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Real-time functional magnetic resonance imaging (rt-fMRI) is a technique that enables us to observe human brain activations in
real time. However, some unexpected noises that emerged in fMRI data collecting, such as acute swallowing, head moving and
human manipulations, will cause much confusion and unrobustness for the activation analysis. In this paper, a new activation
detection method for rt-fMRI data is proposed based on robust Kalman filter.The idea is to add a variation to the extended kalman
filter to handle the additional sparse measurement noise and a sparse noise term to themeasurement update step. Hence, the robust
Kalmanfilter is designed to improve the robustness for the outliers and can be computed separately for each voxel.The algorithmcan
compute activation maps on each scan within a repetition time, which meets the requirement for real-time analysis. Experimental
results show that this new algorithm can bring out high performance in robustness and in real-time activation detection.

1. Introduction

Functional magnetic resonance imaging (fMRI) offers a
noninvasive method in studying human brain functions
by recording blood-oxygen-level-dependent (BOLD) signal
changes related to neuronal activity across the brainwith high
spatial resolution [1]. Real-time fMRI (rt-fMRI) is a method
to assess the acquired data for evidence of an experimentally
induced effect at every intracerebra voxel individually and
simultaneously. In rt-fMRI, data are processed as fast as they
are acquired [2]. For real-time fMRI applications, mapping
the activations within a repetition time makes it possible to
interact with fMRI experiments in a muchmore efficient way
[3]. Online functional mapping enables researchers to moni-
tor data quality, evolve experimental protocols more rapidly,
perform interactive experimental paradigms for neurological
investigation [4], achieve neurofeedback by providing feed-
back of brain activation to the subject in real time [5], which
may have potential use in clinical applications [6].

In common fMRI experiments, MRI scanner acquires
whole brain data at an interval of 2 seconds, also called rep-
etition time. To meet the real-time requirements, all the pro-
cessing steps of real-time fMRI need to be completed within
a repetition time. Simple real-time fMRI processing steps

consist of data reconstruction, spatial realignment (head
motion correction), and statistical analysis. Among them,
incremental statistical analysis on each voxel of the fMRI
dataset will result in huge computational costs. To overcome
the computational costs of the statistical analysis, a number of
incremental activation detection algorithms have been devel-
oped for rt-fMRI applications.

Cox et al. [7] proposed the first real-time incremental
activation detection algorithm and the correlation based
activation detection methods are not able to model multiple
experimental and confounding effects simultaneously. Gem-
bris et al. [8] proposed correlation analysis method using
sliding window technique. Friston et al. [9] proposed the
general linear model (GLM), which can be used as a unified
framework in the analysis of fMRI data and support multiple
experimental design, but it cannot be used to rt-fMRI appli-
cations, because it needs all of the data to do the statistical
analysis. The widely used correlation based techniques are
special cases of GLMwith a white noisemodel for the tempo-
ral errors in the signal. Bagarinao et al. [10] proposed an algo-
rithm using an orthogonalization procedure to estimate the
coefficient of general linearmodels. Roche et al. [11] proposed
an algorithm using extended kalman filter (EKF) method to
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fit a general linear model on fMRI time courses. This tech-
nique adopts the GLM-AR model under the assumption that
the fMRI noise is significantly autocorrelated. The extended
kalman filter is able to fit incrementally GLM coefficients
along with the one-order autoregressive noise model. In
this paper, we mainly focus on the EKF method, because it
requires low computation costs and memory costs, and the
design matrix can be assembled incrementally, which makes
it possible for more complex interactive experiment design.

The fMRI time series has low signal to noise ratio [12].The
noise in the fMRI signal is complicated. It includes not only
the usualMRI sensor noise but also physiological fluctuations
that affect the signal. The fluctuations of MRI scanner or
severe head motion may generate sparse noise in the signal.
In ourmodel, under the assumption that the sparse noise will
not change the noise distribution, a variation is added to the
extended kalman filter to handle the additional measurement
noise term, that is, sparse; this term can be used to model the
sparse measurement outliers.

In recent years, with the developments of convex opti-
mization, Mattingley and Boyd [13] created a robust kalman
filter by replacing the standard measurement update, which
can be interpreted as the result of solving a similar convex
minimization problem, which includes an 𝑙

1
term to handle

the sparse noise. We use the robust kalman filter method to
solve the value of the sparse term in our model.

2. Method

Real-time fMRI signal is three-dimensional volume data at
each scan during a repetition time and the intensity of each
voxel represents the blood oxygen level associatedwith neural
activities. Data of each incoming fMRI scans is spatially
aligned with the first scan of the series. Voxel values at differ-
ent scan time points are arranged to time sequence, forming
the measured time series. Each voxel will form a time series,
and the length of time series is growing with the time increas-
ing. The time series of each voxel can be calculated indepen-
dently, so in the following discussion we only consider the
situation of a single voxel time series.

2.1. Extended Kalman Filter Incremental Detection. Roche et
al. [11] proposed an extended kalman filter based algorithm to
fit incrementally the general linear model along with a one-
order autoregressive noise model.

The general linear model (GLM) explains the measured
time series 𝑦 = [𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇 in terms of a linear combina-

tion of the explanatory variables 𝑋
𝑝
= [𝑥
1𝑝
, 𝑥
2𝑝
, . . . , 𝑥

𝑛𝑝
]
𝑇

plus an error term. The explanatory variable contains
paradigm-related regressors based on the experiment design
and signal characteristics and regressors are obtained by
convolving the different stimulation onsets with a canonical
hemodynamic response function. Model the low-frequency
drift, hence enabling us to “detrend” the signal (we use poly-
nomials up to order three). Then combine the explanatory
variables into a design matrix 𝑋 = [𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑝
]. The

GLM can be expressed as
𝑦 = 𝑋𝛽 + 𝜀. (1)

The design matrix is 𝑋 = [𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑝
], where 𝑋

𝑝

is the explanatory variable, 𝛽 = [𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑝
]
𝑇 contains

(unknown) parameters which represent the coefficients of the
explanatory variables. The design matrix contains paradigm-
related regressors based on the experiment design. The
regressors can be obtained by convolving the different stimu-
lation onsets with a canonical hemodynamic response func-
tion, or modeling the low-frequency drift to detrend the
signal.

In the GLM-ARmodel, it is assumed that 𝜀 is a stationary
Gaussian zero mean AR(1) random process and the relation-
ship between 𝜀

𝑖
and 𝜀
𝑖−1

can be expressed as.

𝜀
𝑖
= 𝑎𝜀
𝑖−1
+ 𝑛
𝑖
. (2)

𝑎 is an (unknown) autocorrelation parameter, and 𝑛
𝑖
is

a white noise with instantaneous Gaussian distribution
𝑁(0, 𝜎

2
).

Alexis Roche proved that the maximum likelihood esti-
mate of (𝛽, 𝑎) can be computed independently from 𝜎 and
they found that one can reach themaximum of the likelihood
function by finding the minimum of 𝜌

𝑖
(𝛽, 𝑎):

𝜌
𝑖
(𝛽, 𝑎) = {

√1 − 𝑎2 (𝑦
1
− 𝑥
𝑇

1
𝛽) , if 𝑖 = 1

𝑦
𝑖
− 𝑥
𝑇

𝑖
𝛽 − 𝑎 (𝑦

𝑖−1
− 𝑥
𝑇

𝑖−1
𝛽) , otherwise,

(3)

where 𝑥
𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑝
]
𝑇 denote the values of explana-

tory variables at time 𝑖.
First, they combine the parameters to be estimated 𝛽 and

𝑎 into a (𝑝 + 1) × 1 state vector 𝑏 = [𝛽; 𝑎]𝑇 and assume that,
at time 𝑖, the current estimate of 𝑏 is 𝑏̂

𝑖−1
= [𝛽
𝑖−1
; 𝑎
𝑖−1
].

Secondly, linearize the error function 𝜌
𝑖
(𝛽, 𝑎) to 𝜌

𝑖
(𝑏)

around the current estimate using a first-order Taylor expan-
sion:

min 𝜌
𝑖
(𝑏) = 𝑞

𝑖
− 𝑢
𝑇

𝑖
𝑏, (4)

where 𝑞
𝑖
= 𝑦
𝑖
− 𝑎
𝑖−1
𝑥
𝑇

𝑖−1
𝛽
𝑖−1

(𝑖 = 1, 𝑞
1
= 𝑦
1
), 𝑢
𝑖
=

[𝑥
𝑖
− 𝑎
𝑖−1
𝑥
𝑖−1
, 𝑦
𝑖−1
− 𝑥
𝑇

𝑖−1
𝛽
𝑖−1
]
𝑇

(𝑖 = 1, 𝑢
𝑖
= [𝑥
1
, 0]
𝑇).

Finally, they solved the (nonlinear) least-squares regres-
sion problem by means of an EKF. The EKF updates the
parameters using the following recursion:

𝑏̂
𝑖
= 𝑏̂
𝑖−1
+ (𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏̂
𝑖−1
) 𝑘
𝑖
,

𝑘
𝑖
= (1 + 𝑢

𝑇

𝑖
Σ
𝑖−1
𝑢
𝑖
)
−1

Σ
𝑖−1
𝑢
𝑖
,

Σ
𝑖
= (𝐼
𝑝+1

− 𝑘
𝑖
𝑢
𝑇

𝑖
) Σ
𝑖−1
,

(5)

where 𝑘
𝑖
is the kalman gain in 𝑖th step and Σ

𝑖
denote the

normalized posterior covariance matrix of 𝑏 given the infor-
mation available at time 𝑖.

At time 𝑖, the posterior covariance matrix of the state vec-
tor is approximated by Cov(𝑏

𝑖
) ≈ 𝜎̂

2

𝑖
Σ
𝑖
and the incremental

update rule for 𝜎 is as follows:

𝜎̂
2

𝑖
=
𝑖 − 1

𝑖
[𝜎̂
2

𝑖−1
+ (𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏̂
𝑖−1
)
2

(1 − 𝑢
𝑇

𝑖
𝑘
𝑖
)] . (6)
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The number of explanatory variables is 𝑝, and 𝛽 is the
𝑝 × 1 vector which contains the coefficients related to the
explanatory variables. Σ𝑝×𝑝

𝑖
is obtained by extracting the left

superior 𝑝 × 𝑝 block from the matrix 𝜎̂2
𝑖
Σ
𝑖
. For a given

contrast vector 𝑐, we can identify the voxels that show a
contrasted effect:

𝑇
𝑖
= (𝑐
𝑇
Σ
𝑝×𝑝

𝑖
𝑐)
−1/2

𝑐
𝑇
𝛽

𝑃
𝑖
(𝑐
𝑇
𝛽 > 0) ≈

1

2
[1 + erf (

𝑡
𝑖

√2
)] ,

(7)

where 𝑡
𝑖
= (𝑐
𝑇
Σ
𝑝×𝑝

𝑖
𝑐)
−1/2

𝑐
𝑇
𝛽 and erf(⋅) is the error function.

Testing for positive activations can be achieved at any time 𝑖
by thresholding the image of 𝑡

𝑖
-statistics.

2.2. Outlier Detection Method. The sensor failures or mea-
surement outliers will cause the sparse measurement noise
and they may cause rapid degrade on the detection perfor-
mance. We derive a new algorithm to detect the outliers in
order to eliminate the effect on the kalman filter algorithm.

We suppose that there is a sparse term 𝑧
𝑖
which is always

zero, and it has no effect on the distribution of the total noise;
then the general linear model can be modified as

𝑦
𝑖
= 𝑥
𝑖
𝛽 + 𝜀
𝑖
+ 𝑧
𝑖

𝜌
𝑖
(𝛽, 𝑎, 𝑧

𝑖
)

= {
√1 − 𝑎2 (𝑦

1
− 𝑥
𝑇

1
𝛽 − 𝑧
1
) if 𝑖 = 1

𝑦
𝑖
− 𝑥
𝑇

𝑖
𝛽 − 𝑧
𝑖
− 𝑎 (𝑦

𝑖−1
− 𝑥
𝑇

𝑖−1
𝛽 − 𝑧
𝑖−1
) otherwise.

(8)

Then linearize the 𝜌
𝑖
(𝛽, 𝑎, 𝑧

𝑖
) to 𝜌
𝑖
(𝑏, 𝑧
𝑖
):

𝜌 (𝑏, 𝑧
𝑖
) ≈ 𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏 − 𝑧
𝑖
, (9)

where 𝑞
𝑖
= 𝑦
𝑖
− 𝑎
𝑖−1
𝑥
𝑇

𝑖−1
𝛽
𝑖−1

and 𝑢
𝑖
= [𝑥

𝑖
− 𝑎
𝑖−1
𝑥
𝑇

𝑖−1
,

𝑦
𝑖−1

− 𝑥
𝑇

𝑖−1
𝛽
𝑖−1
−𝑧
𝑖−1
]
𝑇, 𝑧
𝑖
is an unknown variable at time 𝑖,

while 𝑧
𝑖−1

is an known variable at time 𝑖.
The linearized constraint equation is approximate as

follows:

𝑞
𝑖
= 𝑢
𝑇

𝑖
𝑏
𝑖
+ 𝑧
𝑖
+ V
𝑖
. (10)

The measurement update step of standard kalman filter
algorithm is essentially an optimization problem, and the
linearized parameter optimization problem can be described
as follow:

min V𝑇
𝑖
𝑉
−1V
𝑖
+ (𝑏 − 𝑏̂

𝑖−1
)
𝑇

Σ
−1
(𝑏 − 𝑏̂

𝑖−1
)

subject to 𝑞
𝑖
= 𝑢
𝑇

𝑖
𝑏 + V
𝑖
,

(11)

where 𝑏 and V
𝑖
are the unknown parameters to be estimated,

Σ denotes the steady-state error covariance associated with
predicting the next state 𝑏, and the measurement is 𝑞

𝑖
and the

measurement noise term V
𝑖
is a white noise with instanta-

neous Gaussian distribution𝑁(0, 𝑉).

We use the robust kalman filter method to detect the
outlier hidden in themeasurement by replacing themeasure-
ment update with the solution of a similar convex minimiza-
tion problem, which includes an 𝑙

1
term to handle the sparse

noise.
To (approximately) handle the additional sparse noise

term 𝑧
𝑖
, we modify the kalman filter measurement update

step. The modified optimization problem is as follows:

min V𝑇
𝑖
𝑉
−1V
𝑖
+ (𝑏 − 𝑏̂

𝑖−1
)
𝑇

Σ
−1
(𝑏 − 𝑏̂

𝑖−1
) + 𝜆

󵄩󵄩󵄩󵄩𝑧𝑖
󵄩󵄩󵄩󵄩1

subject to 𝑞
𝑖
= 𝑢
𝑇

𝑖
𝑏 + V
𝑖
+ 𝑧
𝑖
.

(12)

In the optimization problem (12), 𝑏, 𝑧
𝑖
, and V

𝑖
are the

variables to be estimated.
To solve this convex optimization problem, we adopt a

fast transformmethod proposed byMattingely andBoyd [13],
which makes problem solving become more effective:

𝐿
𝑖
= Σ
𝑖
𝑢
𝑖
(𝑢
𝑇

𝑖
Σ
𝑖
𝑢
𝑖
+ 𝑉)
−1

𝑄
𝑖
= (𝐼 − 𝑢

𝑇

𝑖
𝐿
𝑖
)
𝑇

𝑉
−1
(𝐼 − 𝑢

𝑇

𝑖
𝐿
𝑖
) + 𝐿
𝑇

𝑖
Σ
−1
𝐿
𝑖

𝑒
𝑖
= 𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏
𝑖−1
.

(13)

After the transformation, the original problem was trans-
formed into an equivalent convex quadratic program prob-
lem:

(𝑒
𝑖
− 𝑧
𝑖
)
𝑇

𝑄
𝑖
(𝑒
𝑖
− 𝑧
𝑖
) + 𝜆

󵄩󵄩󵄩󵄩𝑧𝑖
󵄩󵄩󵄩󵄩1.

(14)

With variable 𝑧
𝑖
, solving the convex quadratic program,

we can achieve the sparse noise 𝑧
𝑖
at each time. Fortunately,

for one voxel at time 𝑖, the size of 𝑒
𝑖
, 𝑧
𝑖
and 𝑄

𝑖
is 1 × 1.

Hence this optimization problem is equivalent to solve the
solution of a piecewise-quadratic function. This problem has
an analytical solution,meanswe can use analytical expression
instead of the searching optimization loop.

2.3. Robust Extended Kalman Filter. The standard kalman
filter consists of alternating time and measurement updates.
Since 𝛽 is slowly varying parameter, so it remains unchanged
in the time update step. Both of the time and measurement
updates are derived by the minimum mean-square error
estimates of 𝑏. As is shown in (5), the measurement update
equation is as follows:

𝑏̂
𝑖
= 𝑏̂
𝑖−1
+ (𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏̂
𝑖−1
) 𝑘
𝑖
. (15)

After solving the problem, we achieve an estimate outlier
value 𝑧̂

𝑖
and then combine it into the update step:

𝑏̂
𝑖
= 𝑏̂
𝑖−1
+ (𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏̂
𝑖−1
− 𝑧̂
𝑖
) 𝑘
𝑖
. (16)

Furthermore, we combine the 𝑧̂
𝑖
into the incremental

update rule for 𝜎:

𝜎̂
2

𝑖
=
𝑖 − 1

𝑖
[𝜎̂
2

𝑖−1
+ (𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏̂
𝑖−1
− 𝑧̂
𝑖
)
2

(1 − 𝑢
𝑇

𝑖
𝑘
𝑖
)] . (17)
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For the real-time 𝑡-test, the method is exactly the same as
Alexis Roche’s method.

Finally, the algorithm recursion is summarized as follows:

𝑞
𝑖
= 𝑦
𝑖
− 𝑎
𝑖−1
𝑥
𝑇

𝑖
𝛽
𝑖−1

(𝑖 = 1, 𝑧
1
= 𝑦
1
)

𝑢
𝑖
= [𝑥
𝑖
− 𝑎
𝑖−1
𝑥
𝑖−1
, 𝑦
𝑖−1
− 𝑥
𝑇

𝑖−1
𝛽
𝑖−1
− 𝑧
𝑖−1
]
𝑇

(𝑖 = 1, 𝑢
𝑖
= [𝑥
1
, 0]
𝑇

)

𝐿
𝑖
= Σ
𝑖−1
𝑢
𝑖
(𝑢
𝑇

𝑖
Σ
𝑖−1
𝑢
𝑖
+ 𝑉)
−1

𝑄
𝑖
= (𝐼 − 𝑢

𝑇

𝑖
𝐿
𝑖
)
𝑇

𝑉
−1
(𝐼 − 𝑢

𝑇

𝑖
𝐿
𝑖
) + 𝐿
𝑇

𝑖
Σ
−1

𝑖−1
𝐿
𝑖

𝑒
𝑖
= 𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏
𝑖−1

min
𝑧𝑖

(𝑒
𝑖
− 𝑧
𝑖
)
𝑇

𝑄
𝑖
(𝑒
𝑖
− 𝑧
𝑖
) + 𝜆

󵄩󵄩󵄩󵄩𝑧𝑖
󵄩󵄩󵄩󵄩1

𝑏̂
𝑖
= 𝑏̂
𝑖−1
+ (𝑞
𝑖
− 𝑢
𝑇

𝑖
𝑏̂
𝑖−1
− 𝑧̂
𝑖
) 𝑘
𝑖

𝑘
𝑖
= (1 + 𝑢

𝑇

𝑖
Σ
𝑖−1
𝑢
𝑖
)
−1

Σ
𝑖−1
𝑢
𝑖

Σ
𝑖
= (𝐼
𝑝+1

− 𝑘
𝑖
𝑢
𝑇

𝑖
) Σ
𝑖−1
.

(18)

3. Result

The algorithm is tested on a single run from an fMRI exper-
iment involving a visual and auditory task. The protocol is
block design, and the run consisted of 10 blocks, each block
including one activation epoch (20 s) and one control epoch
(10 s). We aim at finding the voxels associated with the visual
and auditory function; each activation epoch, the visual
stimulus, and auditory stimuli are present, but the intensity is
different.The data has an abrupt headmotion during the scan
in the 45th repetition time (TR) and the head motion caused
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severe motion artifacts.The repetition time was 2 seconds for
a total of 152 scans. Functional images have 80∗80∗33 voxels.

As is shown in Figure 1, the red curve is the refer-
ence vector obtained by convolving the stimulation onset
with a canonical hemodynamic response function, which is
assumed the time series should be; the blue curve is the time
series data of an active voxel; obviously there is an outlier at
the 45th TR.

In Figure 2, all of the three curves tend to be stabilized and
the correlation coefficient 𝛽 of activate voxel is all converge
to around 26. The green curve presents Cox method, and it
has a great drop at the outlier scan, and the extended kalman
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filter method has an abnormal rise at the 45th TR, while
our method has no great fluctuation at the outlier scan. This
shows its robustness to the sparse noise.

Cox method derived a threshold for active detection,
so there is no 𝑇 value in their method. Figure 3 shows the
comparison of the 𝑡-test value between the Robust extended
kalman filter and the extended kalman filter. We can see that
both of the two algorithms have significant decrease on the
outlier. Obviously, our method is more stable at the outlier
scan and has a higher 𝑇 value after the outlier scan.

We also tested the algorithm on an inactivate voxel. In
Figure 4, the blue curve is the time series of an inactive voxel
and at the 45th TR there is also an outlier.
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The 𝑡-test value of the inactive voxel should be low, as is
shown in Figure 5; the correlation curves of the three meth-
ods tend to be stable below zero. There is a big fluctuation at
the outlier scan according to Cox method and our method
finally obtained a stable value lower than the extended
kalman method. Before the outlier scan, the correlations
of the two methods show little difference. After the outlier
scan, our method becomes lower than the extended kalman
method.

In Figure 6, a comparison of the 𝑇 value between our
method and the extended kalman filter method is shown.We
can see that 𝑇 value of both the two algorithms has fluctu-
ations at the outlier, and the fluctuations of our method are
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Figure 8

smaller than those of extended kalman filter method. Our
method tends to be stable at a lower level. This again shows
our new method’s robustness to the sparse noise in the
inactive voxel.

Figure 7 is the result of outlier detection, as is shown in
Figures 1 and 4; the original signal contains a big outlier at
the 45th TR and themargin of the two outlier is different. Our
outlier detection algorithm detect two outliers from both the
active and inactive voxel at 45th TR, it is shown to be robust
for both the active and inactive voxels.

We have applied our detection algorithm to the whole
brain data, in the case where threshold value the same, the
final activation maps are shown in Figure 8; left half is the
activation result achieved by the extended kalman algorithm
and right half is the result of the algorithm described in this
paper. As expected for a visual auditory task, activations are
found in the visual cortex and auditory cortex on both sides.
This means that, under the same threshold of 𝑇 value, we can
get more voxels associated with the task.

We have a C++ version of the algorithm, and we test it
on a 16-core processor workstation, in which computing hole
brain (80∗80∗32) voxels costs 0.3 s to 0.4 s; there is plenty of
time to do some other processes. Our algorithm can be used
on the real-time fMRI application.

4. Discussion

In our algorithm, parameter 𝜆 needs to be defined before the
experiment. In the optimization object function, the parame-
ter 𝜆 can be regarded as the weight of the sparse term.With a
large 𝜆, the outlier detection algorithm will find nothing and
result zero in 𝑧

𝑖
, the measurement update will be the same as

the extended kalman filter method. So if no outlier is
detected, the result of the algorithmwill be the same as that of
in the extended kalman filter. Small 𝜆willmake the algorithm
modify themeasurement update frequently. Under this situa-
tion, the mistaken outlier will have an effect on the noise dis-
tribution and cause the unstability of the kalman filter. Here

we can regard 𝜆 as the detection threshold and by holding a
large threshold we can detect the obvious outlier, which may
be caused by the machine failure. The value of 𝜆 in our algo-
rithm is in a wide range.We suggest taking a relatively large 𝜆
to test if the result is stable. In this experiment, we test 𝜆 from
50 to 300 and the algorithm can detect the outlier and the
result is robust to the outlier.

The fMRI signal has a low signal to noise ratio, so we can-
not give an exact threshold value and this algorithm provides
a method to threshold the signal, and we can even achieve
the value of the outlier and use it to modify the detection
algorithm. fMRI experiment is complex, which needs coop-
eration with subject and operator; any problem of them may
cause the experiment to fail. Our algorithm can detect this
kind of failure and it can detect the outliers, which may have
a great effect on follow processes, where we can stop the
experiment to check the problemor justmark it and eliminate
the outlier data after the experiment.

In future works, we will explore a proper method to
determine 𝜆, just enough to detect the outlier but not cause
the unstability of the kalman filter algorithm.

5. Conclusion

The robust kalman filter is introduced in the activation
detection of fMRI experiment. Convex optimization method
is used to modify the extended kalman filter by introducing a
sparse noise term.The robustness of ourmethod to the sparse
noise is improved. Moreover, the performance of the pro-
posed method does not degrade rapidly when disturbances
are involved. When applied to the time series voxels, our
method can obtain more stable 𝑡-test value in both activate
and inactivate voxels.The proposed algorithm can also detect
outliers, whichmay have a great effect on following processes.
The detected outlier information can be used to reject or
modify the bad data, which may have potential benefit for
real-time applications that require higher data quality.
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