. (2008)

Subcellular localization of prion proteins and the 37 kDa/67 kDa laminin

receptor fused to fluorescent proteins. Biochimica et biophysica acta 1782: 335–

340.

14. Mecham RP, Hinek A, Griffin GL, Senior RM, Liotta LA (1989) The elastin

receptor shows structural and functional similarities to the 67-kDa tumor cell

laminin receptor. The Journal of biological chemistry 264: 16652–16657.

15. Rieger R, Edenhofer F, Lasmezas CI, Weiss S (1997) The human 37-kDa

laminin receptor precursor interacts with the prion protein in eukaryotic cells.

Nature medicine 3: 1383–1388.

16. Gauczynski S, Nikles D, El-Gogo S, Papy-Garcia D, Rey C, et al. (2006) The 37-

kDa/67-kDa laminin receptor acts as a receptor for infectious prions and is

inhibited by polysulfated glycanes. The Journal of infectious diseases 194: 702–

709.

17. Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, et al. (2009)

Laminin receptor initiates bacterial contact with the blood brain barrier in

experimental meningitis models. The Journal of clinical investigation 119: 1638–

1646.

18. Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH (1992) High-affinity laminin

receptor is a receptor for Sindbis virus in mammalian cells. Journal of virology

66: 4992–5001.

19. Thepparit C, Smith DR (2004) Serotype-specific entry of dengue virus into liver

cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin

LRP/LR Mediates Cell Viability

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e57409



receptor as a dengue virus serotype 1 receptor. Journal of virology 78: 12647–

12656.
20. Akache B, Grimm D, Pandey K, Yant SR, Xu H, et al. (2006) The 37/67-

kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8,

2, 3, and 9. Journal of virology 80: 9831–9836.
21. de Manzoni G, Guglielmi A, Verlato G, Tomezzoli A, Pelosi G, et al. (1998)

Prognostic significance of 67-kDa laminin receptor expression in advanced
gastric cancer. Oncology 55: 456–460.

22. Cioce V, Castronovo V, Shmookler BM, Garbisa S, Grigioni WF, et al. (1991)

Increased expression of the laminin receptor in human colon cancer. Journal of
the National Cancer Institute 83: 29–36.

23. Sanjuan X, Fernandez PL, Miquel R, Munoz J, Castronovo V, et al. (1996)
Overexpression of the 67-kD laminin receptor correlates with tumour

progression in human colorectal carcinoma. The Journal of pathology 179:
376–380.

24. al-Saleh W, Delvenne P, van den Brule FA, Menard S, Boniver J, et al. (1997)

Expression of the 67 KD laminin receptor in human cervical preneoplastic and
neoplastic squamous epithelial lesions: an immunohistochemical study. The

Journal of pathology 181: 287–293.
25. Nadji M, Nassiri M, Fresno M, Terzian E, Morales AR (1999) Laminin receptor

in lymph node negative breast carcinoma. Cancer 85: 432–436.

26. Fontanini G, Vignati S, Chine S, Lucchi M, Mussi A, et al. (1997) 67-Kilodalton
laminin receptor expression correlates with worse prognostic indicators in non-

small cell lung carcinomas. Clinical cancer research : an official journal of the
American Association for Cancer Research 3: 227–231.

27. van den Brule FA, Berchuck A, Bast RC, Liu FT, Gillet C, et al. (1994)
Differential expression of the 67-kD laminin receptor and 31-kD human

laminin-binding protein in human ovarian carcinomas. European journal of

cancer 30A: 1096–1099.
28. Pelosi G, Pasini F, Bresaola E, Bogina G, Pederzoli P, et al. (1997) High-affinity

monomeric 67-kD laminin receptors and prognosis in pancreatic endocrine
tumours. The Journal of pathology 183: 62–69.

29. Waltregny D, de Leval L, Menard S, de Leval J, Castronovo V (1997)

Independent prognostic value of the 67-kd laminin receptor in human prostate
cancer. Journal of the National Cancer Institute 89: 1224–1227.

30. Omar A, Reusch U, Knackmuss S, Little M, Weiss SF (2012) Anti-LRP/LR-

specific antibody IgG1-iS18 significantly reduces adhesion and invasion of
metastatic lung, cervix, colon and prostate cancer cells. Journal of molecular

biology 419: 102–109.
31. McKenna DJ, Simpson DA, Feeney S, Gardiner TA, Boyle C, et al. (2001)

Expression of the 67 kDa laminin receptor (67LR) during retinal development:

correlations with angiogenesis. Experimental eye research 73: 81–92.
32. Khusal R, Da Costa Dias B, Moodley K, Penny C, Reusch U, et al. (2013) In

vitro Inhibition of Angiogenesis by antibodies directed against the 37 kDa/
67 kDa Laminin Receptor. PLOS One in press.

33. Yin MC, Lin CC, Wu HC, Tsao SM, Hsu CK (2009) Apoptotic effects of
protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer

cells: potential mechanisms of action. Journal of agricultural and food chemistry

57: 6468–6473.
34. Renvoize C, Biola A, Pallardy M, Breard J (1998) Apoptosis: identification of

dying cells. Cell biology and toxicology 14: 111–120.
35. Robertson JD, Orrenius S, Zhivotovsky B (2000) Review: nuclear events in

apoptosis. Journal of structural biology 129: 346–358.

36. Hacker G (2000) The morphology of apoptosis. Cell and tissue research 301: 5–
17.

37. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell
death and differentiation 6: 99–104.

38. Abu-Qare AW, Abou-Donia MB (2001) Biomarkers of apoptosis: release of
cytochrome c, activation of caspase-3, induction of 8-hydroxy-29-deoxyguano-

sine, increased 3-nitrotyrosine, and alteration of p53 gene. Journal of toxicology

and environmental health Part B, Critical reviews 4: 313–332.
39. Susantad T, Smith DR (2008) siRNA-mediated silencing of the 37/67-kDa high

affinity laminin receptor in Hep3B cells induces apoptosis. Cellular & molecular
biology letters 13: 452–464.

LRP/LR Mediates Cell Viability

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e57409


