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Abstract 9 

Neurons in primary visual cortex (area V1) adapt in different degrees to the average contrast of the 10 
environment, suggesting that the representation of visual stimuli may interact with the state of 11 
cortical gain control in complex ways. To investigate this possibility, we measured and analyzed the 12 
responses of neural populations to visual stimuli as a function of contrast in different environments, 13 
each characterized by a unique distribution of contrast. Our findings reveal that, for a given stimulus, 14 
the population response can be described by a vector function 𝐫(𝑔𝑒𝑐), where the gain 𝑔𝑒  is a 15 
decreasing function of the mean contrast of the environment. Thus, gain control can be viewed as a 16 
reparameterization of a population response curve, which is invariant across environments. Different 17 
stimuli are mapped to distinct curves, all originating from a common origin, corresponding to a zero-18 
contrast response. Altogether, our findings provide a straightforward, geometric interpretation of 19 
contrast gain control at the population level and show that changes in gain are well coordinated 20 
among members of a neural population. 21 

Introduction 22 

Neurons in primary visual cortex respond to changes in the mean contrast of the environment by 23 
rigidly shifting their contrast-response function along the log-contrast axis (Ohzawa et al. 1982). The 24 
functional goal of such adaptation is to align the region of maximal sensitivity with the geometric 25 
mean of contrasts observed in the recent stimulus history and maximize information transmission 26 
(Laughlin 1981). To illustrate this effect, consider 𝑟(𝑐) to be the contrast-response function of a 27 
neuron measured in an environment with a specified average contrast (Fig 1A, yellow curve, vertical 28 
arrow shows mean contrast). The contrast-response curve in a new environment with a higher, mean 29 
contrast would be shifted to the right (Fig 1A, orange curve). The transformed response can be 30 
described by 𝑟(𝑔𝑐), where 𝑔 < 1 represents a reduction in contrast gain (Geisler and Albrecht 1992; 31 
Heeger 1992; Ohzawa et al. 1982).  32 

We hypothesize that such relationship generalizes to neural populations. Namely, we postulate the 33 
response of a population under contrast gain control is 𝐫(𝑔𝑒𝑐), where 𝐫 is a vector function, 𝑐 is the 34 
stimulus contrast, and 𝑔𝑒  is a gain factor that decreases monotonically with the mean contrast of the 35 
environment. Mathematically, this represents a linear reparameterization of a single contrast-36 
response curve. It is helpful to depict the working of reparameterization graphically. Suppose the 37 
hypothesis holds and that we measure the responses of the population at three contrast levels (Fig 38 
1B, black dots). These points will lie on the contrast response curve of the population under the 39 
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current environment, 𝐫(𝑐) (Fig 1B, black curve). Imagine we proceed to switch the environment to 40 
one with a higher mean contrast. Under reparameterization the responses of the population at the 41 
same contrast levels will shift along the curve towards the origin (Fig 1B, red arrows and dots). From 42 
a coding perspective, the advantage of reparameterization is that a visual stimulus generates a single 43 
response curve which remains invariant between environments. Assuming different stimuli generate 44 
different curves, the identification of stimulus by downstream areas can be reduced to the question 45 
of whether a given population response lies on a stimulus curve. Implementing reparameterization 46 
requires the neurons in the population to adjust their gains by the same factor. If neurons respond to 47 
a change in the environment by modifying their gains in very different amounts, the responses will 48 
move to move to a different response curve, entangling the representation of visual stimuli with the 49 
state of cortical gain control (Fig 1B, blue arrows and dots). In this scenario, the contrast response 50 
for a given stimulus depends on the state of gain control, complicating the decoding of visual 51 
information by downstream visual areas. Finally, it may be possible for changes in the mean contrast 52 
of the environment to induce modulation in response gain (Albrecht and Hamilton 1982; Ferguson 53 
and Cardin 2020; Hamilton et al. 1989; Sclar et al. 1989). In this case, the transformed response is 54 
given by 𝑔𝑒𝐫(𝑐), with 𝑔𝑒  representing, once again, a gain factor that decreases with the mean contrast 55 
of the environment. The signature of response gain is that while the magnitude of a population vector 56 
is changes between environments, its direction remains constant (Fig 1B, green arrows and dots). 57 
Such a coding strategy is appropriate to generate an invariant representation of stimulus contrast, as 58 
one can then identify the direction of population vectors with the absolute contrast of a stimulus 59 
independent of the environment.  60 

At first glance, the reparameterization hypothesis appears to be on shaky grounds, as V1 neurons 61 
exhibit considerable diversity when studied individually – some cells show robust changes in gain as 62 
a function of mean contrast, while others do adapt at all (Ohzawa et al. 1982, 1985). However, in 63 
these studies, responses were measured independently at each neuron’s optimal orientation, 64 
spatial and temporal frequencies. The choice of stimulus parameters could have affected a 65 
normalization signal, such as average cortical activity, which in turn controls contrast gain (Carandini 66 
et al. 1997; Carandini and Heeger 2011; Heeger 1992; Schwartz and Simoncelli 2001). Thus, using 67 
stimulus parameters that are average for the population could generate a larger normalization signal 68 
than using extreme values. Thus, the diversity of stimulus parameters could be partly responsible for 69 
the mixture of gain changes observed in prior, single cell data. Instead, to address the 70 
reparameterization hypothesis directly and to circumvent problems in the interpretation of past data, 71 
we set out to measure and analyze the contrast response of a neural population to a fixed visual 72 
stimulus under different experimental conditions or “environments”, each associated with a unique 73 
distribution of contrast values with different means (Fig 1C,D).  74 

To anticipate the results, we find that the population response to a visual stimulus is well captured 75 
by a single, vector function 𝐫(𝑔𝑒𝑐). Moreover, we find that 𝑔𝑒 ~ 1/𝑐𝑒̅

 𝜖 (with 𝜖 > 0), where 𝑐𝑒̅  is the 76 
geometric mean of the contrast in the visual environment. Thus, gain control at the population level 77 
admits a simple description as a linear reparameterization of a contrast-response curve. A visual 78 
pattern can be identified with its unique contrast-response curve 𝐫(⋅), which is invariant across 79 
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environments, thereby facilitating downstream decoding. Different visual patterns generate distinct 80 
curves, all originating from a common origin representing a zero-contrast response. These findings 81 
indicate that contrast gain must be reasonably coordinated across all cells in a cortical population. 82 
Our results offer a simple, geometric interpretation of contrast gain control at the level of neural 83 
populations.  84 

 85 

 
 
Figure 1. Gain control, hypothesis and experimental design. A. Early studies of contrast gain control measured the response of a single 
neuron in environments composed of five different contrast levels equally spaced along the log contrast axis (Ohzawa et al. 1985). 
Yellow and orange dots represent the responses obtained in two different environments, and the geometric mean within each 
environment is indicated by the vertical arrows. Here and in the sequel, logarithms of contrast values are expressed in base 10, with 0 
anchored at 100%. The result of such an experiment is that the contrast response curves are shifted horizontally such that the 
geometric mean of the contrast aligns with the center of the curve. Thus, if 𝑟(𝑐) expresses the responses in the yellow environment, 
then the responses in the orange environment with a higher mean contrast will be shifted to the right and can be described by 𝑟(𝑔 𝑐). 
The horizontal shift between the curves is log 𝑔. Perfect adaptation occurs when 𝑔 equals the ratio between the mean contrasts of the 
environments, but partial adaptation is also possible. B. Different scenarios for how gain control could act at the population level. The 
responses of three hypothetical neurons in one environment at three different contrast levels are depicted by solid black dots. The dots 
lie on a curve 𝐫(𝑐). Reparameterization predicts that switching to an environment with higher, mean contrast, would result in the 
responses shifting towards the origin (red arrows/dots). Response gain posits that responses will scale down towards the origin (green 
arrows/dots). The dashed line shows the response will lie along the line joining the origin and the original population response. If 
neurons experience heterogenous changes in contrast gain the points ought to move to different contrast response curve (blue 
arrows/dots). C. Definition of environments. Our experimental design consists of three environments defined by distinct contrast 
distributions on a fixed set of contrast levels covering the range from 5 to 100%. The geometric means of the distributions (vertical 
arrows) differ due to the different frequency of presentation of each contrast level. The contrast levels are the same for all environments 
(as opposed to the design from earlier studies A). We used three distributions corresponding to high (blue), medium (orange) and low 
(yellow) mean contrast values. D. Examples of stimulus sequences for the different experimental conditions. Within each environment, 
the contrast of gratings is drawn according to their respective distributions in C, while their orientation and spatial phase are uniformly 
distributed. The sequences were presented at a rate of 3 stimuli per sec.  
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Materials and Methods 86 

Experimental Model and Subject Details  87 

All procedures were approved by the University of California, Los Angeles (UCLA)’s Office of Animal 88 
Research Oversight (the Institutional Animal Care and Use Committee). The experiments also 89 
complied with the guidelines set by the U.S. National Institutes of Health on animal research. A total 90 
of 9 mice, male (4) and female (5), aged P35-56, were used. These animals were obtained as a cross 91 
between TRE-GCaMP6s line G6s2 (Jackson Laboratory, https://www.jax.org/strain/024742) and 92 
CaMKII-tTA (https://www.jax.org/strain/007004). There were no obvious differences in the results 93 
between male and female mice. 94 

Surgery 95 

We measured cortical activity using two-photon imaging through cranial windows implanted over V1. 96 
Carprofen was administered pre-operatively (5 mg/kg, 0.2 mL after 1:100 dilution). Mice were 97 
anesthetized with isoflurane (4–5% induction; 1.5–2% surgery). Core body temperature was 98 
maintained at 37.5°C. We coated the eyes with a thin layer of ophthalmic ointment during the surgery 99 
to protect the corneas. Anesthetized mice were mounted in a stereotaxic apparatus using blunt ear 100 
bars placed in the external auditory meatus. A section of the scalp overlying the two hemispheres of 101 
the cortex was then removed to expose the skull. The skull was dried and covered by a thin layer of 102 
Vetbond and an aluminum bracket affixed with dental acrylic. The margins were sealed with Vetbond 103 
and dental acrylic to prevent infections. A high-speed dental drill was used to perform a craniotomy 104 
over monocular V1 on the left hemisphere. Special care was used to ensure that the dura was not 105 
damaged during the procedure. Once the skull was removed, a sterile 3 mm diameter cover glass 106 
was placed on the exposed dura and sealed to the surrounding skull with Vetbond. The remainder of 107 
the exposed skull and the margins of the cover glass were sealed with dental acrylic. Mice were 108 
allowed to recover on a heating pad and once awake they were transferred back to their home cage. 109 
Carprofen was administered post-operatively for 72 h. We allowed mice to recover for at least 6 days 110 
before the first imaging session. 111 

Two-photon imaging 112 

Imaging sessions took place 6–8 days after surgery. Procedures were identical to those described 113 
earlier (Tring et al. 2024). Mice were positioned on a running wheel and head-restrained under a 114 
resonant, two-photon microscope (Neurolabware, Los Angeles, CA). The microscope was controlled 115 
by Scanbox acquisition software and electronics (Scanbox, Los Angeles, CA). The light source was a 116 
920 nm excitation beam from a Coherent Chameleon Ultra II laser (Coherent Inc., Santa Clara, CA). 117 
We used a x16 water immersion objective for all experiments (Nikon, 0.8 NA, 3 mm working distance). 118 
The microscope frame rate was 15.6 Hz (512 lines with a resonant mirror at 8 kHz). The field of view 119 
was 730 µm × 445 µm in all sessions. The objective was tilted to be approximately normal on the 120 
cortical surface. Images were processed using a pipeline consisting of image registration, cell 121 
segmentation, and signal extraction using Suite2p (Pachitariu et al. 2017). A custom deconvolution 122 
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algorithm consisting of linear filtering followed by half-rectification and a power function was used 123 
(Berens et al. 2018).  124 

Visual stimulation 125 

A Samsung CHG90 monitor, positioned 30 cm in front of the animal, was used for visual stimulation. 126 
The screen was calibrated using a Spectrascan PR-655 spectro-radiometer (Jadak, Syracuse, NY), 127 
generating gamma corrections for the red, green, and blue components via a GeForce RTX 2080 Ti 128 
graphics card. Visual stimuli were generated by a custom-written Processing 4 sketch using OpenGL 129 
shaders (see http://processing.org). At the beginning of each experiment, we obtained a coarse 130 
retinotopy map of the cortical section under study (Tring et al. 2022). The center of the aggregate 131 
population receptive field was used to center the location of our stimuli in these experiments. Stimuli 132 
were presented within a circular window with a radius of 25°.  133 

We used a sequence of flashed, sinusoidal gratings presented at a rate of 3 per second for 134 
stimulation. The spatial frequency was fixed at 0.04 cycles per deg, matching the average of the V1 135 
population (Niell and Stryker 2008). Sequences were presented in blocks representing one among 136 
three possible environments with different contrast distributions (Fig 1C). The distributions were 137 
truncated log-normal sampled on a discrete set of seven contrast levels 5% ×  𝜉𝑞 for 𝑞 = 0,1, … ,6 138 
and 𝜉 = 1.6475. Thus, contrast levels were equally spaced in logarithmic steps. The geometric 139 
means of the contrast in the three environments were 𝑐𝐿̅ = 10.9%, 𝑐𝑀̅ = 22.3%, and 𝑐𝐻̅ = 46.0% (Fig 140 
1C, vertical lines), which we refer to as the low (𝐿), medium (𝑀) and high (𝐻) contrast environments. 141 
Thus, the average contrasts of the environments are spaced by an octave. Note that while the mean 142 
contrasts in the environments differ, their range is the same, as opposed to the experimental design 143 
used in earlier studies (Fig 1A). This allows us to compute the responses over the entire range of 144 
contrasts in all environments. Stimulus sequences were generated by uniformly drawing the 145 
orientation and spatial phase of the grating, while drawing the contrast from the corresponding 146 
environment distribution (Fig 1D). All six permutations of {𝐿, 𝑀, 𝐻} − environments were presented 147 
in a randomized order, leading to a total of 18 experimental blocks. Each block was presented for 5 148 
min, for a total of 900 stimuli per block. Each environment appeared 6 times during the session, 149 
resulting in 5400 stimuli per environment. A one-minute blank screen was presented between 150 
blocks. The presentation of each grating was signaled by a TTL pulse sampled by the microscope. As 151 
a precaution, we also signaled the onset of the stimulus by flickering a small square at the corner of 152 
the screen. The signal of a photodiode at that location was sampled by the microscope as well.  153 

Definition of population responses 154 

For each environment 𝑒 ∈ {𝐿, 𝑀, 𝐻}, and orientation 𝜃, we calculated the mean response,  𝐫𝑒(𝜃, 𝑐, 𝑇), 155 
averaged over spatial phase, 𝑇 microscope frames after the onset of the stimulus. Here, 𝑒 ∈ {𝐿, 𝑀, 𝐻} 156 
is one of the environments (Fig 1B), 𝜃 represents the orientation of the grating, and 𝑐 its contrast. The 157 
response averaged across all orientations is denoted by 𝐫𝑒(𝑐, 𝑇). As we will see, the largest response 158 
magnitude is obtained for 𝑒 = 𝐿 and 𝑐 = 100%. Thus, we define the optimal time-to-peak, 𝑇𝑜𝑝𝑡, as 159 
the one for which the Euclidean norm of 𝐫𝐿(100%, 𝑇) attained its peak after stimulus onset. Across 160 
all our sessions we found 𝑇𝑜𝑝𝑡 = 287 ± 33 msec (mean ± 1SD, 𝑛 = 17). We define 𝐫𝑒(𝜃, 𝑐) =161 
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𝐫𝑒(𝜃, 𝑐, 𝑇𝑜𝑝𝑡) and similarly, 𝐫𝑒(𝑐)= 𝐫𝑒(𝑐, 𝑇𝑜𝑝𝑡). The Euclidean norm of these vectors will be denoted by 162 
𝑟𝑒(𝜃, 𝑐) and 𝑟𝑒(𝑐) respectively.  163 

There is a technical point concerning the estimate of population norms that deserves attention. We 164 
want to estimate the Euclidean norm 𝑟 of the mean population response to 𝑚 trials of a stimulus in 165 
a population of 𝑑 independent neurons. The response of the neurons in any one trial is the realization 166 
of a random variable 𝑟𝑖, with 𝑖 = 1, … , 𝑑. The actual response of neuron 𝑖 to the stimulus in trial 𝑘 will 167 
be denoted by 𝑟𝑖

𝑘. If we let 𝜇1
𝑖  represents the mean response of the 𝑖 − 𝑡ℎ neuron, we want to find an 168 

estimate of ‖𝜇‖ = √∑ (𝜇1
𝑖 )𝑖

2
 from the data {𝑟𝑖

𝑘}.  169 

A reasonable way to proceed is to estimate the squared norm of the population response as ‖𝜇‖2 ≈170 

∑ (
1

𝑚
∑ 𝑟𝑖

𝑘𝑚
𝑘=1 )

2
𝑑
𝑖=1 . However, it is easy to see this estimate is biased. First, let us consider the inner 171 

term, which expands to ( 1

𝑚
∑ 𝑟𝑖

𝑘𝑚
𝑘=1 )

2
=

1

𝑚2 (∑ (𝑟𝑖
𝑘)

2𝑚
𝑘=1 + ∑ 𝑟𝑖

𝑘𝑟𝑖
𝑙𝑚

𝑘≠𝑙=1 ). What would be the average 172 

value of this quantity if we were to repeat the experiment many times? If we take expected values on 173 

both sides of the equation we obtain 𝐸 {(
1

𝑚
∑ 𝑟𝑖

𝑘𝑚
𝑘=1 )

2
} =

1

𝑚2 (𝑚𝜇2
𝑖 + 𝑚(𝑚 − 1)(𝜇1

𝑖 )
2

) =
𝜇2

𝑖 −(𝜇1
𝑖 )

2

𝑚
+174 

(𝜇1
𝑖 )

2
=

var{𝑟𝑖}

𝑚
+ 𝑟̅𝑖

2. Here, 𝜇1
𝑖 = 𝐸{𝑟𝑖} = 𝑟̅𝑖 represent the mean of 𝑟𝑖, and  𝜇2

𝑖 = 𝐸{𝑟𝑖
2} is its second 175 

moment. Thus, on average, we there is a bias term var{𝑟𝑖}

𝑚
 which depends on the number of trials. To 176 

correct for it, we calculate the sample variance and subtract the term var{𝑟𝑖}

𝑚
  from ( 1

𝑚
∑ 𝑟𝑖

𝑘𝑚
𝑘=1 )

2
. 177 

Finally, to obtain an estimate of the norm, we add all the terms across neurons and take the square 178 
root. Such bias correction was applied to the calculation of 𝑟𝑒(𝜃, 𝑐). 179 

Bézier curve fit to contrast response data 180 

For a fixed visual pattern, we obtain the mean response to 7 different contrast levels in 3 different 181 
environments (a total of 21 points). As we show in Results, these points can be projected into the 182 
first two principal components without major geometric distortions. These data appear to lie on a 183 
single curve. To characterize the shape of such a curve we fit a quadratic Bézier curve as follows. 184 
First, the data are normalized so that the response with minimum norm is mapped to (0,0), while the 185 
response with the largest norm is mapped to (0,1). We achieve this with a similarity transformation, 186 
which does not distort the shape of the curve. A quadratic Bézier curve has 3 control points. We 187 
choose the first one to align with the origin, 𝐩0 = (0,0), and the third one to be 𝐩2 = (0,1). The only 188 
free parameter left is the point 𝐩1, which leads to the Bézier curve: 𝐁(𝑡) = 2𝑡(1 − 𝑡)𝐩1 + 𝑡2(0,1). For 189 
a given choice of 𝐩1 we can compute the minimum distance to the curve from each data point. For a 190 
given choice of 𝐩1, we define the error of the fit as the average mean square distance from the data 191 
points to the curve. Then, we minimize the error as a function of 𝐩1 using Matlab’s fminsearch. 192 
There is nothing special about the use of Bézier curves, other interpolation methods could have 193 
worked as well to illustrate that the responses lie along a smooth curve (Fig 3). 194 

 195 
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Rigor and reproducibility  196 

We conducted experiments by independently measuring the adaptation of V1 populations in 𝑛 = 17 197 
independent sessions. Linear models were fitted to the data using Matlab’s fitlm function. The 198 
goodness of fit of linear models was evaluated using the coefficient of determination, 𝑅2. As the 199 
study did not involve different groups undergoing different treatments, there was no need for 200 
randomization or blind assessment of outcomes. Data selection was used to process all putative 201 
neurons selected by Suite2p (Pachitariu et al. 2017) and select only those that responded 202 
significantly to visual stimulation. This was done by calculating the ratio between the response of 203 
neurons at the optimal time for the population, 𝑇𝑜𝑝𝑡, and their baseline response just prior to the 204 
onset of stimulation. We selected neurons for which such ratio was larger than 8. No selection was 205 
done with respect to the tuning of neurons for orientation – both cells with good and poor orientation 206 
selectivity were included. The median number of cells in our populations was 110, with the first and 207 
third quartiles at 210 and 335 respectively.  208 

Results  209 

We begin by providing low dimensional visualizations of the geometry of 𝐫𝑒(𝜃, 𝑐) using principal 210 
component analysis. These analyses expose some potential features of gain control, including the 211 
reparameterization of a single contrast-response curve. As low-dimensional visualizations can incur 212 
geometric distortions, subsequent analyses are performed in native response space. In this context, 213 
we investigate the structure of the pairwise Euclidean distance matrix 𝑑(𝐫𝑒1

(𝑐1), 𝐫𝑒2
(𝑐2)) between 214 

responses across environments. To test the reparameterization hypothesis, we show that given two 215 
different environments 𝑒1 and 𝑒2, where the geometric mean of contrast in 𝑒2 is lower than 𝑒1, we can 216 
find a constant 𝑔 < 1 such that 𝑑(𝐫𝑒1

(𝑐1), 𝐫𝑒2
(𝑔 𝑐2)) ≈ 0. This finding implies that 𝐫𝑒1

(⋅) and 𝐫𝑒2
(⋅) lie 217 

approximately on a single response curve, the hallmark of reparameterization. We then provide a 218 
statistical model for the dependence of the response magnitude 𝑟𝑒(𝑐) with changes in the 219 
environment, showing that 𝑔𝑒 ~ 1/𝑐𝑒̅

 𝜖, where 𝑐𝑒̅  is the geometric mean of the contrast in the visual 220 
environment. We then consider and reject the response gain model as a good contender to explain 221 
the data. Finally, we relate the properties of the population to those of single neurons and provide an 222 
estimate of the degree of coordination of gain control in the population in response to a fixed visual 223 
stimulus.  224 

Low dimensional visualization of population responses 225 

To visualize the structure in our datasets we first used principal component analysis to examine the 226 
structure of 𝐫𝑒(𝜃, 𝑐) in three dimensions (Fig 2A). Different colors are used to show data from 227 
different orientations. Each environment is assigned a different symbol (low = circles, medium = 228 
asterisks, high = squares). For a fixed environment and orientation, straight lines join data points at 229 
adjacent contrast levels. The resulting curves show the shape of 𝐫𝑒(𝜃, 𝑐) as a function of 𝑐 for the 230 
different environments and stimulus orientations.  231 

 232 
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 233 

Some salient features in the structure of the data catch the eye. First, for any given orientation, the 234 
contrast response functions across different environments overlap substantially – all symbols 235 
representing the data for a single orientation at different contrast levels and environments appear to 236 
lie approximately on a single curve. This is consistent with the idea that gain control acts to 237 
reparametrize the population response (Fig 1B). In other words, changing the environment only shifts 238 
the data along the curve and does not move them “off the manifold” associated with a given 239 
orientation (Jazayeri and Afraz 2017). Second, different orientations generate different curves 240 
emanating from a common origin. This type of structure is expected from the orientation tuning of 241 
cortical neurons and the fact that as contrast is decreased, we expect the responses at all 242 
orientations to converge to the response to a zero contrast “origin”. Third, the contrast response 243 
curves resemble straight rays at low contrast values but show clear curvature at moderate to high 244 
contrast values. The curvature is mostly visible in data from the low-contrast environment, which 245 
also generates the responses with the largest magnitudes. One can think of the geometry of the 246 
responses as resembling a scalp massager, with each wire representing the “arms” generated by 247 
stimuli at different orientations (Fig 2B). The arms remain invariant with changes of the environment. 248 
Of course, these observations should be interpreted with care, as the fraction of variance captured 249 
by a projection into the first three principal components is only about half of the total (0.54 ± 0.056, 250 
mean ± 1SD).  251 

Contrast responses for a given stimulus across different environments lie on a curve 252 

Our visualization of the data by principal component analysis (PCA) in 3D is likely to be dominated 253 
by the need to capture the disparate responses evoked by different orientations. Instead, to focus on 254 
the analysis of the shape of the contrast response functions, we performed PCA on the individual 255 
“arms” of the dataset, each representing the responses in all 3 environments for 7 contrast levels at 256 
a single orientation. Our analyses show that projecting the data into the first two principal 257 

 

Figure 2. Low dimensional visualization of 
population responses. A. Each row 
corresponds to data from a different 
experimental session, showing two views 
of the projection of the data into the first 
three principal components. Each color 
corresponds gratings of different 
orientations (top color bar), while each 
symbol represents data for environments 
with different mean contrasts (circles = 
low, asterisk, medium, square = high). The 
contrast response for a fixed orientation 
across different orientations all lie 
approximately on the same curve. Mean 
responses for low contrasts converge into 
a point. B. A visual that captures the overall 
structure of the data. Each “arm” of the 
scalp massager represents a contrast 
response curve for a fixed orientation. 
Changing environments causes a shift in 
the mean responses along the arm, which 
implies gain control is a reparameterization 
of a single curve.  
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components accounts for 0.83 ± 0.033 (mean ± 1SD) of the total variance of the arms, reasonably 258 
capturing their shape (Fig 3). Thus, contrast response curves lie mostly on a plane. The projected 259 
data points in 2D were normalized using a similarity transformation, such that the response with the 260 
smallest norm was mapped to (0,0) and the one with largest norm mapped to (0,1). This was done to 261 
allow the comparison of the shape of contrast response functions for different orientations. 262 

 263 

A key observation is that data points for each arm tend to fall along a single curve (Fig 3). The largest 264 
responses (farther from the origin) are obtained for the highest contrast level in the low-contrast 265 
environment. Switching from the low contrast environment to a medium contrast environment 266 
merely shifts the points along the curve towards the origin at (0,0). The same occurs as we move from 267 
the medium contrast environment to the high contrast environment. This finding is consistent with 268 
the hypothesis that gain control serves to reparametrize the population responses. Moreover, as we 269 
will see below, this reparameterization has a simple dependence on the mean contrast of the 270 
environment. We note that in some experiments, the data lied almost entirely along a ray except for 271 
the point at the highest contrast in the low-contrast environment (Fig 3, bottom row). This likely 272 
resulted from our experimental design under-sampling the 60-100% contrast range, a limitation we 273 
plan to correct in future studies. 274 

Testing reparameterization using distance matrices in native space 275 

Next, to circumvent any possible distortions in the structure of the data incurred by dimensionality 276 
reduction methods, we test the reparameterization hypothesis directly in native space. By “native 277 
space” we mean the Euclidean, 𝑑 dimensional space, where the response vectors live. We achieve 278 
this by studying the structure of pairwise distance matrices 𝑑(𝐫𝑒1

(𝑐1), 𝐫𝑒2
(𝑐2)) as follows. Let us 279 

assume, without loss of generality, that the mean of contrast in 𝑒2 is lower than 𝑒1. Thus, responses 280 
in 𝑒2 at any one contrast are larger than the ones obtained in 𝑒1. The linear reparameterization 281 
hypothesis predicts that the response to 𝑐1 in 𝑒1 can be matched by reducing the contrast in 𝑒2 by a 282 
fixed gain factor, 𝑑(𝐫𝑒1

(𝑐), 𝐫𝑒2
(𝑔 𝑐)) ≈ 0. Indeed, when plotting 𝑑(𝐫𝑚𝑒𝑑(𝑐1), 𝐫𝑙𝑜𝑤(𝑐2)) and 283 

𝑑(𝐫ℎ𝑖𝑔ℎ(𝑐1), 𝐫𝑚𝑒𝑑(𝑐2)) we observe that minimum distances fall approximately on a diagonal parallel 284 
and displaced from the identity line. As contrast axes are logarithmic, the displacement simply 285 

 

Figure 3. Contrast response to a fixed visual 
pattern across different environments lie 
approximately on a 2D curve. Each row shows 
the structure of some “arms” in one 
experimental session. For each arm, the data 
points represent the projection of the mean 
responses at a fixed orientation for varying 
levels of contrast for the three environments 
(low, medium and high contrast) onto the first 
two principal components. Each environment is 
coded by a different color. Only three 
orientations per session are shown. Each arm is 
normalized so the response with minimum 
norm is mapped to (0,0) and the one with largest 
response to (0,1). Dark segments join the 
locations on the Bezier curve fit that are closest 
to the data.  
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represents a multiplicative effect of the environment on contrast – the signature of gain control. The 286 
same effect seen in the structure of 𝑑(𝐫ℎ𝑖𝑔ℎ(𝑐1), 𝐫𝑙𝑜𝑤(𝑐2)). Here, the shift of the diagonal doubles, 287 
matching a doubling in the ratio between the mean contrasts of the environments. Altogether, we 288 
conclude that for any two environments we can find a factor 𝑔 such that  𝑑(𝐫𝑒1

(𝑐), 𝐫𝑒2
(𝑔 𝑐)) ≈ 0. One 289 

caveat is that both measurement noise and the coarse sampling of contrast values provide a lower 290 
bound on how close to zero this value can get. In these analyses, distances were normalized by the 291 
diameter of the dataset (the maximum distance between any two responses), and the minimum 292 
distances obtained were 0.096 ± 0.022 (mean ± 1SD).  293 

 294 

 295 

Dependence of gain on the mean contrast of the environment 296 

How does the gain 𝑔 change as a function the mean contrast of the environment? Although the 297 
location of the diagonals along which the distance is minimum offers one approach (Fig 4), it is 298 
limited by the coarse sampling of contrast in the data. Here, we offer an approach that relies on the 299 
comparison of response magnitudes between environments. Note that if 𝑑(𝐫𝑒1

(𝑐), 𝐫𝑒2
(𝑔 𝑐)) = 0, 300 

then it must be the case that the magnitudes satisfy  𝑟𝑒1
(𝑐) = 𝑟𝑒2

(𝑔 𝑐). Therefore, in a way analogous 301 
to the study of single neurons, we should see a horizontal shift in the magnitude of population 302 
responses between environments by log 𝑔 (Fig 1A). Indeed, when plotting the population magnitudes 303 
as a function of contrast in double logarithmic axis they appear as shifted lines (Fig 5). This analysis 304 
also replicates our previous finding that the magnitudes of population responses are a power law of 305 
contrast, 𝑟(𝑐) ~ 𝑐𝛿 (Tring et al. 2024). Unfortunately, the shift in the population norm is ambiguous, 306 
as it could potentially be interpreted as either a horizontal or vertical shift of a line, corresponding to 307 
changes in contrast gain, response gain, or a mixture of both (Albrecht et al. 1984a, 1984b; Hamilton 308 
et al. 1989). However, as we argue below, a horizontal shift is the one consistent with the structure of 309 
the data matrix and the geometry of the responses. For the moment, let us describe the 310 

 

 
 
Figure 4. The structure of distance matrices is 
consistent with reparameterization. Each row, 
representing data from different sessions, shows 
the Euclidean distance between population 
responses across different environments. The 
first column shows the distance between 
responses in high and medium contrast 
environments; the second column between 
medium and low environments; and the third 
column between high and low environments. 
Distances are normalized to the diameter of the 
dataset and displayed on a logarithm (base 10) 
scale. We observe that distance minima lie on a 
diagonal parallel to the identity line. The dashed 
line represents the location of the diagonal on 
which the average distances reach a minimum. 
Solid white line is the identity line. Such diagonal 
structure is consistent with the linear 
reparameterization hypothesis.  
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transformation observed as changes in contrast gain. Note that magnitudes of the shifts are 311 
approximately equal as we move from low-contrast to medium-contrast, and from medium-contrast 312 
to high-contrast environments, representing equal steps in log-contrast (Fig 1C). Thus, it is natural to 313 
put forward a gain control model 𝑟̂𝑒(𝑐) = 𝐴 (

𝑐

𝑐𝑒̅
𝜖)𝛿 = 𝐴 𝑐𝑒̅

−𝛿𝜖 𝑐𝛿 , where 𝑐𝑒̅
𝜖 is the geometric mean of 314 

the contrast in 𝑒. As it turns out, this model performs extremely well (Fig 4, 𝑅2 = 0.976 ± 0.01, mean 315 
±1SD, 𝑛 = 17). Across all sessions, we obtain 𝛿 = 0.81 ± 0.092 and 𝜖 = 0.68 ± 0.06 (mean ±1SD). 316 
Altogether, we conclude the response of the population to a fixed visual pattern in environment 𝑒 is 317 

given by 𝐫𝑒(𝑔𝑒𝑐) with 𝑔𝑒 =
1

𝑐𝑒̅
𝜖.  318 

 319 

 320 

Changes in response gain are inconsistent with the geometry of the data 321 

Let us now go back and discuss the ambiguity between changes in response gain versus changes in 322 
contrast gain in the response magnitude data (Fig 5). The response gain model is represented by the 323 
relationship 𝑔𝑒 𝐫(𝑐), where the output gain is modulated by the environment (Fig 1B). This implies 324 
that, for any given contrast, the direction of population response should not change across 325 
environments – only its magnitude does. Thus, one would predict that the cosine distance matrix 326 
𝑑𝑐𝑜𝑠(𝐫𝑒1

(𝑐1), 𝐫𝑒2
(𝑐2)) should be zero along its diagonal, when 𝑐1 = 𝑐2. Instead, we observe the 327 

directions of the population vectors across two environments are most similar at different contrast 328 
values (Fig 6), in parallel to behavior of the Euclidean distance matrix (Fig 4). Thus, we safely 329 
conclude the data does not conform to the response gain model.  330 

 

 
 
 
 
 
Figure 5. Dependence of gain on the mean contrast of the 
environment. Each row represents data from sessions 
matching those in prior figures. The right column shows 
the magnitude of the responses as a function of contrast 
for the different environments. The plot is in double 
logarithmic axes. The solid lines represent the best linear 
fits to the data from each environment (fit independently 
for each environment). The lines have approximately the 
same slope and are shifted in about equal amounts. This 
suggests that the entire dataset may be captured by the 
model r̂𝑒(𝑐) = 𝐴 (

𝑐

𝑐𝑒̅
𝜖)𝛿. The panels on the right show the fit 

of such a model to the data. The quality of the fits is very 
good, with 𝑅2values ~0.98. Solid gray line represents the 
identity line.  
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 331 

Assessment of the dispersion of gain control in a population  332 

In principle, reparameterization strictly holds only when the changes in gain in the population are 333 
identical. Of course, some degree of variability is expected in the data. Here, we assess the degree 334 
of gain control dispersion across neurons for a fixed visual stimulus across environments and how it 335 
relates to the analyses at the population level.  336 

For any given session, we analyzed data obtained at a single orientation – one of the “arms”. In each 337 
arm, only a small fraction of cells will have a preferred orientation matching that of the stimulus and 338 
respond vigorously. Many other neurons respond with weak and noisy responses. If we analyze the 339 
contrast response functions of the responsive neurons, we see that some recapitulate, at least 340 
partially, what is observed at the population level (Fig 7A). One common departure is that responses 341 
saturate at the highest contrast levels for the low-contrast environment (Fig 7A, top row, yellow data 342 
points). Nonetheless, the responses are reasonably fit by the model 𝑟̂𝑒(𝑐) = 𝐴 (

𝑐

𝑐𝑒̅
𝜖)𝛿, which allows 343 

us to estimate the shift in the contrast response function of each neuron across environments (which 344 
equals 𝜖 log 2, as the mean contrast between the environments differ by one octave). We can 345 
quantify the dispersion in the shifts by the coefficient of variation (CV) of 𝜖. When pooling data across 346 
different arms and different experimental sessions, we find that, on average, 𝐶𝑉 = 0.27 ± 0.10 (mean  347 
±  1SD, computed over 53 different “arms”) (Fig 7B).  348 

Is such a degree of variability small enough for the population to approximate reparameterization?   349 
We know the answer must be affirmative, as this is what the population analysis shows. 350 
Nonetheless, we can further corroborate this expectation with a simple exercise. We simulate a 351 
population of neurons in one environment by assuming the contrast response of the 𝑖 − 𝑡ℎ neuron is 352 
given by the Naka-Rushton equation 𝑟𝑖(𝑐) = 𝑐2/(𝜎𝑖

2 + 𝑐2) (Albrecht and Hamilton 1982; Naka and 353 
Rushton 1966). We selected 𝜎𝑖 to be distributed as a Beta function with 𝑎 = 3 and 𝑏 = 6, to match 354 
approximately the distribution seen in V1 (Sclar et al. 1990). We model a switch to a new environment 355 
of higher mean contrast by reducing the semi-saturation constants by a factor drawn from a 356 
triangular distribution designed to match the coefficient of variation of the data (Fig 7C). Now that 357 
we have contrast-response functions in the two environments, we can generate synthetic data and 358 
perform the same analyses as before, studying the structure of the pairwise Euclidean distance 359 
matrix (Fig 7D), the structure of the pairwise cosine distance matrix (Fig 7E), and generating a low-360 
dimensional visualization of the transformation of responses resulting from a switch of environments 361 

 

 

Figure 6. Changes in response gain are 
inconsistent with the geometry of the data. 
Each panel shows the cosine distance 
between responses in the high and low 
environments in independent sessions. While 
response gain predicts distances should be 
near zero along the main diagonal, we observe 
the minima off the main diagonal in parallel 
with the behavior of the Euclidean distance 
matrices (Fig 4).  
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(Fig 7F). We find that, for the experimentally observed degree of dispersion in gain control, the model 362 
reproduces the main phenomena seen in our data, including the shift of responses along a single 363 
curve which we accepted as is the signature of reparameterization (Fig 7F). Thus, a moderate level of 364 
coordination between neurons is sufficient to generate a representation that approximates 365 
reparameterization of responses by a population.  366 

 367 

Discussion 368 

The central aim of this study was to test the hypothesis that contrast gain control can be interpreted 369 
as a linear reparameterization of the contrast-response function of the population (Fig 1B). 370 
Altogether, our data provide good support for this idea. First, a low dimensional visualization of the 371 
population responses indicated that responses at a fixed orientation as a function of contrast lie 372 
along a single “arm” when switching between environments (Fig 2). Second, analyzing the data 373 
separately for each arm showed that the response curves can be embedded in a plane and that the 374 
responses to different contrast levels shift along a single curve as the population as we modify the 375 
mean contrast of the environment (Fig 3). As these findings rely on analyses performed after 376 
dimensionality reduction, we sought to reveal signatures of reparameterization in the native 377 

 
 
Figure 7. Observed dispersion in gain control across V1 neurons is consistent with reparameterization. A. Example of 
contrast response functions of single neurons for a fixed orientation. The solid lines are the fits of the model. The 
horizontal shift between the responses in different environments yields an estimate of the change in gain control. To 
assess the dispersion of gain control we compute the coefficient of variation of the shifts in a population of neurons. B. 
Distribution of the coefficient of variation pooled across different “arms” and imaging sessions. Only arms which 
included at least three responsive neurons in an arm were used. The coefficient of variation was corrected for bias given 

the small numbers involved, such that 𝐶𝑉 = (1 +
4

𝑛
) 𝐶𝑉𝑟𝑎𝑤, where 𝑛 is the number of data points (Sokal and Rohlf 1995). 

Red curve represents a Gaussian fit. C. Simulated neurons with Naka-Rushton response profile and a gain shift 
distributed to match the mean coefficient of variation in B. The structure of the Euclidean (D) and cosine (E) distance 
matrices recapitulates the findings observed in the population analysis, with the minimum distances lying along a 
diagonal displaced from the unity line. F. The first two principal components capture 99% of the variance in the data, 
has a similar shape to those observed experimentally, and illustrates that a change in the mean contrast of the 
environment causes responses to shift along a single curve, consistent with reparameterization (Fig 1).  
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response space as well. In this context, we demonstrated that the responses in one environment can 378 
be matched by scaling the contrast in a second one, as shown by minima of pairwise distance 379 
matrices lying along a diagonal displaced from the identity line (Fig 4). Finally, the data were well fit 380 
by population contrast-response function that is a power law of contrast (Tring et al. 2024), where 381 
contrast gain is a power law of the geometric mean of the environment (Fig 5). Such power law 382 
behavior emerges naturally in a population where with a wide distribution of semi-saturation 383 
constants. Altogether, our findings show that population responses under gain control can be viewed 384 

as the linear reparameterization 𝐫(𝑔𝑒𝑐), with 𝑔𝑒 =
1

𝑐𝑒̅
𝜖.  385 

Reparameterization simplifies the job of downstream areas, as the identity of a visual pattern is 386 
represented by its contrast response curve, which is invariant to changes in the distribution of 387 
contrasts in the environment. Finally, we note that perfect adaptation occurs for 𝜖 = 1. Our 388 
measured estimate of 𝜖 = 0.68 ± 0.06 means that, under the condition of our experiments, 389 
adaptation is only attained partially. Thus, coding of contrast is neither absolute (𝜖 = 0) nor purely 390 
relative to the mean (𝜖 = 1). Values of 𝜖 closer to one may be possible if we restrict contrast 391 
distributions in the experiments to those observed naturally (Mante et al. 2005).  392 

In retrospect, a limitation of the study was the use of 7 log-steps from 5 to 100% to sample contrast. 393 
This choice left the range of contrast from 60 to 100% under sampled, which turned out to be the 394 
location the contrast response function appears to have the highest curvature (Fig 2). Taking a more 395 
detailed look at the shape of the contrast response curve calls for a denser sampling of contrast 396 
values, which will be remedied in future studies. Our findings are also limited to the truncated, log-397 
normal distributions of contrast employed in these experiments (Fig 1C). It will be important to 398 
extend the range of environments by using distributions found in natural scenes to verify the behavior 399 
can be generalized (Clatworthy et al. 2003; Mante et al. 2005), including conditions where both 400 
contrast and mean luminance change (Geisler et al. 2007; Mante et al. 2005). In addition, in the 401 
present experiments we used a large, circular window for stimulation, which covered all the receptive 402 
fields of the population. Investigating the dependence of contrast gain with the spatial distribution of 403 
contrasts in the image is another important step in future studies (Albrecht et al. 1984a; Brady and 404 
Field 2000; DeAngelis et al. 1992; Schwartz and Simoncelli 2001). Such data may help link 405 
reparameterization to illusions of perceived contrast, such as the effect observed in the 406 
simultaneous contrast illusion (Carandini and Heeger 2011; Watson and Solomon 1997). Finally, 407 
some of the details of the geometry we recovered may be distorted by non-linear relationship 408 
between the actual spiking of neurons and our indirect inference from calcium imaging (Nauhaus et 409 
al. 2012). High-density electrophysiology will need to be conducted to assess any possible 410 
departures from imaging data. 411 

We have not yet delved into the neural mechanisms implementing reparameterization, but it would 412 
have to address how the network can generate a reasonably coordinated change of gain in a local 413 
population. One prominent candidate is using a pooled cortical signal that controls gain in the local 414 
population (Heeger 1992), rather than by independent, self-calibration (Ullman et al. 1997). The 415 
ability to influence a pooled signal could also serve as a central “knob” that accounts for a separable 416 
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power law relationship between the magnitude of the response with the probability of stimulus (Tring 417 
et al. 2023), its contrast (Tring et al. 2024) and, as shown in the present study, the mean contrast of 418 
the environment. Each of these factors appears to tweak the same gain “knob”, as demonstrated by 419 
the fact that a change in one can be compensated for by a change in another. For example, an 420 
increase in the probability of a stimulus can be counteracted by an increase in its contrast to keep 421 
the response magnitude constant (Tring et al. 2024). 422 

We close by noting that the geometric view of contrast gain control is nothing more than a convenient 423 
way to look at the average behavior of a large population of neurons as they adapt to the contrast of 424 
an environment. The behavior of the population simply reflects the collective behavior of individual 425 
neurons. Other than a central mechanism that coordinates gain changes among neurons, there is no 426 
other “emergent” phenomena in the data. The advantage of our analyses is that it reveals lawful 427 
statistical relationships that describe the population responses accurately, even though many 428 
individual neurons respond weakly and generate noisy responses. An apt analogy would be a 429 
description of the behavior of gases in terms of statistical quantities such as pressure, temperature 430 
and volume. Here, we can obtain simple relationships between these quantities even though the 431 
behavior of the individual molecules can show considerable variability.  432 
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