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Abstract 

Background:  Empirically assessing the impact of preselection on genetic evaluation of preselected animals requires 
comparing scenarios that take different approaches into account, including scenarios without preselection. How-
ever, preselection is almost always performed in animal breeding programs, so it is difficult to have a dataset without 
preselection. Hence, most studies on preselection have used simulated datasets, and have concluded that genomic 
estimated breeding values (GEBV) from subsequent single-step genomic best linear unbiased prediction (ssGBLUP) 
evaluations are unbiased. The aim of this study was to investigate the impact of genomic preselection (GPS) on accu-
racy and bias in subsequent ssGBLUP evaluations, using data from a commercial pig breeding program.

Methods:  We used data on average daily gain during performance testing, average daily gain throughout life, 
backfat thickness, and loin depth from one sire line and one dam line of pigs. As these traits have different weights in 
the breeding goals of the two lines, we analyzed the lines separately. For each line, we implemented a reference GPS 
scenario that kept all available data, against which the next two scenarios were compared. We then implemented two 
other scenarios with additional layers of GPS by removing all animals without progeny either (i) only in the validation 
generation, or (ii) in all generations. We conducted subsequent ssGBLUP evaluations for each GPS scenario, using all 
the data remaining after implementing the GPS scenario. Accuracy and bias were computed by comparing GEBV 
against progeny yield deviations of validation animals.

Results:  Results for all traits and in both lines showed a marginal loss in accuracy due to the additional layers of 
GPS. Average accuracies across all GPS scenarios in the two lines were 0.39, 0.47, 0.56, and 0.60, for average daily gain 
during performance testing and throughout life, backfat thickness, and loin depth, respectively. Biases were largely 
absent, and when present, did not differ greatly between the GPS scenarios.

Conclusions:  We conclude that the impact of preselection on accuracy and bias in subsequent ssGBLUP evaluations 
of selection candidates in pigs is generally minimal. We expect this conclusion to apply for other animal breeding pro-
grams as well, since preselection of any type or intensity generally has the same effect in animal breeding programs.
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Background
In animal breeding, parents of the next generation are 
often selected in multiple stages, with the initial stages of 
selection referred to as preselection [1–3]. Selection can-
didates that survive preselection are called preselected 
animals [1–3], and those that do not are called preculled 
animals [3, 4]. The aim of preselection is to reduce the 
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costs and efforts required for animals that are not of 
interest to the breeding program, and it achieves this by 
avoiding phenotyping or further testing of preculled ani-
mals. Due to the introduction of genomic prediction [5], 
preselection is now mostly based on genomic estimated 
breeding values (GEBV) of young animals even before 
they have records for any trait. This type of preselection 
is called genomic preselection (GPS; e.g. [1, 2]). The pop-
ularity of GPS is due to genotyping becoming cheaper 
by the day, and to the reasonable reliabilities of GEBV 
(e.g. [6–8]). As genomically preculled animals have nei-
ther progeny nor records for some or all breeding goal 
traits, they are generally not included in subsequent 
genetic evaluations (i.e. genetic evaluations that come 
after preselection). Thus, GPS decreases the amount of 
information available for subsequent genetic evaluations 
of preselected animals. This may not only lead to loss of 
accuracy, but may also result in bias in the GEBV. Biased 
GEBV can lead to incorrect estimates of genetic trends, 
and incorrect ranking of animals across generations [9]. 
Properly assessing the impact of preselection on subse-
quent genetic evaluation of preselected animals requires 
comparison of scenarios that take different approaches 
into account, including a scenario without preselection. 
Because preselection is almost always performed in ani-
mal breeding programs, it is difficult, if not impossible, 
to have a scenario without preselection. This is why most 
studies on preselection have used simulated datasets (e.g. 
[1, 3, 10, 11]). These studies have shown that when a sub-
sequent genetic evaluation of preselected animals is done 
using pedigree-based best linear unbiased prediction 
(PBLUP), preselection results in accuracy loss and bias in 
the estimated breeding values (EBV) of preselected ani-
mals [1, 3, 9–12]. Some of these studies [10–13] further 
showed that the accuracy loss and bias caused by GPS 
can be avoided if the information on preculled animals 
that was used in preselection is included in subsequent 
PBLUP evaluations. However, our previous studies [3, 
4] have shown that when the subsequent genetic evalu-
ation is done with single-step genomic BLUP (ssGB-
LUP), genomic EBV (GEBV) of preselected animals are 
estimated without bias. Furthermore, we showed that 
to avoid GPS bias in subsequent ssGBLUP evaluation of 
preselected animals, genotypes of their preculled sibs are 
only needed if not all of their parents are genotyped [4].

In our previous studies [3, 4], which were based on 
simulated datasets, preselection was the only possible 
source of bias in ssGBLUP evaluations. However, in real 
breeding programmes, other sources of bias in ssGB-
LUP evaluations may exist and are potentially difficult to 
control. Therefore, the impact of preselection might be 
confounded by the impact of these other factors. These 
other possible sources of bias include, among others, 

inaccurate or incomplete pedigree [14], inaccurately 
estimated additive genetic (co)variances [14], and a ref-
erence population of selectively genotyped animals [15, 
16]. Although some approaches to reduce the bias caused 
by these factors have been developed, the bias is usually 
not completely eliminated in evaluations using real data 
(e.g. [14–16]). This may explain the observation that, in 
practice, GEBV obtained from ssGBLUP evaluations are 
sometimes biased.

Thus, the aim of this study was to investigate the 
impact of GPS on accuracy and bias in subsequent ssG-
BLUP evaluations, using data from a commercial pig 
breeding program in which preselection was performed. 
To achieve this aim, we used the full dataset as control 
and retrospectively implemented additional layers of 
GPS. The additional layers of GPS were implemented 
by discarding animals that did not have progeny in the 
data. Since GEBV were used to select parents of next 
generations in this breeding program, discarding animals 
without progeny in the dataset can be considered as addi-
tional GPS. Then, we compared results from subsequent 
ssGBLUP evaluations after these additional layers of 
GPS against results from ssGBLUP evaluation using the 
full available data. Our subsequent genetic evaluations 
only involved reevaluation of preselected animals, either 
with or without preculled animals in the subsequent 
evaluations.

Methods
Data
We obtained data on pig production traits (average daily 
gain during performance testing (ADGT), average daily 
gain throughout the pig’s lifetime (ADGL), backfat thick-
ness, and loin depth) that were collected between 1970 
and 2020 for one sire line and one dam line from Topigs 
Norsvin. These traits are part of the breeding goals of 
each line. However, there was more emphasis on repro-
duction traits than on production traits in the dam line. 
Details on the amount of data used in this study are in 
Table  1. The data were recorded on originally prese-
lected animals (i.e. the animals preselected by Topigs 
Norsvin), with the sire line being much more balanced 
than the dam line, in terms of proportions of males and 
females with records per generation (the ratio of males 
with records to females with records is about 50:50 in 
the sire line and about 20:80 in the dam line). The impact 
of genomic preselection (GPS) was evaluated separately 
in the two lines, because the studied traits had different 
weights in the breeding goals of the two lines. Ances-
tors from the same line and year of birth with unknown 
parents were considered as a separate base population in 
the pedigree. Each base population was fitted as a genetic 
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group to account for genetic trend and differences in ori-
gin and selection history [17].

Training and validation generations
For each line, we split the animals into two groups, based 
on a cut-off birth date. Animals born before or on the 
cut-off birth date were used as the training population, 
and animals born after the cut-off birth date were used as 
the validation population. This cut-off date was 31st Jan-
uary, 2017 for the sire line, and 31st December, 2015 for 
the dam line. Then, from the validation population, ani-
mals that met the following requirements were selected 
as validation animals: (1) none of their parents were in 
the validation population, and (2) the animals had phe-
notyped progeny. The first requirement ensured that the 
validation animals were from only one generation, and 
the second requirement enabled the comparison of the 
GEBV of the validation animals against their progeny 
yield deviations (PYD) [18]. Since records on validation 
animals were included in some of our subsequent evalu-
ation scenarios (as described later), we chose to use PYD 
as proxy for true breeding values (TBV) because they 
were estimated from phenotypes that were not included 
in the subsequent genetic evaluations.

Genomic data and quality control
Our genomic data included genotypes of animals for 
about 21,000 single nucleotide polymorphisms (SNPs) 
that segregated in both lines, and were distributed across 

the 18 porcine autosomes. The SNPs were genotyped 
using a custom SNP chip. We used the Plink software 
[19] for all quality control operations on our genomic 
data. For each GPS scenario (as described later) and 
for each line, animals and SNPs with call rates less than 
90% were removed, as well as SNPs that deviated from 
Hardy–Weinberg equilibrium (Hardy–Weinberg equi-
librium exact test p value = 10–15), or had a minor allele 
frequency lower than 0.005. Table  1 contains the sum-
mary of the pedigree, genomic and phenotypic informa-
tion used in the subsequent genetic evaluations following 
each GPS scenario.

Computation of precorrected phenotypes
In our genetic evaluations, we used precorrected rather 
than raw phenotypes as records. Animals from different 
lines were sometimes raised together, so they shared 
some fixed and non-genetic random effects. Because 
we studied the impact of GPS within lines, it was nec-
essary to correct phenotypes for all non-genetic effects 
before the data were divided into lines. Another moti-
vation for using precorrected phenotypes is that the 
additional GPS scenarios (as described in detail in the 
next section) could result in some classes of the non-
genetic effects to be left with only one or a few animals. 
Thus, correcting for these effects would be less accurate 
compared to correcting for them before implementing 
our additional GPS scenarios. To compute precorrected 

Table 1  Data used in subsequent ssGBLUPa evaluations following each preselection scenario, after quality control

a Single-step genomic best linear unbiased prediction
b In the reference scenario, the subsequent ssGBLUP evaluation used the entire available data until the validation generation
c Validation generation preselection (VGP) scenario, in which all animals in the validation generation without progeny in the data were discarded
d Multi-generation preselection (MGP) scenario, in which all animals in the validation and training generations without progeny in the data were discarded
e About 87% and 70% of the animals in the sire and dam lines, respectively, had records for the four traits used in this study, and even larger numbers had records for 
any two and three traits. We decided to keep any animal with a record for at least one of the traits (92% and 87% of the animals in the sire and dam lines, respectively) 
because every animal in the analyses would benefit from records on relatives and records of correlated traits (see Additional file 1: Table S1), in addition to its own 
record on the primary trait

Data in the subsequent ssGBLUP evaluation/
preselection scenario

With records on animals in the validation 
generation

Without records on animals in the 
validation generation

Referenceb VGPc MGPd Referenceb VGPc MGPd

Sire line (number of validation animals per trait is ± 1383)

 Number of animals in the pedigree 81,875 60,950 12,777 81,875 60,950 12,777

 Number of animals with record for at least one traite 75,129 54,217 6065 52,846 52,846 4694

 Number of animals with genotypes 33,506 23,315 5131 33,506 23,315 5131

 Number of SNP genotyped 20,550 20,963 20,926 20,550 20,963 20,926

Dam line (number of validation animals per trait is ± 2051)

 Number of animals in the pedigree 160,426 124,031 33,485 160,426 124,031 33,485

 Number of animals with record for at least one trait 139,403 103,018 12,514 100,710 100,710 10,206

 Number of animals with genotypes 50,895 36,369 9072 50,895 36,369 9072

 Number of SNP genotyped 19,199 19,256 20,647 19,199 19,256 20,647



Page 4 of 15Jibrila et al. Genetics Selection Evolution           (2022) 54:48 

phenotypes ( yc) , we first ran the following multi-trait 
pedigree-based animal model:

where for each trait ( j ): yj is the vector of phenotypes; bj 
is the vector of fixed effects, with incidence matrix Xj ; pj 
is the vector of non-genetic random effects, with inci-
dence matrix Wj ; uj is the vector of breeding values, with 
incidence matrix Zj ; and ej is the vector of residuals. The 
model assumed uj and ej to be normally distributed, each 
with a mean of zero (when ignoring the estimated genetic 
group effects for uj ). For all traits (and across all ani-
mals), u and e had variance–covariance matrices A ⊗G 
and I⊗ R , respectively, where A is the pedigree relation-
ship matrix among animals, I is an identity matrix with 
dimensions equal to the number of animals with records, 
and G and R are, respectively, the trait-by-trait additive 
genetic and residual variance–covariance matrices. Then, 
for each animal ( i ) with a phenotype for trait j , we com-
puted its precorrected phenotype ( ycij ) as:

The (co)variance components used for this analysis 
were estimated, before separating the data into lines 
using the four-trait pedigree-based animal model of 
Eq.  (1) in ASReml [20]. All computations of (G)EBV 
were performed using the MiXBLUP software [21]. 
We decided to use a pedigree-based model (instead of 

(1)yj = Xjbj +Wjpj + Zjuj + ej,

(2)ycij = ûij + êij.

a single-step model) to estimate the variance compo-
nents because previous studies [22, 23] showed that in 
populations undergoing genomic selection (as in our 
data), pedigree-based models estimate variance compo-
nents in the pedigree founders at least as well as single-
step models.

Preselection
For each line, we implemented a reference scenario and 
two scenarios that added layers of GPS. The reference 
scenario—against which the other scenarios were com-
pared—only included the original GPS implemented by 
Topigs Norsvin. Thus, the subsequent ssGBLUP evalu-
ations following the reference scenario used the entire 
available data until the validation generation. For the sec-
ond scenario, called validation generation preselection 
(VGP) scenario, we implemented additional GPS only in 
the validation generation, by discarding all animals in the 
validation generation that had no progeny in the data, but 
that did have genotypes and/or phenotypes. For the third 
scenario, called multi-generation preselection (MGP) 
scenario, we discarded any animal in the validation and 
training generations without progeny in the data. Ani-
mals kept after each GPS scenario are shown in Fig. 1.

Subsequent genetic evaluations
Following each GPS scenario, we implemented a subse-
quent ssGBLUP evaluation with all animals that survived 
the GPS. We call this evaluation ‘subsequent’ because it 
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Fig. 1  Overview of groups of animals used in subsequent ssGBLUP for each of the considered GPS scenarios
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came after the initial evaluation that provided the GEBV 
used in preselection. The subsequent  ssGBLUP evalu-
ations were conducted with and without records (i.e. 
own precorrected phenotypes) on the animals in the 
validation generation (see Table  1), to represent traits 
with records (e.g. production traits) and those without 
records (e.g. reproduction traits) available during sub-
sequent evaluations. Progeny of validation animals were 
not included in the subsequent genetic evaluations. We 
estimated variance components for each preselection 
scenario and each line, using a pedigree-based multi-
trait animal model in ASReml. We used these scenario-
specific variance components in the subsequent genetic 
evaluations to ensure that the variance components used 
were appropriate for the precorrected phenotypes. In the 
subsequent genetic evaluations, the (multi-trait) model 
used for the estimations of both variance components 
and breeding values for each trait ( j ) was:

where for each trait ( j ): yj is the vector of precorrected 
phenotypes; 1j is an incidence vector of 1s, and Zj is the 
incidence matrix, linking precorrected phenotypes to 
overall mean and random animal effects, respectively; 
µj is the overall mean; uj is the vector of breeding val-
ues; and ej is the vector of residuals. The model assumed 
uj and ej to be normally distributed, each with a mean of 
zero (when ignoring the estimated genetic group effects 
for uj ). For all traits (and across all animals), u and e had 
variance–covariance matrices H⊗G and I⊗ R , respec-
tively, where H is the combined genomic and pedigree 
relationship matrix among animals as explained hereaf-
ter, I is an identity matrix with dimensions equal to the 
number of animals with records, and G and R are, respec-
tively, the trait-by-trait additive genetic and residual 
variance–covariance matrices. We also repeated all sub-
sequent genetic evaluations using PBLUP, to verify the 
impact of using genotypes on the observed results.

Implementation of single‑step GBLUP
The inverse of the combined pedigree-genomic relation-
ship ( H−1 ) was obtained as follows [24, 25]:

where A−1 is the inverse of the pedigree relationship 
matrix, and A22 is part of the pedigree relationship matrix 
referring to genotyped animals. We considered inbreed-
ing in the set-up of both A−1 and A22 , since ignoring 
it has been reported to cause biases in GEBV [14]. The 

(3)yj = 1jµj + Zjuj + ej,

(4)

H−1
= A

−1
+

[
0 0

0 (0.95Gt + 0.05A22)
−1

− A−1
22

]
,

adjusted genomic relationship matrix Gt was computed 
as follows [15, 26]:

where fp is the average pedigree inbreeding coefficient 
across genotyped animals, Gr is the raw genomic rela-
tionship matrix computed following the first method of 
VanRaden [27], and 11′ is a matrix of 1s. Since in this 
dataset the animals with genotypes were selectively geno-
typed, this transformation made sure that the impact of 
selective genotyping was taken care of and that G and A22 
were on the same scale and therefore compatible [15, 16]. 
To compute Gr , (current) allele frequencies were esti-
mated using all available genomic data after quality con-
trol. We gave a weight of 0.95 to Gt and of 0.05 to A22 to 
ensure that G was invertible [24, 25].

Measures of accuracy and bias in the subsequent genetic 
evaluations
We used progeny yield deviation (PYD) [18] as a proxy 
for true breeding value (TBV), against which GEBV were 
compared when computing accuracy and bias. To com-
pute PYD, we ran a multi-trait pedigree-based animal 
model for each line in MiXBLUP, with precorrected phe-
notypes as records and an overall mean as the only fixed 
effect (Eq. 3). The (co)variance components used in this 
model were also estimated for each line in ASReml, from 
precorrected phenotypes, using a multi-trait pedigree-
based animal model that only included a mean fixed 
effect (Eq. 3). From the output of this analysis, we com-
puted PYD for all validation sires and dams ( i ) for each 
trait ( j ) as:

where PYDij is the PYD of a sire or dam i for trait j , ycpj 
is the precorrected phenotype of a progeny p of the sire 
or dam i for trait j , amj is the breeding value of the mate 
of sire or dam i (for trait j ) in producing offspring p , and 
n is the number of phenotyped progeny of sire or dam i . 
Estimation of PYD was done before removing progeny of 
validation animals from the data. Since progeny of vali-
dation animals were not included in subsequent genetic 
evaluations, comparing (G)EBV to PYD can be consid-
ered as a forward-in-time validation. We computed the 
approximate reliability of PYD for each validation ani-
mal for each trait, and used this approximate reliability 
as the weighting factor for computing accuracy and bias, 
to account for different numbers of progeny used to 

(5)Gt =

(
1− fp

)
Gr + 2fp11

′

,

(6)PYDij =

∑n
p=1 ycpj −

1
2amj

n
,
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estimate PYD for different validation animals. The reli-
ability of PYD was approximated as:

where n is the validation animal’s number of half-sib 
progeny with records, and h2 is the heritability of the 
trait [28]. For convenience, we assumed that all the prog-
eny of a validation animal were half-sibs, although some 
were full-sibs. We also computed unweighted accuracy 
and bias, and accuracy and bias weighted by approximate 
PYD reliabilities obtained when considering all progeny 
as full sibs. We did not observe statistically significant 
differences between the results, so we decided to report 
only the accuracy and bias weighted by approximate reli-
ability computed when considering all progeny as half 
sibs (as in Eq. (7)).

Validation accuracy was computed as a weighted Pear-
son’s correlation coefficient between PYD and GEBV 
of all validation animals, using the ‘cor.test’ function of 
the ‘stats’ package in R [29]. We computed the standard 
errors (SE) of the estimates from the confidence intervals 
(CI) produced by the ‘cor.test’ function. Validation accu-
racy is not numerically the same as the accuracy of pre-
dicting TBV, since PYD have a non-genetic component, 
in addition to TBV [18]. However, validation accuracy 
and accuracy of predicting TBV increase and decrease 
together [30], and this property of validation accuracy 
enabled us to compare the subsequent genetic evaluation 
scenarios.

We computed two types of bias. The first type is level 
bias, which is a measure of whether estimated genetic 
gain is equal to true genetic gain. Level bias was com-
puted as the weighted mean difference between PYD and 
half of the (G)EBV across all validation animals, expressed 
in additive genetic standard deviation (SD) units of the 
trait. We used the ‘weighted.mean’ function of the ‘stats’ 
package in R [29] to compute estimates of the weighted 
mean differences, and the ‘weighted_se’ function of the 
‘diagis’ package in R [31] to compute SE of the estimates. 
A negative difference means that the GEBV were on aver-
age overestimated, and therefore genetic gain was over-
estimated, and vice versa. Since PYD were computed 
from a dataset that included information on progeny of 
validation animals and (G)EBV were computed without 
information on progeny of validation animals, PYD and 
(G)EBV were on different scales. Therefore, before com-
puting differences between PYD and half of the (G)EBV 
of validation animals, we scaled PYD and (G)EBV to be 
expressed against the same genetic base, consisting of the 
first three training generations, by the following steps. 

(7)
1/4nh

2

1+ 1/4(n − 1)h2
,

From the model used to compute PYD, we computed 
average EBV across all animals in the first three training 
generations; next, we subtracted half of this average EBV 
from PYD of each validation animal; then, for each sub-
sequent genetic evaluation, we computed the average (G)
EBV of all animals in the first three training generations; 
and finally, we subtracted this average (G)EBV from (G)
EBV of each validation animal.

The second type of bias that we computed is disper-
sion bias, which is a measure of how correctly relative 
differences in (G)EBV between animals are estimated, i.e. 
whether the scale of (G)EBV is correct. Dispersion bias 
was measured by the weighted regression coefficient of 
PYD on (G)EBV for all validation animals. We used the 
‘lm’ function of the ‘stats’ package in R [29] to compute 
both the estimates and SE of the regression coefficients. 
If the regression coefficient is equal to its expected value, 
then there is no dispersion bias, and differences in (G)
EBV of animals are correctly scaled. A regression coef-
ficient lower than the expected value means that dif-
ferences in (G)EBV between animals are inflated, and a 
regression coefficient higher than the expected value 
means that differences in (G)EBV between animals are 
deflated. In this study, the expected value of the regres-
sion coefficient is 0.5, because PYD only includes half of 
the breeding value of a parent.

Results
Table  2 shows the means and SD of precorrected phe-
notypes of the traits analyzed, after implementation of 
the additional layers of genomic preselection (GPS). The 
results show that implementation of GPS was effective, 
as the lines were selected (and preselected) for increased 
feed efficiency (i.e. slightly increased feed intake and 
highly increased average daily gain), slightly decreased 
backfat thickness, and slightly increased loin depth. Since 
the validation generation for both the validation genera-
tion preselection (VGP) and multi-generation preselec-
tion (MGP) scenarios contained only the preselected 
animals, the means and SD of precorrected phenotypes 
of the traits are the same for these two GPS scenarios 
when only considering the validation animals. When only 
the validation generation was considered (i.e. the middle 
part of Table 2), the means of precorrected phenotypes of 
ADGT and ADGL increased from the reference scenario 
to the VGP and MGP scenarios. At the same time, the 
SD of precorrected phenotypes of these traits decreased 
from the reference scenario to the VGP and MGP sce-
narios. In other words, the means of precorrected phe-
notypes of these traits were larger and the SD of the 
precorrected phenotypes were lower for the preselected 
animals in the validation generation than for all the 
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animals in the validation generation. For backfat thick-
ness, both the mean and SD decreased slightly from the 
reference to the VGP and MGP scenarios. For loin depth, 
the change was also limited, with a slightly increasing 
mean and a slightly decreasing SD, from the reference to 
the VGP and MGP scenarios. MGP was more effective 
than VGP as shown in the right part of Table 2 (i.e. when 
the means and SD were computed across the entire data). 
For the positively (pre)selected traits (i.e. ADGT, ADGL, 
and loin depth), the means were higher for MGP than for 
VGP. For backfact, which was negatively (pre)selected, 
the mean was lower for MGP than for VGP. As expected, 
SD were in all cases lower for MGP than for VGP.

The results of the subsequent genetic evaluations con-
ducted with ssGBLUP and with PBLUP are in Tables  3 
and 4 and Tables 5 and 6, respectively. For each param-
eter in these tables (i.e. estimated heritability, validation 
accuracy, level bias, and dispersion bias), both the esti-
mate and its SE are provided. A one-tailed two-sample 
t-test at a 5% significance level was used to determine 
whether two estimates were different. We included the 
estimated heritabilities in our results because they help 
explain the results for accuracy and bias.

For both lines, the estimated heritabilities for ADGT 
and ADGL did not differ between the reference and VGP 
scenarios, but increased in the MGP scenarios. For back-
fat thickness, heritability estimates did not differ between 
the GPS scenarios, neither in the sire line nor in the dam 
line. For loin depth, heritability estimates did not differ 
between GPS scenarios in the sire line, but in the dam 
line they were higher in the MGP scenarios than in the 
reference and VGP scenarios. For all traits, the above 

trends in heritability estimates were observed regardless 
of whether records on animals in the validation genera-
tion were included or not when estimating heritabilities. 
Without records on animals in the validation genera-
tion in the subsequent ssGBLUP evaluations, all results 
(including estimated heritabilities) for the reference and 
VGP scenarios were the same. The increases in herit-
abilities observed with additional layers of preselection 
were generally due to decreases in residual variances with 
additional layers of preselection, while additive genetic 
variances generally did not differ between GPS scenar-
ios (see Additional file 2: Table S2 and Additional file 3: 
Table S3).

Subsequent ssGBLUP evaluations with records 
on validation animals
Validation accuracies did not differ between GPS sce-
narios for all traits in both lines, except for ADGT in the 
dam line, for which the accuracy was lower in the MGP 
scenario than in the reference scenario (Table  4). Ten-
dencies (i.e. indications that may not be statistically sig-
nificant) towards lower accuracies with more GPS were 
however observed for all traits in both lines (Tables  3, 
4). In both lines, level bias was absent in all scenarios for 
loin depth, and only in some scenarios for ADGT, ADGL 
and backfat thickness. Even when level bias was present, 
it remained marginal. The highest value of level bias 
recorded was -0.17 additive genetic SD units, under the 
VGP scenario for ADGL in the sire line (Table 3). Disper-
sion bias was absent (i.e. the regression coefficient of PYD 
on GEBV did not differ from its expected value of 0.5) for 
all traits in the sire line (Table 3), except in the VGP and 

Table 2  Means and SD (in brackets)a of precorrected phenotypes of the traits used in this study after each GPS scenario

ADGT average daily gain during performance testing, ADGL ADG throughout life
a Both means and SD are in additive genetic SD units
b In the reference scenario, the subsequent ssGBLUP evaluation utilized the entire available data until the validation generation
c Validation generation preselection (VGP) scenario, in which all animals in the validation generation without progeny in the data were discarded
d Multi-generation preselection (MGP) scenario, in which all animals in the validation and training generations without progeny in the data were discarded

Trait/preselection scenario Within the validation generation only Across the entire dataset

Referenceb VGPc/MGPd VGP MGP

Sire line

 ADGT (g/day) 0.26 (2.01) 1.03 (1.59) − 0.17 (2.05) 0.77 (1.71)

 ADGL (g/day) 0.07 (1.97) 0.81 (1.78) − 0.21 (1.95) 0.61 (1.67)

 Backfat thickness (mm) − 0.32 (1.20) − 0.35 (1.15) − 0.02 (1.32) − 0.13 (1.25)

 Loin depth (mm) 0.34 (1.32) 0.35 (1.29) 0.23 (1.34) 0.27 (1.30)

Dam line

 ADGT (g/day) 0.40 (1.87) 1.16 (1.69) − 0.12 (1.75) 0.71 (1.60)

 ADGL (g/day) 0.21 (1.84) 0.98 (1.61) − 0.19 (1.81) 0.58 (1.62)

 Backfat thickness (mm) 0.10 (1.32) 0.06 (1.28) − 0.03 (1.43) − 0.09 (1.41)

 Loin depth (mm) 0.31 (1.42) 0.19 (1.39) 0.28 (1.39) 0.33 (1.37)
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MGP scenarios for backfat thickness, where there was 
inflation (i.e. the regression coefficient was less than 0.5). 
However, dispersion bias was present for all traits in the 
dam line (Table  4), except in the reference scenario for 
ADGT and the MGP scenario for loin depth. When dis-
persion bias was present in the dam line, the regression 
coefficients were higher than 0.5 (i.e. they were deflated) 
in the reference and VGP scenarios for loin depth, and 
lower than 0.5 in all other cases. However, the estimates 
of the regression coefficients did not differ across GPS 
scenarios within traits and lines (Tables  3, 4), although 
they tended to decrease from the reference to the VGP to 
the MGP scenarios.

Subsequent ssGBLUP evaluations without records 
on validation animals
For ADGT, validation accuracy did not differ between 
GPS scenarios in the sire line (Table  3), but in the dam 
line it was lower in the MGP scenario than in the refer-
ence/VGP scenarios (Table  4). For ADGL, validation 
accuracies did not differ between GPS scenarios in both 
lines, but only tended to decrease from the reference/
VGP to the MGP scenarios (Tables  3, 4). For backfat 
thickness, validation accuracy in the sire line decreased 
from the reference/VGP scenarios to the MGP scenario, 
but did not differ between GPS scenarios in the dam 
line. For loin depth, validation accuracies in both lines 
decreased from the reference/VGP to the MGP scenar-
ios. Level bias was present in the reference and VGP sce-
narios for ADGT in the sire line, but absent in the MGP 
scenario, while in the dam line, level bias was absent in 

Table 3  Performance of ssGBLUPa in the subsequent evaluations in the sire line (SE in brackets)

a Single-step genomic best linear unbiased prediction
b In the reference scenario, the subsequent ssGBLUP evaluation used the entire available data until the validation generation
c Validation generation preselection (VGP) scenario, in which all animals in the validation generation without progeny in the data were discarded
d Multi-generation preselection (MGP) scenario, in which all animals in the validation and training generations without progeny in the data were discarded
e The heritability was estimated from an equivalent pedigree-based animal model in ASReml
f Validation accuracy was computed as weighted Pearson’s correlation coefficient between progeny yield deviation and genomic estimated breeding value of all 
validation animals
g Level bias was computed as the weighted mean difference between progeny yield deviation and half of the genomic estimated breeding value across all validation 
animals, expressed in additive genetic standard deviation units of the trait
h Dispersion bias was measured by the weighted regression coefficient of progeny yield deviation on genomic estimated breeding value of all validation animals

Measure/preselection scenario With records on animals in the validation 
generation

Without records on animals in the validation 
generation

Referenceb VGPc MGPd Reference VGP MGP

Average daily gain during performance testing, size of validation population = 1382

 Estimated heritabilitye 0.24 (0.01) 0.25 (0.01) 0.33 (0.02) 0.24 (0.01) 0.24 (0.01) 0.35 (0.03)

 Validation accuracyf 0.51 (0.02) 0.51 (0.02) 0.50 (0.02) 0.47 (0.02) 0.47 (0.02) 0.44 (0.02)

 Level biasg − 0.09 (0.02) − 0.15 (0.02) − 0.01 (0.02) − 0.11(0.02) − 0.11(0.02) − 0.02 (0.02)

 Dispersion biash 0.48 (0.02) 0.49 (0.02) 0.48 (0.02) 0.48 (0.02) 0.48 (0.02) 0.46 (0.03)

Average daily gain throughout life, size of validation population = 1383

 Estimated heritability 0.26 (0.01) 0.28 (0.01) 0.33 (0.03) 0.27 (0.01) 0.27 (0.01) 0.35 (0.03)

 Validation accuracy 0.57 (0.02) 0.56 (0.02) 0.55 (0.02) 0.52 (0.02) 0.52 (0.02) 0.48 (0.02)

 Level bias − 0.10 (0.02) − 0.17 (0.02) − 0.06 (0.02) − 0.14 (0.02) − 0.14 (0.02) − 0.08 (0.02)

 Dispersion bias 0.48 (0.02) 0.49 (0.02) 0.50 (0.02) 0.47 (0.02) 0.47 (0.02) 0.49 (0.02)

Backfat thickness, size of validation population = 1383

 Estimated heritability 0.58 (0.01) 0.58 (0.01) 0.58 (0.02) 0.58 (0.01) 0.58 (0.01) 0.60 (0.03)

 Validation accuracy 0.69 (0.01) 0.68 (0.01) 0.67 (0.01) 0.63 (0.02) 0.63 (0.02) 0.56 (0.02)

 Level bias − 0.02 (0.01) − 0.03 (0.01) − 0.03 (0.01) − 0.05 (0.01) − 0.05 (0.01) − 0.09 (0.01)

 Dispersion bias 0.48 (0.01) 0.47 (0.01) 0.47 (0.01) 0.44 (0.01) 0.44 (0.01) 0.42 (0.02)

Loin depth, size of validation population = 1383

 Estimated heritability 0.55 (0.01) 0.55 (0.01) 0.55 (0.03) 0.55 (0.01) 0.55 (0.01) 0.57 (0.03)

 Validation accuracy 0.68 (0.01) 0.67 (0.01) 0.65 (0.02) 0.62 (0.02) 0.62 (0.02) 0.54 (0.02)

 Level bias 0.01 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) − 0.01 (0.01)

 Dispersion bias 0.50 (0.01) 0.50 (0.01) 0.48 (0.02) 0.48 (0.02) 0.48 (0.02) 0.45 (0.02)
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the reference and VGP scenarios for ADGT, and present 
in the MGP scenario. For ADGL, level bias was present 
in all GPS scenarios in the sire line, but only present in 
the MGP scenario in the dam line. For backfat thickness, 
level bias was present for all GPS scenarios in the sire 
line, but absent for all GPS scenarios in the dam line. For 
loin depth, level bias was absent for all GPS scenarios in 
both lines. Although level bias was present in many sce-
narios, it remained marginal, with ± 0.14 additive genetic 
SD units being the highest estimate (Tables  3, 4). For 
ADGT and ADGL, for all GPS scenarios dispersion bias 
was absent in the sire line but present in the dam line. 
For backfat thickness, dispersion bias was present for all 
scenarios in both lines. For loin depth, dispersion bias 
was absent for all scenarios in both lines, except for the 
MGP scenario in the sire line, where there was inflation. 

Here also, as when records on validation animals were 
included in the subsequent evaluations, the estimates of 
the regression coefficients did not differ between GPS 
scenarios within traits, and this was observed for all traits 
in both lines.

Subsequent genetic evaluations with PBLUP
When records on animals in the validation generation 
were included in the subsequent evaluations, the cor-
responding validation accuracies did not differ between 
PBLUP and ssGBLUP for all traits and in both lines. 
However, when records on animals in the validation gen-
eration were excluded from the subsequent evaluations 
in the sire line, validation accuracies of all traits were 
lower with PBLUP than with ssGBLUP. When records on 
animals in the validation generation were excluded from 

Table 4  Performance of ssGBLUPa in the subsequent evaluations in the dam line (SE in brackets)

a Single-step genomic best linear unbiased prediction
b In the reference scenario, the subsequent ssGBLUP evaluation utilized the entire available data until the validation generation
c Validation generation preselection (VGP) scenario, in which all animals in the validation generation without progeny in the data were discarded
d Multi-generation preselection (MGP) scenario, in which all animals in the validation and training generations without progeny in the data were discarded
e The heritability was estimated from an equivalent pedigree-based animal model in ASReml
f Validation accuracy was computed as weighted Pearson’s correlation coefficient between progeny yield deviation and genomic estimated breeding value of all 
validation animals
g Level bias was computed as the weighted mean difference between progeny yield deviation and half of the genomic estimated breeding value across all validation 
animals, expressed in additive genetic standard deviation units of the trait
h Dispersion bias was measured by the weighted regression coefficient of progeny yield deviation on genomic estimated breeding value of all validation animals

Measure/preselection scenario With records on animals in the validation 
generation

Without records on animals in the validation 
generation

Referenceb VGPc MGPd Reference VGP MGP

Average daily gain during performance testing, size of validation population = 2323

 Estimated heritabilitye 0.31 (0.01) 0.32 (0.01) 0.40 (0.02) 0.30 (0.01) 0.30 (0.01) 0.38 (0.02)

 Validation accuracyf 0.35 (0.02) 0.31 (0.02) 0.29 (0.02) 0.28 (0.02) 0.28 (0.02) 0.23 (0.02)

 Level biasg − 0.05 (0.02) − 0.14 (0.02) 0.04 (0.02) 0.03 (0.02) 0.03 (0.02) 0.14 (0.02)

 Dispersion biash 0.46 (0.03) 0.43 (0.03) 0.41 (0.03) 0.44 (0.03) 0.44 (0.03) 0.43 (0.04)

Average daily gain throughout life, size of validation population = 2405

 Estimated heritability 0.31 (0.01) 0.33 (0.01) 0.43 (0.02) 0.31 (0.01) 0.31 (0.01) 0.44 (0.02)

 Validation accuracy 0.46 (0.02) 0.42 (0.02) 0.42 (0.02) 0.38 (0.02) 0.38 (0.02) 0.35 (0.02)

 Level bias − 0.06 (0.01) − 0.16 (0.01) − 0.01 (0.01) 0.00 (0.01) 0.00 (0.01) 0.08 (0.01)

 Dispersion bias 0.45 (0.02) 0.42 (0.02) 0.42 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02)

Backfat thickness thickness, size of validation population = 2312

 Estimated heritability 0.51 (0.01) 0.51 (0.01) 0.51 (0.02) 0.51 (0.01) 0.51 (0.01) 0.53 (0.02)

 Validation accuracy 0.52 (0.01) 0.50 (0.02) 0.50 (0.02) 0.45 (0.02) 0.45 (0.02) 0.42 (0.02)

 Level bias 0.02 (0.01) − 0.01 (0.01) − 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) − 0.01 (0.01)

 Dispersion bias 0.43 (0.01) 0.41 (0.01) 0.41 (0.01) 0.42 (0.02) 0.42 (0.02) 0.41 (0.02)

Loin depth, size of validation population = 1164

 Estimated heritability 0.50 (0.01) 0.50 (0.01) 0.55 (0.02) 0.49 (0.01) 0.49 (0.01) 0.53 (0.02)

 Validation accuracy 0.62 (0.02) 0.60 (0.02) 0.59 (0.02) 0.55 (0.02) 0.56 (0.02) 0.49 (0.02)

 Level bias − 0.02 (0.02) − 0.03 (0.02) 0.02 (0.02) − 0.04 (0.02) − 0.04 (0.02) 0.03 (0.02)

 Dispersion bias 0.54 (0.02) 0.54 (0.02) 0.52 (0.02) 0.53 (0.02) 0.53 (0.02) 0.51 (0.03)
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the subsequent evaluations in the dam line, validation 
accuracies did not differ between PBLUP and ssGBLUP 
for ADGT and ADGL, but were lower with PBLUP than 
with ssGBLUP for backfat thickness and loin depth. As 
for the validation accuracies from subsequent ssGBLUP 
evaluations, in most cases, the validation accuracies from 
subsequent PBLUP evaluations did not differ between 
corresponding GPS scenarios, and level bias with PBLUP 
did not differ from its corresponding value with ssGB-
LUP, and in many cases it was not different from zero. 
The largest level bias when the subsequent evaluations 
were done with PBLUP was -0.18 additive genetic SD 
units (i.e. in the VGP scenario for ADGL in the dam line 
when records on animals in the validation generation 
were included in the subsequent evaluation; Table  6). 
Regression coefficients of PYD on (G)EBV in most 
instances did not differ between PBLUP and ssGBLUP, or 
from their expected value of 0.5. However, with PBLUP, 

the regression coefficients were sometimes larger than 
0.5 (e.g. in the reference and VGP scenarios for ADGL in 
the sire line, and in the reference and VGP scenarios for 
loin depth in the dam line). In some cases, the regression 
coefficients were also higher with PBLUP than with ssG-
BLUP (e.g. in the reference and VGP scenarios for ADGT 
in the sire line, and in the reference and VGP scenarios 
for ADGL in both lines). The regression coefficients with 
PBLUP were lower in the MGP scenarios than in the ref-
erence scenarios for ADGT and ADGL in the dam line 
when records on animals in the validation generation 
were included in the subsequent evaluations (Table  6), 
and this contrasts with the regression coefficients with 
ssGBLUP, which did not differ between the correspond-
ing GPS scenarios (Tables 3, 4).

Table 5  Performance of PBLUPa in the subsequent evaluations in the sire line (SE in brackets)

a Pedigree-based best linear unbiased prediction
b In the reference scenario, the subsequent PBLUP evaluation utilized the entire available data until the validation generation
c Validation generation preselection (VGP) scenario, in which all animals in the validation generation without progeny in the data were discarded
d Multi-generation preselection (MGP) scenario, in which all animals in the validation and training generations without progeny in the data were discarded
e Validation accuracy was computed as weighted Pearson’s correlation coefficient between progeny yield deviation and estimated breeding value of all validation 
animals
f Level bias was computed as the weighted mean difference between progeny yield deviation and half of the estimated breeding value across all validation animals, 
expressed in additive genetic standard deviation units of the trait
g Dispersion bias was measured by the weighted regression coefficient of progeny yield deviation on estimated breeding value of all validation animals

Measure/preselection scenario With records on animals in the validation 
generation

Without records on animals in the validation 
generation

Referenceb VGPc MGPd Reference VGP MGP

Average daily gain during performance testing, size of validation population = 1382

 Estimated heritability 0.24 (0.01) 0.25 (0.01) 0.33 (0.02) 0.24 (0.01) 0.24 (0.01) 0.35 (0.03)

 Validation accuracye 0.51 (0.02) 0.50 (0.02) 0.49 (0.02) 0.41 (0.02) 0.41 (0.02) 0.40 (0.02)

 Level biasf − 0.04 (0.02) − 0.11 (0.02) 0.01 (0.02) − 0.01 (0.02) − 0.01 (0.02) 0.01 (0.02)

 Dispersion biasg 0.53 (0.02) 0.54 (0.03) 0.48 (0.02) 0.55 (0.03) 0.55 (0.03) 0.49 (0.03)

Average daily gain throughout life, size of validation population = 1383

 Estimated heritability 0.26 (0.01) 0.28 (0.01) 0.33 (0.03) 0.27 (0.01) 0.27 (0.01) 0.35 (0.03)

 Validation accuracy 0.58 (0.02) 0.56 (0.02) 0.54 (0.02) 0.47 (0.02) 0.47 (0.02) 0.44 (0.02)

 Level bias − 0.06 (0.02) − 0.14 (0.02) − 0.04 (0.02) − 0.05 (0.02) − 0.05 (0.02) − 0.05 (0.02)

 Dispersion bias 0.55 (0.02) 0.55 (0.02) 0.51 (0.02) 0.56 (0.03) 0.56 (0.03) 0.54 (0.03)

Backfat thickness thickness, size of validation population = 1383

 Estimated heritability 0.58 (0.01) 0.58 (0.01) 0.58 (0.02) 0.58 (0.01) 0.58 (0.01) 0.60 (0.03)

 Validation accuracy 0.67 (0.01) 0.66 (0.02) 0.66 (0.02) 0.48 (0.02) 0.48 (0.02) 0.46 (0.02)

 Level bias − 0.03 (0.01) − 0.03 (0.01) − 0.03 (0.01) − 0.09 (0.01) − 0.09 (0.01) − 0.10 (0.01)

 Dispersion bias 0.50 (0.01) 0.50 (0.02) 0.50 (0.02) 0.46 (0.02) 0.46 (0.02) 0.43 (0.02)

Loin depth, size of validation population = 1383

 Estimated heritability 0.55 (0.01) 0.55 (0.01) 0.55 (0.03) 0.55 (0.01) 0.55 (0.01) 0.57 (0.03)

 Validation accuracy 0.66 (0.02) 0.65 (0.02) 0.64 (0.02) 0.49 (0.02) 0.49 (0.02) 0.46 (0.02)

 Level bias 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 0.01 (0.01) 0.01 (0.01) 0.00 (0.01)

 Dispersion bias 0.50 (0.02) 0.49 (0.02) 0.49 (0.02) 0.48 (0.02) 0.48 (0.02) 0.46 (0.02)
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Discussion
In this study, we investigated the impact of genomic 
preselection (GPS) on accuracy and bias in subsequent 
ssGBLUP evaluations of preselected animals. We used 
data on production traits from one sire line and one 
dam line from a commercial pig breeding program in 
which preselection had taken place, and retrospectively 
implemented additional layers of GPS. For each line, we 
implemented three GPS scenarios and used precorrected 
phenotypes as records in the subsequent genetic evalu-
ations, and progeny yield deviation (PYD) as the proxy 
for TBV. We conducted the subsequent genetic evalu-
ations either with or without records on animals in the 
validation generation, and in all cases without progeny of 
validation animals. Validation accuracy decreased, or at 
least tended to decrease, with additional layers of GPS. 
Dispersion bias was largely absent, and the regression 
coefficient of PYD on GEBV—the indicator of dispersion 

bias—in all instances did not differ between correspond-
ing GPS scenarios. Level bias was also largely absent, and 
mean PYD minus mean GEBV—the indicator of level 
bias—in most instances did not differ between GPS sce-
narios. The above results were observed in both lines, for 
all traits, and regardless of whether records on animals in 
the validation generation were included or not in the sub-
sequent ssGBLUP evaluations.

Empirically assessing the impact of preselection on 
subsequent genetic evaluations of preselected animals 
requires comparison of scenarios that take different 
approaches into account, including scenarios without 
preselection. Since some GPS had already taken place in 
the dataset that we used for this study, it was not possi-
ble to have a scenario without preselection. Thus, we had 
to find an alternate way to investigate whether ssGBLUP 
is able to estimate GEBV in the subsequent evaluation 
of preselected animals without preselection bias in our 

Table 6  Performance of PBLUPa in the subsequent evaluations in the dam line (SE in brackets)

a Pedigree-based best linear unbiased prediction
b In the reference scenario, the subsequent PBLUP evaluation utilized the entire available data until the validation generation
c Validation generation preselection (VGP) scenario, in which all animals in the validation generation without progeny in the data were discarded
d Multi-generation preselection (MGP) scenario, in which all animals in the validation and training generations without progeny in the data were discarded
e Validation accuracy was computed as weighted Pearson’s correlation coefficient between progeny yield deviation and estimated breeding value of all validation 
animals
f Level bias was computed as the weighted mean difference between progeny yield deviation and half of the estimated breeding value across all validation animals, 
expressed in additive genetic standard deviation units of the trait
g Dispersion bias was measured by the weighted regression coefficient of progeny yield deviation on estimated breeding value of all validation animals

Measure/preselection scenario With records on animals in the validation generation Without records on animals in the validation 
generation

Referenceb VGPc MGPd Reference VGP MGP

Average daily gain during performance testing, size of validation population = 2323

 Estimated heritability 0.31 (0.01) 0.32 (0.01) 0.40 (0.02) 0.30 (0.01) 0.30 (0.01) 0.38 (0.02)

 Validation accuracye 0.35 (0.02) 0.30 (0.02) 0.30 (0.02) 0.24 (0.02) 0.24 (0.02) 0.21 (0.02)

 Level biasf − 0.04 (0.02) − 0.16 (0.02) 0.01 (0.02) 0.08 (0.02) 0.08 (0.02) 0.13 (0.02)

 Dispersion biasg 0.52 (0.03) 0.45 (0.03) 0.42 (0.03) 0.50 (0.04) 0.50 (0.04) 0.45 (0.04)

Average daily gain throughout life, size of validation population = 2405

 Estimated heritability 0.31 (0.01) 0.33 (0.01) 0.43 (0.02) 0.31 (0.01) 0.31 (0.01) 0.44 (0.02)

 Validation accuracy 0.48 (0.01) 0.43 (0.02) 0.43 (0.02) 0.34 (0.02) 0.34 (0.02) 0.31 (0.02)

 Level bias − 0.05 (0.01) − 0.18 (0.01) − 0.03 (0.01) 0.05 (0.02) 0.05 (0.02) 0.07 (0.01)

 Dispersion bias 0.51 (0.02) 0.47 (0.02) 0.44 (0.02) 0.51 (0.03) 0.51 (0.03) 0.44 (0.03)

Backfat thickness thickness, size of validation population = 2312

 Estimated heritability 0.51 (0.01) 0.51 (0.01) 0.51 (0.02) 0.51 (0.01) 0.51 (0.01) 0.53 (0.02)

 Validation accuracy 0.52 (0.02) 0.50 (0.02) 0.50 (0.02) 0.37 (0.02) 0.37 (0.02) 0.36 (0.02)

 Level bias 0.02 (0.01) 0.00 (0.01) − 0.03 (0.01) 0.04 (0.01) 0.04 (0.01) 0.00 (0.01)

 Dispersion bias 0.45 (0.02) 0.43 (0.02) 0.42 (0.02) 0.41 (0.02) 0.41 (0.02) 0.39 (0.02)

Loin depth, size of validation population = 1164

 Estimated heritability 0.50 (0.01) 0.50 (0.01) 0.55 (0.02) 0.49 (0.01) 0.49 (0.01) 0.53 (0.02)

 Validation accuracy 0.58 (0.02) 0.56 (0.02) 0.56 (0.02) 0.43 (0.02) 0.43 (0.02) 0.41 (0.02)

 Level bias 0.00 (0.02) − 0.01 (0.02) 0.04 (0.02) − 0.02 (0.02) − 0.02 (0.02) 0.04 (0.02)

 Dispersion bias 0.55 (0.02) 0.54 (0.02) 0.51 (0.02) 0.57 (0.03) 0.57 (0.03) 0.52 (0.03)
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current dataset and by extension in real breeding pro-
grams. We hypothesized that if ssGBLUP in subsequent 
evaluations yields unbiased GEBV for preselected ani-
mals in spite of additional GPS in the current dataset (i.e. 
in our VGP and MGP scenarios), then it also yields unbi-
ased GEBV for preselected animals in the subsequent 
evaluations with the current dataset (i.e. in our reference 
scenarios). This is why we developed the VGP and MGP 
scenarios that implemented additional layers of GPS over 
the regular GPS that had already been implemented in 
the commercial pig breeding program. While scenarios 
such as VGP and MGP do not occur in real breeding pro-
grams, implementing these GPS scenarios in our study 
enabled us to investigate the impact of GPS on subse-
quent genetic evaluations of preselected animals using 
real data, by including different amounts of pedigree, 
genomic and phenotypic information in the subsequent 
genetic evaluations. Our results show that ssGBLUP in 
subsequent evaluations of pigs can estimate GEBV of 
preselected animals without preselection bias. We believe 
that the findings of the current study can be extended to 
other animal breeding programs because preselection 
has similar effects, regardless of its type and intensity 
and in how many stages it is implemented, i.e. preselec-
tion ensures that only better-than-average animals are 
phenotyped for the traits measured at advanced stages 
of the life of animals. Our findings are in line with those 
from our previous studies that used simulated datasets, 
i.e. that ssGBLUP in subsequent evaluations estimates 
unbiased GEBV for preselected animals, regardless of the 
preselection type and intensity [3, 4]. In [3], we showed 
that, compared to scenarios without preselection, ssG-
BLUP in subsequent evaluations estimated GEBV of 
preselected animals with a loss in accuracy, which we 
attributed to the smaller number of sibs with records 
compared to the scenarios without preselection. In the 
current study, accuracy also decreased, or at least tended 
to decrease, with additional layers of preselection, which 
can also be attributed to the smaller number of relatives 
with records compared to the scenarios with less prese-
lection, as shown in Table 1.

The preselection that we implemented in this study and 
in [3] and [4] are forms of non-ignorable selection (e.g. 
[10, 32–34]). Without genomic information, all informa-
tion used at these preselection stages must be included 
in subsequent evaluations to avoid preselection bias (e.g. 
[10, 13, 35, 36]). However, in our previous studies [3, 
4], we showed that ssGBLUP in subsequent evaluations 
results in GEBV of preselected animals without prese-
lection bias even if the genotypes of preculled animals 
are not included. In [4], we also showed that genotypes 
of preculled animals are only needed in the subsequent 
ssGBLUP evaluations if their parents are not genotyped. 

Again in [4], we suggested that ssGBLUP uses the geno-
types of preselected animals and their parents to estimate 
the on average positive Mendelian sampling (MS) terms 
of the preselected animals, and this enables ssGBLUP in 
subsequent evaluations to estimate GEBV of preselected 
animals without preselection bias. In the current study, 
preselected animals and their parents were genotyped, 
and we indeed did not observe preselection bias in our 
subsequent ssGBLUP evaluations although the genotypes 
of preculled animals were not included in the subsequent 
evaluations.

Comparison of results between preselection scenarios 
and between ssGBLUP and PBLUP
Our results show that, for all traits and especially for 
ADGT and ADGL, which were highly weighted in the 
breeding goal and for which GPS was highly effective, 
the heritability estimates increased or at least tended to 
increase, with additional layers of GPS. This is because 
changes in residual variances were larger than the cor-
responding changes in additive genetic variances from 
the reference to the VGP and to the MGP scenarios 
(see Additional file  2: Table  S2 and Additional file  3: 
Table  S3). The likely explanation for this observation is 
that some animals may have low phenotypic records for 
non-genetic reasons such as injury, social stress or ill-
ness, and this ‘dilutes’ the heritability. Typically, such 
poor-performing animals are not selected, which results 
in selected groups of animals being more homogene-
ous in terms of expressing their genetic potentials than 
unselected groups. This suggests the presence of hetero-
geneity of residual variances across herd-year classes for 
all traits, with the greatest heterogeneity in the reference 
scenarios. For both lines, we repeated the subsequent 
evaluations of the reference scenarios when records on 
animals in the validation generation were included, with 
a model that corrects for heterogenous residual variances 
(results not shown; [21]). Since we found that estimates 
of accuracy and bias in these scenarios did not differ 
between our two models, we decided to continue with 
the simpler model (i.e. the model in Eq. 3).

Our results also show that with both ssGBLUP and 
PBLUP, validation accuracy decreased or at least tended 
to decrease, with additional layers of GPS, which can 
be explained by the fact that the amount of phenotypic 
information also decreased in the same way (Table 1). The 
observation that heritabilities tended to increase with 
more preselection could have influenced, at least partly, 
the magnitudes of decreases in accuracies with decreases 
in amounts of phenotypic information due to preselec-
tion. This can contribute to explaining why decreases 
in validation accuracies with additional layers of GPS 
were in most cases not statistically significant. Although 
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we always observed that the corresponding validation 
accuracies tended to be higher with ssGBLUP than with 
PBLUP, in most cases, these differences were not statisti-
cally significant. The fact that heritabilities were all rela-
tively high (ranging from 0.24 to 0.58, Tables  3, 4, 5, 6) 
explains, at least partly, the absence of significant differ-
ences between ssGBLUP and PBLUP evaluations when 
records on animals in the validation generation were 
included in the subsequent genetic evaluations. It is 
common knowledge that the higher the heritability, the 
greater the importance of own performance information 
and the lesser the importance of genomic information in 
genetic evaluations (e.g. [18]).

In this study, we have shown that level bias was 
absent in most instances, and even when it was pre-
sent it remained marginal. We have also shown that, in 
most cases, the measure of level bias (i.e. the difference 
between mean PYD and mean (G)EBV among validation 
animals) did not differ between corresponding GPS sce-
narios, regardless of whether ssGBLUP or PBLUP were 
used for the subsequent evaluations. Although we have 
not been able to find a definite explanation for the rela-
tively small level bias observed in some scenarios in this 
study, we have reasons to believe that it was not caused by 
preselection. First, based on how we calculated level bias 
(i.e. as the mean progeny yield deviation minus the mean 
(G)EBV), level bias caused by preselection is expected 
to be positive, since unaccounted preselection underes-
timates MS terms and by extension breeding values of 
preselected animals, as shown by [1, 3, 4, 11, 12]. Second, 
level bias caused by preselection is expected to increase 
from the reference to the VGP and to the MGP scenar-
ios. However, Tables  3, 4, 5, 6 show that the direction 
of change in level bias was not constant. In many cases, 
level bias was lower in the MGP scenario than in the ref-
erence and/or VGP scenarios. In our previous study [3], 
we observed no level bias when ssGBLUP was used in 
subsequent genetic evaluations, regardless of the type or 
intensity of preselection. However, in [3], we found that 
level bias increased with increasing intensity of preselec-
tion when we used PBLUP in subsequent genetic evalua-
tions. Patry et al. [1, 11, 12] also reported significant level 
bias when subsequent genetic evaluations of genomi-
cally preselected animals were done with PBLUP, except 
when some pseudo-phenotypic information on preculled 
animals was included in the subsequent PBLUP evalu-
ations. As for level bias, we found that dispersion bias 
was absent in most cases, regardless of whether ssGB-
LUP or PBLUP was used for subsequent evaluations. 
In our previous study with a simulated dataset [3], we 
found that regression coefficients of TBV on (G)EBV—
the indicator of dispersion bias—were higher and closer 
to the expected value of 1 when ssGBLUP was used for 

subsequent genetic evaluations than when PBLUP was 
used. In [3], we also showed that the regression coeffi-
cient decreased as preselection intensity increased when 
PBLUP was used, but did not change when ssGBLUP was 
used. Preselection and subsequent selection were multi-
trait in the current study, and single trait in the previous 
studies [1, 3, 11, 12], which means that there was more 
chance of having multiple litter mates remaining in the 
dataset after preselection and subsequent selection in the 
current study than in the previous studies. With multiple 
litter mates with records in the dataset, MS terms can be 
estimated reasonably well even without genomic infor-
mation. This is likely the reason we did not observe level 
or dispersion bias in the subsequent PBLUP evaluations 
of preselected animals in the current study.

Without selection, the expectation of the regression 
coefficient of PYD on (G)EBV is 0.5, because PYD only 
represents half of the breeding value of the parent. How-
ever, when validation animals are on average genetically 
better than a random sample of their age group, the 
expectation of the regression coefficient decreases in 
single-trait subsequent evaluations, depending on how 
much the validation animals deviate from the average 
of their age group (e.g. [37, 38]). In the data used here, 
ADGT and ADGL had greater weights in the breeding 
goals of the two lines than backfat thickness and loin 
depth, so we expected that our GPS would have a smaller 
impact on the regression coefficients for backfat thick-
ness and loin depth than for ADGT and ADGL. How-
ever, we did not observe smaller regression coefficients 
or regression coefficients that were further away from 0.5 
for ADGT and ADGL than for backfat thickness and loin 
depth, either with ssGBLUP or with PBLUP. As explained 
in the previous paragraph, the fact that we implemented 
multi-trait subsequent evaluations in the current study, 
as opposed to the single-trait subsequent evaluations in 
[37] and [38], could explain the differences between these 
two groups of studies.

Comparison of results between the two lines
Even in the dam line where the original GPS was at 
least numerically more intense and the ratio of males 
with records to females with records in any generation 
was about 20:80, in general, we observed no significant 
decrease in validation accuracy, or significant increase in 
level or dispersion bias across our GPS scenarios. How-
ever, we found that the corresponding validation accura-
cies for ADGT, ADGL and backfat thickness were always 
higher in the sire line than in the dam line, although 
the corresponding heritability estimates for ADGT and 
ADGL were in many cases higher in the dam line than in 
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the sire line. These higher accuracies in the sire line than 
in the dam line may be explained by the relatively higher 
phenotyping and genotyping rates in the sire line than in 
the dam line (Table 1), meaning that validation animals in 
the sire line had more relatives with phenotypes and/or 
genotypes than validation animals in the dam lines.

Genotypes of preculled animals did not affect 
the subsequent ssGBLUP evaluations
For the subsequent ssGBLUP evaluations without records 
on animals in the validation generation, results from the 
corresponding reference and VGP scenarios are exactly 
the same, at least up to two decimals (Tables 3, 4). How-
ever, in terms of data content, the reference scenarios 
contained genotypes of the animals that were preculled 
in the corresponding VGP scenarios, in addition to all 
data used in the corresponding VGP scenarios (Table 1). 
The fact that the results from these two scenarios are the 
same, means that the genotypes of the preculled animals 
did not affect the reference scenarios. In this study, most 
(about 95%) of the validation animals and their parents 
had genotypes. This is in line with the conclusion from 
our previous study [4], that genotypes of preculled ani-
mals are only useful in subsequent ssGBLUP evalua-
tions of their preselected sibs when their parents are not 
genotyped.

Potential additional sources of bias in ssGBLUP from our 
data
In real datasets as used here, it is difficult to completely 
rule out mistakes in pedigree recording and in genotyp-
ing. In the genomic data quality control stage in the cur-
rent study, genotypes of a few thousand animals were 
discarded because the animals did not meet the genomic 
data quality standard (i.e. genotyped for at least 90% of 
the SNPs). This can, however, not completely rule out 
genotyping mistakes in the genomic data that passed 
quality control. Tables 3, 4, 5 and 6 show that, for some 
traits, heritabilities were different between the imple-
mented GPS scenarios, although the animals in the base 
generation were the same. This implies that different 
subsets of the same data gave rise to different estimated 
(co)variance components in the base generation, and it 
is likely that, after implementation of some of the GPS 
scenarios, the estimated (co)variance components were 
different from their true values, at least for some of the 
traits. While these are all potential additional sources 
of bias in the ssGBLUP evaluations, they are difficult 
to avoid in practice [14]. However, in general, we have 
shown that these potential additional sources of bias do 
not cause significant bias in our ssGBLUP evaluations, 
since both level and dispersion biases were in most cases 

absent, and even when they were present they remained 
marginal and in most cases, did not differ across corre-
sponding GPS scenarios.

Conclusions
When subsequent genetic evaluations of preselected ani-
mals are based on ssGBLUP, genomic preselection in sin-
gle or multiple generations decreases realized accuracy 
only slightly, and hardly causes level or dispersion bias. 
This conclusion is expected to hold regardless of whether 
records on validation animals are included or not in the 
subsequent evaluations, and regardless of the weight of 
the trait in the breeding goal. Although these conclusions 
were derived using data from a pig breeding program, 
we believe that they can be generalized to other animal 
breeding programs, because preselection is expected to 
have the same effect in any animal breeding program.
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