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Abstract: BIKE is a Bayesian dietary exposure assessment model for microbiological and chemical
hazards. A graphical user interface was developed for running the model and inspecting the
results. It is based on connected Bayesian hierarchical models, utilizing OpenBUGS and R in tandem.
According to occurrence and consumption data given as inputs, a specific BUGS code is automatically
written for running the Bayesian model in the background. The user interface is based on shiny app.
Chronic and acute exposures are estimated for chemical and microbiological hazards, respectively.
Uncertainty and variability in exposures are visualized, and a few optional model structures can be
used. Simulated synthetic data are provided with BIKE for an example, resembling real occurrence
and consumption data. BIKE is open source and available from github.

Keywords: exposure assessment; Bayesian; model; uncertainty; variability; foodborne hazard;
dietary; microbiological; chemical

1. Introduction

Exposure assessment is one of the four parts in risk assessments, the other parts being
hazard identification, hazard characterization and risk characterization. Here, we focus
on exposure assessment. Foodborne exposure assessment relies on both occurrence data
and food consumption data. While the former provides information on the prevalence and
level of contamination in foods or food ingredients, the latter provides information on how
often and in what amounts the foods are consumed. From this knowledge, estimates of
both short-term (‘acute’) and long-term (‘chronic’) mean exposures can be drawn. How-
ever, significant uncertainties prevail since the data may be very unbalanced and limited.
Probabilistic simulation models can be used to describe both variability and uncertainty,
but appropriate statistical inference is required for an evidence based approach. Previous
non-Bayesian methods have been discussed in e.g., [1,2]. While parametric models [3]
and non-parametric empirical Monte Carlo distributions, or both [4,5] have been imple-
mented in other approaches, the uncertainties are seldom modelled in fully probabilistic
framework with Bayesian inference for all uncertain quantities jointly. For non-Bayesian
approaches it is common that parameter estimation is broken into separate steps with
unrelated estimation methods and possibly combined with assumptions for ‘nuisance
parameters’ that are part of the model but not the primary target of inference. All this may
lead to incoherent quantification of the truly multidimensional uncertainty. The methods
are often joined by bootstrapped uncertainty, which can be problematic with small data.
The combination of separated estimations does not support a coherent multidimensional
uncertainty quantification of the full set of parameters in a holistic manner. For Bayesian
approaches, albeit theoretically consistent, the specific obstacles are still the computation-
ally demanding MCMC algorithms and issues with their convergence [6]. Also, insufficient
methodological training for risk assessors prevails. Parametric and non-parametric ap-
proaches were discussed in [7,8], but examples of Bayesian models are less extensively
described. Open-source codes are not commonly available with the existing approaches,
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preventing detailed comparisons, model development and modifications by others. Hence,
the full potential of multidimensional Bayesian hierarchical modeling in open-source for-
mat remains underexplored and the Bayesian methods are still often only mentioned as a
possible refined approach [7,9], and left to be explored in further studies.

In food risk assessments, both chemical and microbiological hazards need to be
assessed accounting for their similarities and differences in statistical analysis. Yet, the
existing methods predominantly focus on one or the other separately [10]. There is need to
assess several hazards, microbiological and chemical, at the same time for efficient use of
risk assessment resources. Separate assessments based on different models and estimation
methods for each hazard also compromise the comparability of the resulting estimates
when, by large, they could be based on the same cross cutting model. Ultimately, exposures
from both should be compared towards a combined risk estimation and risk ranking, which
is essential in burden of disease assessments and prioritization.

Here we present BIKE, a model for foodborne exposure assessment, based on Bayesian
statistical methods. Foodborne exposure assessment is a crucial part of risk assessments
on food safety and nutrition. Generally, foodborne hazards occur in several food types or
their ingredients, making it necessary to assess total exposure from multiple food groups
based on the food consumption in the studied population group and on the occurrence and
concentration levels of the studied hazards in the foods in question. BIKE differs from the
existing exposure assessment models in two significant ways. Firstly, it is to our knowledge
the only tool combining both chemical (including nutritional) and microbiological exposure
assessment, whereas the more widely used models like MCRA [4] are developed only for
chemical hazards. Secondly, the use of Bayesian methods in BIKE allow fully probabilistic
and evidence based quantification of uncertainty. Both variability and uncertainty are
described by probability distributions.

The method in BIKE provides a very general approach for probabilistic inference
from all data to all unknown parameters that can be extended to larger models exploiting
Bayesian evidence synthesis from several data sources, also with fairly scarce data. The
challenges are in implementing the computations. Some Bayesian dietary exposure estima-
tion models have been previously developed and tailored to particular applications and
data types [11–15]. However, no general open source Bayesian model has been available.
The aim of BIKE is to provide a modifiable Bayesian probabilistic inference method for
the exposure assessment of both microbiological and chemical contaminants, suitable for
analysing available data. The first user interface was developed to run some basic mod-
els without programming skills, requiring only the data in a tabular format from which
the Bayesian model is automatically built by BIKE. Additionally, the resulting code for
Bayesian models can be freely viewed, extended and used independently by anyone with
some experience of BUGS model definitions [16] and R software [17]. Hence, the first
model(s) can be used as a starting point for further modeling.

In the next sections, the method is summarized, and the inference models for chemical
and microbiological occurrence data are introduced. In the following sections, the inference
models for consumption data are described in detail. After these, the Bayesian exposure
assessment implied by the Bayesian inference is explained likewise. In the final sections
the options in the user interface of BIKE (a shiny app) are briefly demonstrated, concluding
in a discussion of methodological aspects. Artificial data were generated as described in
Appendix A to provide templates for the data format and as a try-out data.

2. Materials and Methods
Quantifying Uncertainty with Probability: Theory in Short

As a method for evidence based research, Bayesian theory has a simple unifying
principle for quantitative inference problems: to estimate unknown parameter(s) θ (or
other unknown quantities) from data one starts with a joint distribution of both θ and
data variables. This is constructed from the conditional distribution for data variables,
given θ (i.e., “the model of data”), and the initial uncertainty (i.e., prior distribution)
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for parameter(s) θ of the model. Then the prior uncertainty is to be updated to a new
uncertainty (i.e., posterior distribution) for θ, given the now observed data values. Bayesian
statistical inference [16,18,19] is thus simultaneously applied to all unknown parameters or
variables, conditionally on the known ones. The ’known’ is the evidence base consisting of
all observed data or known facts. For dietary exposure assessment, such base consists of
occurrence and consumption data, while the unknown parameters represent e.g., means
and variances of concentration and consumption distributions. For estimating parameter(s)
θ from specified data, the posterior probability density function is formally solved as
f (θ | data) = f (data | θ) f (θ)/C where C is a normalizing constant, f (θ) is the prior
distribution of the unknown(s), and f (data | θ) is the probability distribution for all
observable variables in data that must depend on the unknown parameter(s) in question.
When all variables have been set according to data, the latter is also called likelihood
function L(θ) = f (data | θ) for the unknown parameter(s) θ and it contains all the evidence
(external to the prior) for the parameter(s), that can be drawn from the now fixed data.
Hence, apart from the constant term, posterior distribution of unknown parameter(s) θ is
always proportional to the product form

f (θ | data) ∝ L(θ)× f (θ)

where L must contain probability models for full data, just like f (θ) must define a prior
distribution for all the unknown parameters. This equation is also known as Bayes theorem.
Several conditionally independent data sources and observations can then be combined
into a full likelihood by multiplication of the likelihood components corresponding to each
part of data. For example,

n

∏
i=1

Li(θ) =
n

∏
i=1

f (datai | θ)

for each of the n data sets. Then, posterior distribution can be written, apart from a
normalizing constant, proportional to

f (θ | data1, . . . , datan) ∝
n

∏
i=1

Li(θ) f (θ).

This modular structure extends to large hierarchical Bayesian models and is also
the backbone of the BIKE models. The essential idea is thus to ’divide and conquer’
by including each partial data with a suitable model, providing us with the likelihood
contributions Li, and to combine them with the prior f (θ). In general, when these elements
are defined over all data, the computation can proceed as numerical simulation from the full
posterior distribution using e.g., OpenBUGS [20], JAGS [21] or Stan [22], without having to
solve the (difficult) normalizing constant, nor the whole posterior distribution, algebraically.
Effectively, this allows putting more focus on building the models for occurrence and
consumption instead of dwelling on computational issues of specific sampling techniques,
although those cannot be always completely avoided.

This methodological principle is unfolded in detail over the sections below, describing
Bayesian inference from the hazard occurrence data and food consumption data, with
two main options therein. Each part of data provides a contribution Li to the equation
of full posterior distribution as above. Hence, the data will determine what components
Li are included in a model. Finally, exposure estimation is the result from the Bayesian
inference model by combining probabilistically the hazard occurrence distributions with
consumption distributions, which depend on the unknown parameters inferred from data.

3. Bayesian Inference from Chemical and Microbiological Occurrence Data

Occurrence data for both chemical and microbiological hazards in a food or food
ingredient (we refer to both as ‘food types’) are often drawn from reports of measured
concentration values. Some values could be statistically interval censored [23] between
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limit of quantification (LOQ) and limit of detection (LOD), and some might be left-censored
below LOD [24–26]. Both chemical and microbiological data should report LOD and
LOQ limits. Concentrations of chemical hazards are typically reported in micrograms or
milligrams per gram or kilogram. Concentrations of microbiological hazards are assumed
to follow the typical format of reported colony forming units (CFU) per mass or volume,
e.g., “2 CFU/g”. These type of data are still most often found in reports and other published
data sources [27–31]. However, more accurate microbiological data would represent actual
plate counts, e.g., “50 CFU in a 25 g analytical sample”, instead of the less informative “2
CFU/g”. Likewise, more accurate data could report patterns of dilution series [32] with
information on the number of tubes and the sample volumes and dilutions used. Such
detailed data are rarely reported and models exploiting them could be implemented in
further versions of BIKE. The use of likelihood based methods for estimating concentration
distributions has been advocated over simple substitution methods [33,34], although the
proportion of censored values should not be extremely high. It is necessary to require at
least some exact values above LOQ to be able to estimate the concentration distribution
at all [35]. The amount of data is directly reflected in the uncertainty of the parameter
estimates for the distribution. The default distribution in BIKE is log-normal. Evidence
for log-normality as a general feature has been proposed for pesticide concentrations
[36]. A convenient feature is also that the product of log-normal variables is also log-
normal. This is useful since exposure is a product of two random variables: concentration
and consumption. Furthermore, hierarchical structures with variance components for
describing nested variability between groups, individuals, measurements, etc. are based
on normal distributions for transformed (e.g., log) variables. Similar model structures
and Bayesian inference have been previously applied to observed intakes accounting for a
mixture population of high and low consumers [14] with observed seven days per consumer.
The total likelihood contribution that needs to be constructed from occurrence data will
depend on whether the data contain only exact values, or additionally some censored
values. The left-censored data can be interpreted in two ways: either they all represent
non-zero positive values, or part of them could be truly zeros. Both interpretations are
options in BIKE for the user to indicate when specifying the data. This information is then
read from the data by BIKE, and it implies two different models, described in the next
sections.

3.1. Option 1: Distribution of Positive Concentrations and Contamination Prevalence
Estimated Separately

The first option is to assume that all reported measurements of concentration values
cijk, even if below LOD, represent truly positives, with f (log(cijk) |, µh

ij, σh
ij) as a probability

density function of normal distribution with mean µh
ij and standard deviation σh

ij, and F as
the corresponding cumulative probability function per hazard i in food type j. The possible
likelihood contributions for the Bayesian model are either from n1 exact values cijk, or some
censored values

L1 = ∏n1
k=1 f (log(cijk) | µh

ij, σh
ij) if cijk > LOQijk , exact

L2 = ∏n2
k=1 F(log(LOQijk) | µh

ij, σh
ij)− F(log(LODijk) | µh

ij, σh
ij) if LODijk < cijk < LOQijk

L3 = ∏n3
k=1 F(log(LODijk) | µh

ij, σh
ij) if cijk < LODijk

so that one or several of these will apply according to which of them correspond to data
instances. For a meaningful estimation, at least some measurements need to be exact values.
Since L1, L2, L3 are applicable to the estimation of distribution parameters of strictly positive
concentrations, additional information in data is required for inferring the prevalence of
positives. Sample data with sample size and sample positives provide this additional
binomial likelihood contribution

L4 = Binomial(xij | qij, nij).
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The posterior distribution of model parameters is then constructed from one of the
possible evidence combinations

f (µh
ij, σh

ij, qij | evidence 1,4) ∝ L1L4 f (µh
ij, σh

ij, qij)

or f (µh
ij, σh

ij, qij | evidence 1,2,4) ∝ L1L2L4 f (µh
ij, σh

ij, qij)

or f (µh
ij, σh

ij, qij | evidence 1,3,4) ∝ L1L3L4 f (µh
ij, σh

ij, qij)

or f (µh
ij, σh

ij, qij | evidence 1,2,3,4) ∝ L1L2L3L4 f (µh
ij, σh

ij, qij)

where f (µh
ij, σh

ij, qij) is the prior distribution of the parameters. Flat priors are used for µh
ij, qij.

For the standard deviation σh
ij, either uniform distribution is used, or gamma-distribution

for inverse variance. If uniform, unrealistically large values are avoided by ad hoc upper
limit derived empirically as a multiple of the standard deviation evaluated from observed
log-concentrations after adding two extreme values. In further developments, a hierarchical
prior might be exploited for combining information from multiple food categories with
variations between and within categories.

3.2. Option 2: Distribution of Positive Concentrations and Contamination Prevalence
Estimated Jointly

In the second option, without having the certainty of which values were true zeros
among those below LOD, a zero-inflated distribution is modeled. The likelihood contri-
butions from data are divided into three possible forms as follows. Note that ‘detection’
implies the concentration is over LOD, so that conditional probabilities for concentrations,
given detection, obey truncated distributions.

(1) If the observation is below LOD (i.e., not detected):

L5 = 1− P(detection) = 1− qij(1− F(LODijk)).

(2) If the observation is detected and between LOD and LOQ:

L6 = P(LODijk < cijk < LOQijk | detection)P(detection)

= FLODijk (LOQijk)qij(1− F(LODijk)) = [F(LOQijk)− F(LODijk)]qij

where FLOD is the cumulative probability of the truncated distribution over [LOD , ∞).
(3) If the observation is detected and over LOQ (thus exact value):

L7 = P(cijk | cijk > LOQijk)P(cijk > LOQijk)

= fLOQijk (cijk)qijk[1− F(LOQijk)] =
f (cijk)

1− F(LOQijk)
[1− F(LOQijk)]qijk = f (cijk)qijk

where fLOQ is the density function of the truncated distribution over [LOQ , ∞). In this case,
there is no separate model for estimating prevalence qij because it is already in the expres-
sions L5, L6, L7 jointly with distribution parameters µh

ij, σh
ij. For a meaningful estimation,

at least some measurements need to be exact values. The posterior distribution of model
parameters is then one of the following:

f (µh
ij, σh

ij, qij | evidence 7) ∝ L7 f (µh
ij, σh

ij, qij)

or f (µh
ij, σh

ij, qij | evidence 5,7) ∝ L5L7 f (µh
ij, σh

ij, qij)

or f (µh
ij, σh

ij, qij | evidence 6,7) ∝ L6L7 f (µh
ij, σh

ij, qij)

or f (µh
ij, σh

ij, qij | evidence 5,6,7) ∝ L5L6L7 f (µh
ij, σh

ij, qij).

The above construction could also be extended with so-called hidden variables to
describe the uncertain true status (binary variable) of each measurement below LOD, but
this is not necessary for parametric inference. However, for simulating acute microbiolog-
ical exposures it will be used for handling true zero occasions as “on/off” variable. The
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estimation of model parameters µh
ij, σh

ij, qij may become very uncertain due to the added
uncertainty of concentrations below LOD, which now could have occurred either because
they were true zeros (q small) or small positive values (µ small). This can even lead to
bimodal posterior distributions.

4. Bayesian Inference from Consumption Data

Food consumption surveys are costly and time-consuming, and participation in such
studies has decreased in the last decades. In addition, surveys are mainly conducted from
a nutritional viewpoint and hence some information important for food safety risk assess-
ment may be lost or limited. This calls for flexible probabilistic models for quantitative
uncertainty assessment.

With consumption data, the overall assumption in BIKE is that every individual
consumes all food types with some positive frequency and some positive amounts in the
long run, small or large. In principle, the estimation of absolute non-consumers might be
done by e.g., zero-inflated models, but this would require potentially numerous days per
individual in food diaries. It is currently more likely that only a very few days are recorded
per individual so that a feasible approach is to apply a model without an extra parameter
for the proportion of true non-consumers in BIKE. Low observed frequencies then lead to
low estimates, which cannot be distinguished from committed absolute zero consumers.
However, some other features were included in BIKE model, such as

• between-foods correlation in expected (long-term average) consumption amounts,
• between-foods correlation in one-day consumption amounts,
• between-foods correlation in consumption frequency, and
• either dependency or independency of consumption decisions between days.

4.1. Model for Consumption Amounts on Actual Consumption Days

The model for consumption amounts concerns the distribution of daily serving sizes
when a food item is consumed, i.e., excluding zero consumption days. The model for
consumption data is the same for microbiological and chemical exposure assessment,
except that a distribution for long-term mean consumption is estimated for chemical
assessment, but a distribution for daily consumption is estimated for microbiological
assessment. Also, consumption per body weight is important in chemical assessments
whereas consumption in absolute quantity is important in microbiological assessments.
Therefore, body weight data are also used for estimating the parameters of a body weight
distribution. A log-normal model is applied to the likelihood contribution from the body
weights of individuals r = 1, . . . , R

Lw = ∏
r=1

f (log(wr) | µw, σw).

Assuming that consumption data are available from (at least) a two-day food diary,
the likelihood contribution from observed positive consumption amounts sjrk of food type
j for an individual consumer respondent r over days k is modeled as

Lr = ∏
k=1

MN(log(s1rk, . . . , sn f rk) | (µ
f
1r, . . . , µ

f
n f r), Cs[])

where µ
f
1r, . . . , µ

f
n f r is the mean vector for the rth consumer in log-scale and Cs[] is the

covariance matrix. Note that the correlations do not describe a person’s unique correla-
tions for his/her actual consumed amounts in a day’s meal. To model an individual’s
own specific correlations between consumption amounts of food types would require
much more observations per individual than are usually available. Note also that zero
consumption amounts are technically treated as missing values in the Bayesian estimation
since the multinormal distribution describes non-zero positive consumption only. A zero
consumption does not provide information on what amount would have been consumed if
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it had been. The one-day consumption amounts sjrk are expressed as per bodyweight since
this can be directly combined with concentration values to get exposure per body weight
for chemical assessments. For microbiological assessments the absolute acute exposure is
needed, in which case the predicted sjrk needs to be multiplied by the body weight of the
individual. As a possible further development, even regression models could be developed
for the consumption, accounting for body weight, age, sex and other factors as explanatory
variables. Alternatively, one could stratify the data according to those factors and run the
model separately for each stratum.

Expected (average) individual log-consumption amounts µ
f
jr can also be correlated

between food types f = 1, . . . , n f so that, in general, some food types tend to be more (or
less) consumed in combinations among the consumers. Hence the model is

(µ
f
1r, . . . , µ

f
n f r) ∼ MN((µ

f
10, . . . , µ

f
n f 0), Cµ[])

where the multivariate normal distribution has population means µ
f
j0 for each food type

j and a covariance matrix Cµ[] describing correlations between mean log-consumption

amounts of food types, among all consumers. The prior distribution of µ
f
0 is a vague

normal distribution, and the priors for the inverse of covariance matrices Cs[] and Cµ[] are

Wishart distributions. The mean consumption amounts E(sjrk) = exp(µ f
jr + 0.5Cs[j, j]) for

individuals are of interest for the assessment of chronic exposure, whereas the random
individual consumption amounts sjrk are of interest for the assessment of acute exposure.
The model for consumption frequency has two options as selection tabs in the user interface,
described in the following sections.

4.2. Option 1: Consumption Frequencies Assuming Days Are Independent of Each Other

Consumption surveys attempt to collect a representative random sample of consumers
and consumption days [37]. Because the day count per consumer often cannot be larger
than two, one typically wants to avoid situations where both days would represent excep-
tional periods, e.g., festive seasons. This is avoided by a survey design with sufficiently long
time between two survey days, and randomization. When food diaries are collected over
two or more unrelated days, the consumption event (yes/no) on any observation day may
be assumed to be independent of the event on a previous observation day. Then, the con-
sumption frequencies pjr are modeled so that the likelihood contribution from consumption
(Ujrk = 1) and no-consumption (Ujrk = 0) days follows from Bernoulli-distribution

Ljr =
nd

∏
k=1

Bernoulli(Ujrk | pjr)

Although the Ujrk are independent given pjr, the consumers’ logit-frequencies in a
population group can be correlated between food types f = 1, . . . , n f so that

(logit(p1r), . . . , logit(pn f r)) ∼ MN((logit(p10), . . . , logit(pn f 0)), Cp[])

where the multivariate normal distribution has population means logit(pj0) for each food
type j and a covariance matrix Cp[] describing correlations between consumption frequen-
cies of food types. The consumption frequencies of individual consumers pjr are of interest
for chronic exposure assessment, whereas the random individual consumption events Ujrk
(‘on/off’) are of interest for acute exposure assessment.

4.3. Option 2: Consumption Frequencies Assuming the Consumption on a Day Depends on the
Previous Day

If consumption survey is based on consecutive days (e.g., 48 h recalls), the consump-
tion events may be correlated over days. This means, if a food item is consumed today,
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it may be more (or less) likely consumed also tomorrow. The consecutive days are not
independent then. Moreover, for microbiological exposures the bacterial growth is particu-
larly important when the consumption of the same food item continues over a few days.
Such information can only be obtained when two or more consecutive days are reported in
dietary survey data. Even then, it is usually not recorded whether exactly the same food
package is kept overnight and consumed repeatedly, although it might be likely so. With
such assumption, the simplest model is a Markov chain with transition probabilities for
daily consumption events. The probability depends on whether the consumption occurred
on previous day. This is concisely expressed as a transition probability matrix Pj, for food j:

Pj =


p01

j = P(consumes food j | did not consume food j previous day)
p11

j = P(consumes food j | consumed food j previous day)
p00

j = 1− p01
j

p10
j = 1− p11

j

From this Markov chain it follows that the long run (stationary) probability of con-
suming the food on an arbitrary day can be written as pj = p01

j /(p01
j + p10

j ). For a more
detailed exposure assessment beyond BIKE, this model could be combined with bacteria
growth model that gives the initial concentration and the predicted concentrations for
each of the following days [38]. The consumption amounts for consumption days are yet
modeled as independent of previous day.

In the simple day-to-day model, the two-day (or several days) consumption data
provides evidence for the transition probabilities over consecutive days as

Lj = (p01
j )

x01
j (1− p01

j )
n0−x01

j × (p11
j )

x11
j (1− p11

j )
n1−x11

j

where x01
j (x11

j ) is the number of observed transitions 0→ 1 (1→ 1) between consecutive

days, and n0
j (n1

j ) is the number of times when the preceding day was 0 (1). The prior

distribution f (p01
j , p11

j ) is uniform for both parameters. Note that the transition probabilities
were not defined for each consumer but as common parameters for the group of consumers.
With more observation days per consumer, more personalized transition models might
become feasible.

4.4. Posterior Distribution for Consumption Model Parameters

All the parameters related to the amounts, frequencies and body weights are summa-
rized as

µw
σw

µ
f
jr j = 1, . . . , n f , r = 1, . . . , nr

Cs[] n f × n f

µ
f
j0 j = 1, . . . , n f

Cµ[] n f × n f
Option 1: independent days: Option 2: dependent days:
pjr j = 1, . . . , n f , r = 1, . . . , nr p01

j j = 1, . . . , n f

pj0 j = 1, . . . , n f p10
j j = 1, . . . , n f

Cp[] n f × n f

with the two alternative consumption frequency models as options. The three covariance
matrices Cs[], Cµ[] and Cp[] have usual Wishart priors, which give uniform priors for
correlations. The expressions for full posterior distributions are constructed by multiplying
the prior distributions with the likelihood expressions Lw, Lr, Ljr, Lj according to the data
and model option.
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5. Exposure Assessment Implied by Bayesian Inference

After the posterior distribution for all model parameters is simulated, the exposure
assessments follow directly from it. An exposure distribution either describes the variation
in random daily acute exposures among all consumers, or the variation in long-term mean
exposures among all consumers. Every exposure distribution can be viewed as a variability
distribution that depends on its uncertain parameters that were the objects of inference in
the Bayesian models described above. Hence, each set of parameter values corresponds
to one possible exposure distribution. In simple cases, the exposure distribution is solved
as a log-normal distribution with specific expression of parameters, but otherwise it is
simulated based on the parameters of the underlying distributions. There are several
possible ways to summarise exposures in BIKE, and these are available as selection tabs for
the user to choose in the results.

5.1. Univariate (Marginal) Acute Positive Exposure for Single Food Type, Single
Microbiological Hazard

This is a variability distribution of acute microbiological expected doses (consumption
× concentration) among consumers, for all the consumption days of a specific contami-
nated food type per specific microbiological hazard. Since this variability distribution
(log-normal) depends on uncertain parameters, several possible variability distributions
are overlaid in the plots to visualize uncertainty. Thus, uncertainty is simulated for the
log-normal variability distribution. The frequency of consuming such contaminated food
(exposure frequency) is an uncertain quantity for which estimates are presented numeri-
cally.

5.2. Univariate (Marginal) Chronic Positive Exposure for Single Food Type, Single
Chemical Hazard

This is a variability distribution of chronic chemical exposures among consumers, for
the consumption days of a specific contaminated food type, per specific chemical hazard. Since
this variability distribution (log-normal) depends on uncertain parameters, several possible
variability distributions are overlaid in the plots to visualize uncertainty. Thus, uncertainty
is simulated for the log-normal variability distribution. The frequency of consuming such
contaminated food (exposure frequency) is an uncertain quantity for which estimates are
presented numerically.

5.3. Multiple Exposure from a Subset of Selected Foods among All Food Types, Single Hazard

This variability distribution does not have analytical solution and hence it needs to be
simulated for both chemical (chronic) and microbiological (acute) assessment. Expressing
uncertainty about the variability distribution, e.g., its cumulative distribution function and
its quantile points, requires 2D simulation of variability and uncertainty [39]. Simulations
can account for consumption and contamination frequencies for all days, or simulations can
represent only actual consumption days and only non-zero positive contamination of the
foods. For microbiological hazards, a Poisson distribution provides the final random dose
variability in servings. A bacteria dose may become zero even from a contaminated food
if the concentration is low and/or consumed amount is small, due to randomly scattered
bacteria cells.

5.4. Posterior Predictive Distributions

Posterior predictive distributions for acute microbiological or chronic chemical expo-
sures can be simulated. Likewise, for the consumption of foods and the concentrations of
hazards in foods. These distributions integrate both variability and uncertainty into an
overall assessment of total uncertainty (both aleatory and epistemic uncertainty). In other
words, posterior predictive distribution is a weighted average of all possible variability
distributions. It is weighted with respect to the posterior distribution of the uncertain
parameters when each parameter set defines a variability distribution. In the limit, if the
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amount of data (sample size) grows, the posterior distribution of parameters becomes
more peaked around the true parameter values, and hence the predictive distribution ap-
proaches the true variability distribution, assuming it exists among the parametric family
of distributions in question.

5.5. Microbiological Acute Exposures

Microbiological exposure may lead to acute infection and illness from a single serving.
Therefore, long run mean exposures are not very meaningful whereas the distribution of
acute exposures is required for risk assessment and is provided in BIKE.

5.5.1. Exposure to a Hazard-Food Pair

As a default, log-normal distributions are used for modeling the variation in individual
positive daily consumption amounts and in the individual mean consumption amounts for
those consumption days. Hence, the positive (absolute) acute consumption amounts of a
single food j for a random consumer r has univariate distribution that is log-normal

sjrwr ∼ LN(µ
f
0j + µw, Cs[j, j] + Cµ[j, j] + σ2

w)

with parameters µ
f
0j + µw and Cs[j, j] + Cµ[j, j] + σ2

w due to hierarchical normal model for
the logarithms with two variance components, Cs & Cµ, and assuming log-normal body
weight is independent of consumption in the studied consumer group. Note that the
consumption model parameters are estimated from sjr as per body weight, and hence a
multiplication by body weight wr is needed for simulating absolute amounts.

Log-normal distributions are also the default for the variation of concentrations,
which are independent of consumption amounts. Hence, the resulting acute exposure
to a contaminated food type j has again a univariate log-normal distribution. For each
hazard-food combination, the univariate distribution of acute microbiological exposures,
due to consuming contaminated food j is:

e+ijr = sjrwrcij ∼ LN(µ
f
0j + µh

ij + µw, Cs[j, j] + Cµ[j, j] + (σh
ij)

2 + σ2
w).

Uncertainty distribution for the mean E() and median Q50%() of acute exposure due
to consuming contaminated food j is obtained by plotting the posterior distributions of
the expressions:

E(e+ijr) = exp(µ f
0j + µh

ij + µw + 0.5Cs[j, j] + 0.5Cµ[j, j] + 0.5(σh
ij)

2 + 0.5σ2
w) (1)

and
Q50%(e+ijr) = exp(µ f

0j + µh
ij + µw). (2)

For microbiological hazards, the uncertainty of the univariate distribution for e+ijr is
provided in BIKE by showing a few possible distribution functions, each corresponding to
randomly drawn (uncertain) parameters from the posterior distribution. The estimated
exposure frequency, i.e., the proportion pjrqij of days when the consumption of a contami-
nated food occurs is given numerically within graphics.

5.5.2. Exposure to Several Food Types Summed up

The distribution for the summed acute exposure ∑j e+ijr due to consuming many contam-
inated food types does not have a standard algebraic solution. The exposure distributions,
which include possible zero consumption days and zero contamination, for acute exposures
eijr to a food type j or all food types eir, do not either have solutions as standard distributions.
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However, given the core parameters, the distributions for summed acute exposures can be
produced by sampling in a sequence from the conditional distributions:

logit(p1r), . . . , logit(pn f r) ∼ MN(logit(p0), Cp[]) or pjr = p01
j /(p01

j + p10
j )

Ujr ∼ Bernoulli(pjr)

µ
f
1r, . . . , µ

f
n f r ∼ MN(µ

f
0 , Cµ[])

log(s1r), . . . , log(sn f r) ∼ MN(µ
f
r , Cs[])

wr ∼ LN(µw, σ2
w)

cij ∼ LN(µh
ij, (σ

h
ij)

2)

e+ijr = sjrcijwr

Iijr = Bernoulli(qij)
eijr = IijrUjre+ijr
eir = ∑

n f
j=1 eijr

Hence, the distributions for acute exposures eir are most efficiently produced sep-
arately in R after the parameter values sampled from the posterior distribution have
been saved from each MCMC iteration. Then also the uncertainty about the variability
distribution can be quantified by 2D simulation, or the more straightforward posterior
predictive distribution simulated. For microbiological hazards, chronic exposure is not
usually relevant and is (currently) not provided in BIKE results.

5.6. Chemical Chronic Exposures

Unless a chemical can cause health effects due to acute exposure, the occasional
extreme exposures are not of concern as high and low values are averaged in the long run
exposure. Therefore, only chronic exposure to chemicals is estimated in BIKE. This requires
modeling the population distribution of individual mean exposures.

5.6.1. Exposure to a Hazard-Food Pair

Using the two marginal univariate hierarchical log-normal models

sjr ∼ LN(µ
f
jr, Cs[j, j]) , exp(µ f

jr) ∼ LN(µ
f
0j, Cµ[j, j])

the chronic long term (mean) consumption amount due to daily consumption of food j of a
random consumer r is

E(sjr) = exp(µ f
jr + 0.5Cs[j, j]) = exp(µ f

jr) exp(0.5Cs[j, j]) ∼ LN(µ
f
0j + 0.5Cs[j, j], Cµ[j, j])

In the assessment of chronic exposure, variation in hazard concentrations is replaced
by the expected (mean) concentration, so that the variability in chronic exposure is only
due to variable mean consumption between individuals. The between consumer variation
in chronic exposures from daily consumed contaminated food j has univariate distribution

E(e+ijr) = E(sjr)E(cij) ∼ LN(µ
f
0j + 0.5Cs[j, j] + log(E(cij)), Cµ[j, j])

where the mean concentration is E(cij) = exp(µh
ij + 0.5(σh

ij)
2). Uncertainty distribution for

the mean and median chronic exposure from consumption days is obtained by plotting the
posterior distributions of the expressions:

E(E(e+ijr)) = exp(µ f
0j + 0.5Cs[j, j] + log(E(cij)) + 0.5Cµ[j, j]) (3)

and
Q50%(E(e+ijr)) = exp(µ f

0j + 0.5Cs[j, j] + log(E(cij))). (4)
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The uncertainty of the univariate distribution for E(e+ijr) is provided in BIKE by
showing a few possible distribution functions, each corresponding to randomly drawn
parameters from the posterior distribution. The estimated exposure frequency pjrqij is
given numerically within graphics. Chronic exposure, including possible zero exposures of
food type j, for an individual r is

E(eijr) = qij pjrE(e+ijr)

This has variability distribution between individuals arising from the product of two
consumer specific random variables pjr and E(e+ijr). The marginal distribution of E(e+ijr)
is log-normal, and the marginal distribution of pjr is logit-normal. Alternatively, for a
consumer group: pjr = p01

j /(p01
j + p10

j ) if the Markov chain model is used for consumption
frequency. In either case, the variability distribution of E(eijr) needs to be simulated from
the conditional distributions for individuals.

5.6.2. Exposure to Several Food Types

Variation of individual chronic exposure due to many food types E(eir) including pro-
portion of zero exposures, needs to be simulated from the conditional distributions

logit(p1r), . . . , logit(pn f r) ∼ MN(logit(p0), Cp[]) or pjr = p01
j /(p01

j + p10
j )

µ
f
1r, . . . , µ

f
n f r ∼ MN(µ

f
0 , Cµ[])

E(e+ijr) = E(sjr)E(cij) = exp(µ f
jr + 0.5Cs[j, j] + µh

ij + 0.5(σh
ij)

2)

E(eijr) = qij pjrE(e+ijr)

E(eir) = ∑
n f
j=1 E(eijr)

Hence, the distributions for E(eir) can be produced separately in R using the MCMC
sample of the parameters, so that the parameter values from one MCMC iteration step
provide parameters for one possible variability distribution. Hence the uncertainty about
the variability distribution can be quantified by 2D simulation, or the more straightforward
posterior predictive distribution can be simulated.

5.7. Posterior Predictive Distributions for Acute and Chronic Exposure
5.7.1. Is Separation of Uncertainty and Variability Always Worth It?

Separation of uncertainty and variability generally requires “2D simulations” where
the uncertain parameters are first simulated nU times from their uncertainty distribution
(i.e., posterior or prior distribution). Then, the quantities representing variability are
simulated nV times from the conditional distributions determined by those parameters,
for each of the simulated values of the parameters. That calls for nU × nV simulations,
which can become computationally heavy. In contrast, a posterior predictive distribution
integrates both uncertainty and variability into a single probability distribution, and is
generally produced by simulating only once from the variability distribution per each
simulated uncertain parameter, i.e., only nU times. This can be a useful summary of total
aleatory & epistemic uncertainty. For example, when quantifying uncertainty separately,
the uncertainty distribution of 95% variability quantile exp(µ + 1.64σ) of a log-normal
variability distribution could be obtained by simulating the two required parameters from
their posterior distribution f (µ, σ | x). If the uncertainty of the parameters is large, the
uncertainty of the quantile expression is large too, and higher quantiles would be even
more uncertain. The 90% inclusive uncertainty bounds of a 99% quantile may become too
wide to be useful and its exact bounds would require huge simulations for taming Monte
Carlo error. Nevertheless, the uncertainty about the quantile is not uniform over such wide
range. The variability quantile lies more probably within the lower side of the uncertainty
interval than in the upper. Posterior predictive distribution of a new unseen observation
x∗ integrates it all into one distribution
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f (x∗ | x) =
∫ ∞

0

∫ ∞

−∞
f (x∗ | µ, σ)︸ ︷︷ ︸

variability

f (µ, σ | x)︸ ︷︷ ︸
posterior of µ,σ

dµdσ = E(µ,σ)

(
f (x∗ | µ, σ) | x

)

which is what the variability distribution is on average, with respect to the posterior
distribution of the uncertain parameters. The exact upper 95% predictive quantile of
f (x∗ | x) is what the 95% quantile of the variability distribution is expected to be, considering,
not separately, but simultaneously the variability of a quantity and what the uncertain
parameters of its distribution might be. This integration generally requires simulation, but
not 2D simulation. It is also known that, theoretically, with increasing data sample, the
posterior predictive distribution approaches the true variability distribution (assuming the
type of distribution itself is correct).

5.7.2. Posterior Predictive Outputs in BIKE

By integrating variability at individual level and variability between individuals, and
the uncertainty concerning the parameters of those distributions, the posterior predictive
distribution of acute exposure eir and chronic exposure E(eir) are produced over the MCMC
simulation of the full posterior distribution by sampling in a sequence at each iteration step:

• (1) uncertain population parameters p0, Cp[], µ
f
0 , Cs[], Cµ[], µh

ij, σh
ij, qij, µw, σw,

• (2a) consumers’ variable parameters pjr, µ
f
jr, given the population parameters,

• (2b) consumers’ variable chronic exposures E(eir), given the population parameters
(if assessment of chronic exposure),

• (3) consumers’ variable acute exposures eir, given the parameters specific for consumer
and population (if assessment of acute exposure),

and plotting the resulting MCMC sample of E(eir) or eir. For microbiological hazards,
eir represents the expected bacteria count according to the concentrations multiplied by
consumption amounts per food type and then summed over foods. The final bacteria
dose is simulated from Poisson(eir) to describe the randomness of the bacteria counts in a
serving. Hence, the predictive distribution can produce zero counts even when the food(s)
was (were) contaminated, if the contamination level and/or consumption amount was
small. Posterior predictive distributions are summarized in a table with 1%, 5%, 10%,
50%, 90%, 95% and 99% posterior predictive quantiles. These quantiles indicate where the
quantiles of the corresponding variability distribution are expected to be considering the
uncertainty of all underlying parameters.

6. Results: Driving BIKE
6.1. From Inputs to Bayesian Computations and Results: Shiny App

The workflow of BIKE is simple: once the input data are defined in a correct format
(more details in the manual), the modeling and computations in BIKE are automatic. After
the simulation runs are completed, the role of the user is to select from the click buttons of
available options for various types of results or to re-run simulations with the other model
options provided.

6.1.1. Input Data Format

Data for hazard concentrations and the consumption of specific foods needs to be
stored in Excel formats, which are then to be converted to text-files beforehand, to be
read by BIKE. Synthetic test data are provided for an example of inputs, see Appendix A.
The example data are in tabular format in Excel and downloadable from the same source
as BIKE. They were randomly generated from distributions that roughly represent real
hazards in real foods and real consumption, according to some selected literature, and
further processed for the example. These are for demonstration purpose only and as a
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template for inserting real data in the same format. Since BIKE runs on the user’s local
computer, there is no need to upload data over the net, which guarantees data protection.

6.1.2. Automatic Model Construction and Simulation

The actual Bayesian model to be constructed in BIKE is automatically determined
from the input data features when reading data. For example, if there are no censored
values below LOD/LOQ, then a model for censored data is not needed to be included. This
automation corresponds to the possible mathematical models, which depend on what data
were seen, as described in the methods section. A BUGS-model code is accordingly written
into a file, which is automatically read by OpenBUGS for running the MCMC simulations
as a background process. The simulation outputs are then instantly read by R-code for
plotting the results in the shiny app. The role of the user is to choose and click from options
available in the shiny app interface to create new plots from the once simulated MCMC
sample, and these are quick to perform. Some other user options will change the model
structure itself or change the simulation length, which will start a new simulation, leading
to new results. There is no automatic convergence diagnostics for the MCMC or the MCMC
error [6]. Therefore, it is recommended that several MCMC runs of different lengths are
tested to check how stable the results are. Some diagnostic plots for model parameters are
provided for visual inspection of the simulated output. Particularly, higher quantiles of
distributions come with larger uncertainty, which may require much longer simulations
than for the uncertainty interval of the median.

6.1.3. Selection of Plots for Results

The user can select between density plots and cumulative probability plots, either for
absolute values or logarithmic values. These can be produced for one or more hazards,
food types and result types according to selection, as in Figure 1. Since the distributions
often tend to have long upper tails, particularly for concentrations, the density plots
may not always be visually appealing. Cumulative distributions functions are therefore
recommendable as shown in Figures 2–5. As a default, the plots show distributions of
concentrations, consumption amounts and exposures for positive values, excluding zeros.
For some hazards and foods, the majority of the concentration values and/or consumption
amounts may be zero or nearly zero, which would make their distributions difficult to plot
due to a large peak at zero and a long thin upper tail. Therefore all plots show distributions
for positives only. The proportion of positive concentrations or consumption days is then
separately given as estimated in a legend box within the figure. Total exposure including
all zero incidents (due to zero occurrences of a hazard or zero consumption days of a food,
or both) is likewise given numerically. The exposure distributions can be inspected for
single hazard-food pairs, or for the summed result from a subset of foods among all the
specified foods in the model. All food types are nevertheless used for computing the full
model to account for all their pairwise correlations. Pairwise correlations can be observed
in a scatter plot for selected pairs of food types, as in Figure 6.

Figure 1. Example of selection tabs for hazards, foods, and results types.
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Figure 2. Example cumulative distributions of chemical (top) and microbiological (bottom) pos-
itive concentrations in the servings of the given food type. A sample of probable concentration
distributions (magenta) and the uncertainty distributions for concentration mean (gray) and median
(black). Observed data empirical cumulative distribution in blue/red with lowerbound/upperbound
substitution of censored measurements is for comparison. Individual data points shown as red ticks,
with green marks for values below LOQ and blue marks for values below LOD. Hazard prevalence
estimate is given numerically. Numerical values on horizontal axis depend on the measurement unit
used in the user’s data, e.g., mg/kg, µg/kg, CFU/g or CFU/mL, etc.
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Figure 3. Example cumulative distributions of consumption on actual consumption days in the pop-
ulation of consumers. Chronic consumption per body weight (left) and acute absolute consumption
(right). A sample of probable consumption distributions (magenta), and the uncertainty distributions
for consumption mean (gray) and median (black). Observed data empirical cumulative distribution
in red with data points shown as red ticks. Estimated frequency of consumption days is given
numerically. Numerical values on horizontal axis depend on the measurement unit used in the user’s
data, e.g., g, kg or ml etc.

Figure 4. Example cumulative distributions of chronic exposure per body weight from contaminated
food on consumption days. A sample of probable exposure distributions (magenta) and the uncer-
tainty distributions for exposure mean (gray) and median (black). Monte Carlo pseudo empirical
cumulative distributions produced for a few bootstrapped data sets with lowerbound/upperbound
substitution of censored measurements (blue/red). Estimated exposure frequency is given numeri-
cally (i.e., proportion of days when contaminated food is consumed). Numerical values on horizontal
axis depend on the measurement unit used in the user’s data.
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Figure 5. Uncertainty sample of cumulative distributions (magenta) of total positive exposures per
body weight, from five selected food types, assuming positive concentrations & positive consumption
days for all those foods. Uncertainty distribution of the chosen exposure quantile (here 95%) is shown
as a density plot (black) within 90% uncertainty bounds (vertical bars). Numerical estimates for the
chosen quantile are shown both for strictly positive exposure days only (lower corner) and for all
days, which include zero consumption days and zero occurrences (upper corner). The “total quantile”
hence represents the real exposure quantile whereas the “positives quantile” (and the plot) ignores
zero exposure days. Numerical values on horizontal axis depend on what measurement units were
used in the user’s data.

Figure 6. Example of pairwise correlations between log-consumption amounts on actual consumption
days. Data points in blue and model simulated points in magenta (dots). Similar scatter plot is also
available for mean log-consumption. Numerical values depend on the measurement units used in
the user’s data, e.g., logarithm of kg or g per body weight.
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6.1.4. Validation against Data

Data are not only used for estimations in BIKE, but also for comparisons between
model and data. This provides a visual validation of sensible model fit against data. Empir-
ical cumulative distributions are drawn from data together with model-based cumulative
distributions. When concentration data contain censored values, two empirical cumulative
distributions can be drawn to show the extremes: one based on lower bound substitution
and the other based on upper bound substitution of the censored values. Comparisons to
data apply directly to hazard concentrations and food consumption amounts. Concerning
the exposure, there can be no observed data of the actual exposures of individuals that
could be used for empirical data distributions since the occurrence data and consumption
data are strictly two separate data sources. However, BIKE uses the basic non-parametric
simulation approach for independently sampling from occurrence data and consumption
data, then multiplying the random values, and plotting this ‘pseudo-empirical’ cumulative
distribution of exposures. Uncertainty is visualized by plotting the same from several
bootstrapped data. In this way, BIKE automatically shows comparisons between model-
based distributions and non-parametric empirical distributions for model assessment and
validation.

6.1.5. Inspecting Uncertainty and Variability

The novelty throughout is quantification of both uncertainty and variability in the full
model. All the plots for hazard concentrations and food consumption depict variability dis-
tributions. This may be for serving to serving variation of hazard concentration, variation
of consumption amounts on random consumption days, or variation of average consump-
tion between consumers. Likewise for acute and chronic exposures in the population of
consumers. Each of these variability distributions are uncertain due to their uncertain
parameters, and this uncertainty is depicted by visualizing a few probable distribution
functions overlaid in the figure. The uncertainty is produced from the MCMC simulated
posterior distribution of the model parameters. The uncertainty distribution of the mean
and median are also depicted where applicable. Thus, uncertainty and variability are
separated. In addition, the posterior predictive distribution (described in methods section
above) is provided in tabular format.

6.1.6. Adjustment Factors

All exposure distributions can be affected by applying constant processing factors
to each food-hazard combination. Default values equal to one. The factor is assumed to
affect the concentration levels, thus allowing to express expected differences in overall
contamination level between the point of processing that is represented by the measurement
data, and the actual point of consumption. For example, microbiological concentration data
may represent raw meat, and this would need to be adjusted by a factor for cooked meat.
Likewise, effects of washing, peeling and cooking could be accounted as with chemical
hazards [40]. A constant factor acts as multiplication in absolute scale and addition in log-
scale for concentrations. Similarly, for prevalence of hazards in foods, a factor between zero
and one is applicable to reduce the estimated prevalence when simulating final exposures,
e.g., after prevalence reducing management actions. These factors could also be used
in scenario calculations as specified assumptions. There is no uncertainty distribution
for these factors, since that would require highly context dependent models of cooking
and storage.

7. Discussion

BIKE provides a user-friendly Bayesian parametric modeling approach that can be
used for dietary exposure estimation and probabilistic uncertainty analysis with typical
data sets, both microbiological and chemical. However, considering the vast variation
in data quality and quantity, and structural differences between practical problems, no
single dietary exposure assessment model can be expected to be perfectly fit for purpose in
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every imaginable situation. Yet, there is scope for a generic Bayesian inference tool. Any
model is not to be applied in an automated manner to data without judgements of model
performance with the data at hand. Visual comparisons between model distributions and
empirical data are provided in BIKE to aid such judgement.

7.1. The Realm of Modeling in Dietary Exposure Assessment

Computation of a large Bayesian model with MCMC is a heavy task, even 20+ years [41]
after the upsurge of general software such as WinBUGS/OpenBUGS. In practice, it may
not be feasible to model simultaneously a very large number of hazards and foods, or
very large data sets with BIKE. Therefore, it is best applicable in a tiered approach where
the foods and hazards to be modeled are a preselected subgroup of interest, provided
with reasonable data. At least minimal, but sufficient consumption data and occurrence
data should be available for the food-hazard combinations to be assessed. For the users,
that requires cautious judgement - just as with any statistical method. For BIKE, even a
large proportion of concentrations can be allowed to be below detection limits LOD, or
between LOD and LOQ, as long as a few measurements are above LOQ. Zero-inflated
models can be used adjunct with the commonly reported concentration data format, to
accommodate possible true zeros among censored values below LOD. Alternatively, all the
concentration data can be taken to represent non-zeros accompanied by a separate sample
data for prevalence estimation. Data may contain any combination of censored values with
LOD and LOQ limits.

Currently, BIKE is only a dietary exposure model, relying on data to represent concen-
tration levels thought to be relevant for dietary exposure. There are no inbuilt predictive
models for bacteria growth or inactivation, nor cross contamination or process models
for chemical or microbiological changes during food storage or preparation. Such models
are highly context dependent for each hazard-food combination and might be added in
further development. However, the user may apply simple adjustment factors for concen-
trations and prevalences to represent meaningful changes, e.g., to translate raw product
concentration or prevalence to ready-to-eat concentration or prevalence, or to simulate a
hypothetical scenario or an intervention.

In general, the consumption data collected over a short monitoring period (e.g., two
days) may be limited about rare food types so that there would be little information
about their consumption distributions. With smaller data samples, be it concentration
or consumption, the uncertainties obviously become larger, as given by the Bayesian
theory. Even when technically computable, in such case the assessment may not be enough
accurate for confident decision-making, but it is still important to display the magnitude
of uncertainty realistically. No model can provide information out of nothing, but one
can strive to provide the best out of available data. Data sets with limited quantity and
heterogeneous quality of information can be used in BIKE and their uncertainties assessed
in a comparable way, making a probabilistically coherent synthesis. Data with various
structures could be added to the model by coding the corresponding models likewise to
those already shown in the open code. This would allow flexible extensions to the basic
model, tailored to the available data. However, as with any Bayesian analysis using MCMC,
it is the users’ responsibility to assess whether the simulations have properly converged,
which may not be the case with over-parameterized models, unless deliberately informative
prior distributions are placed. Although BIKE is not structurally over-parameterized, i.e.,
there is no inherent structural non-identifiability [42], small data can still lead to poor
convergence, e.g., with censored data and zero-inflated models. This could leave parameter
estimates very uncertain, albeit still computable from sufficiently long simulation runs.

7.2. Approaches to Uncertainty

Alternative non-Bayesian approaches to uncertainty quantification in dietary expo-
sure assessment often rely on bootstrapping methods [43] or frequentist ‘distribution
estimators’ [44,45]. Since some data sets can be quite small, non-parametric bootstrap-
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ping fails to fully quantify uncertainty [8] and parametric bootstrapping would depend
on parameter estimates that are themselves likewise unstable. Frequentist ’distribution
estimators’ a.k.a. fiducial or confidence distributions may be applicable to some individual
parameters. For example, in the case of µ & σ2 for normal distribution, these fiducial
distributions are effectively the same (although with different interpretation of probability)
as posterior distributions based on uninformative improper prior density f (µ, σ2) ∝ 1/σ2.
Such prior leads to nearly improper posterior distribution when data sample is very small,
so the same concerns fiducial distributions. Fiducial distributions for µ & σ2 are sometimes
used in the manner of Bayesian distributions without noting the difference and the simi-
larity of implicit improper prior. To ensure proper posterior distributions, default proper
priors were used for model parameters in BIKE. However, other priors could always be
coded instead. Probability models for complicated data patterns with multiple param-
eters would not provide pivotal quantities for fiducial solutions more generally. Then,
different non-Bayesian methods would need to be tailored and combined for each case, in
several steps, ad hoc. In contrast, the Bayesian approach is a consistent one-step method of
probabilistic inference for multiple parameters, a general principle adopted in BIKE.

7.3. Parametric or Non-Parametric?

Combinations of parametric models can provide advantages over non-parametric
methods for efficient uncertainty quantification [7], although they obviously depend on
the chosen distribution models, which can constrain distribution shapes e.g., as with
tail probabilities. This makes model choice another level of uncertainty, but this can be
addressed by model comparisons. Currently, BIKE exploits log-normal distributions for
their general usefulness and the distributions are visually compared against non-parametric
data sample distributions. Log-normals are useful when modeling products of two or more
variables, such as concentration and consumption amount whose product equals exposure,
since the product of two log-normal variables follows another log-normal distribution that
can be solved. The sum over several exposures has no similar solution, and needs to be
simulated for an approximation. Multivariate normal distributions provide efficient ways
for modeling parametric correlations between quantities, e.g., food types, for which this
could be of interest. in BIKE, multivariate normal distributions were exploited for one-day
food consumption amounts, mean consumption amounts, and consumption frequencies. It
is not always clear beforehand if these correlations will be important features in a specific
data set, but other correlation structures could be proposed as a further research.

When measurement data exhibit very large variance, the mean of log-normal dis-
tribution, exp(µ + 0.5σ2), also becomes large. Combined with large uncertainty of both
µ and σ this may be less useful summary than median exp(µ). This occurs typically
when a few concentration values are extremely large while most are small. For some data
sets, gamma-distribution may provide better fit than log-normal, but some other useful
properties would be compromised. With large sample size, the empirical distribution of
data may become the best model of itself, but does not provide the analytical benefit that
comes with parametric models. Combinations of parametric models provide many options
for efficient uncertainty quantification and estimation, including possible extensions to
common regression models and larger Bayesian hierarchical models for evidence synthesis
from diverse data sets.

7.4. Advantages in Multivariate Multiparameter Exposure Assessments

Apart from small data problems, both challenges and opportunities come with compli-
cated data patterns when making evidence synthesis from multiple data sets, concerning
both consumption data and occurrence data in various formats. In general, parameter esti-
mates from a single data set may not always be unique, as required by maximum likelihood
estimation. They may be nearly non-identifiable (as on nearly flat ridges of likelihood),
or even structurally non-identifiable from a single data set alone. The multiparameter
uncertainties can be correlated, e.g., with mixture distributions where different param-
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eter combinations may explain the data equally well. With more structured probability
models, a patchwork of unrelated statistical methods for all uncertain parameters would
not provide a consistent assessment of the joint uncertainty distribution. The advantage
of Bayesian statistical models is by far their flexibility for extensions and coherent mod-
eling of the uncertainty of all connected parameters jointly. This becomes increasingly
needed when combining evidence from diverse data for multiparameter inference. That
is, when parameters could not be estimated properly from one data set but by combining
information from two or more data sets. An exposure estimation (as BIKE) may then be
further integrated to risk estimation as e.g., for microbiological criteria [46], or ranking
of risk management interventions. The main obstacle remains computational, a cost that
can be well spent for a generally applicable method in food safety risk modeling. The
need for specialized programming skills for self made MCMC algorithms can be avoided
by using some of the existing general Bayesian tools, which then allow risk assessors to
focus on model definitions rather than tedious engineering of MCMC samplers for each
situation. However, an important prerequisite for still wider applicability is the availability
of user interfaces providing some selection of models and analysis features as a tool. The
BIKE interface is intended to provide this, allowing also new extensions to be developed
transparently with open-source code.

7.5. Further Issues

It remains to apply BIKE with other and larger data sets, with suitable modeling
options. New correlation structures may need to be developed for better scalability, as well
as possible hierarchical model extensions for nested data structures and unbalanced data.

7.6. Obtaining BIKE

BIKE is found in github repository: https://github.com/jukran/BIKE (accessed on
22 September 2021).
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Appendix A. Synthetic Data

Synthetic random data were generated in Excel for demo runs. These data only mimic
real data and are loosely based on analysing various published summaries. Real original
data would be subject to ownership rights. Therefore, these synthetic data were generated
for free use. New random data sets of different sample sizes can then be generated by
re-evaluating the random number functions in a downloadable Excel file.

From Finriski 2012 report [47] (part 2, Data Tables), the categorical weight distribution
for men at 20 years of age (recalled at age 25–34) was simulated (uniformly within category,
categories sampled as their relative proportions) and the result fitted as a log-normal distri-
bution LN(µw = 4.31, σw = 0.14) for generating random body weights for the test data. The
original weight categories and their proportions were [50–60, 60–70, 70–80, 80–90, 90–100,
100–110] kg and [5, 24.6, 36.7, 24.8, 4.1, 2.3] %. From EFSA Comprehensive European Food
Consumption Database, acute consumption statistics on 5 food types (Foodex 2, levels
L2 & L3) for consumption days were extracted for Finnish adults (study: Findiet 2012).
Based on the reported means and standard deviations in absolute scale, parameters for
corresponding log-normal distributions were obtained. The reported standard deviation
was first reduced by a factor of 0.6 for not exceeding the upper quantiles excessively
when simulating synthetic data. Since the EFSA database only provides summaries for
one-dimensional distributions per each food type instead of raw data for investigating the
multidimensional distribution, it is not possible to do sophisticated parameter estimation
for re-creating similar but synthetic data. Also, the correlations between consumed food
types are lost. However, simple synthetic correlations were crafted by setting a correlation
coefficient 0.75 for each pair of log-body-weight and log-amount of consumed food type
so that higher weights tend to combine with higher consumption, which also induces
correlations between all food types. This is obviously not fully realistic, but suitable for
demonstration purpose. The consumption amounts were thus generated from

P(log x | log w) = N(µx +
σx

σw
ρ(log w− µw), (1− ρ2)σ2

x)

where µx, σx are parameters for the food consumption log-amounts in question, µw = 4.31,
σw = 0.14 for the consumer body log-weights and ρ = 0.75 for the synthetic correlation.

The food categories (levels L2 or L3) were: unprocessed whole eggs (L3), fish (meat)
(L2), birds meat (L3), milk (L3), leafy vegetables (L2). Accordingly, the consumption
frequencies and marginal univariate log-normal distributions were 22% LN(3.20, 0.67),
23.3% LN(4.58, 0.48), 30.3% LN(4.49, 0.48), 76.6% LN(5.69, 0.53), 51.4% LN(3.60, 0.63).

Microbiological prevalence and concentration can vary hugely between the target food
groups. Therefore, the following distributions used in the example data set mostly do not
represent exactly matching food groups in the food consumption data and should be used
only as examples of synthetic data for trying out the model. Most of these distributions do
not describe final concentrations at the time of consumption without further adjustments.
Hence, more representative data would be needed to assess any specific food product more
realistically. Due to rare data representing concentrations at the actual time of consumption,
microbiological concentrations in risk assessments are often merely predicted (based on
earlier steps in the food chain) rather than estimated from models. Here, synthetic data for
the concentrations was generated from log-normal distributions, by first roughly estimating
the parameters µ, σ as follows. Prevalence p of contamination was either estimated together
with these parameters using zero-inflated model, or separately from binomial sample data.

Salmonella in broiler meat: in [48], concentrations in random broiler filets (raw meat)
at retail were reported. 201 observations were below detection limit, 19 were above with a
stated estimate of cfu/filet. The weight of a filet was approximately 182 g, which was used
for converting the distribution as per gram. Since observations below detection limit could
be from both truly uncontaminated and truly contaminated filets, the data was re-analysed
with a zero-inflated log-normal model with flat priors for µ and σ but vaguely informative
Beta(2,4) prior for p. Posterior means of these parameters were (−6.5, 4.1, 0.45).
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Salmonella in milk: the sample prevalence of Salmonella in milk and cream was
reported in [49] as 4/3725 = 0.1%. Also, the prevalence range of 0–11.8% has been
reported [50]. Concentration data from milk are rare, but in [51], nine positive concentration
values (means of two measurements) from home-made ice cream were reported although
these originated from raw eggs. With flat priors for µ and σ, posterior means of these were
(5.399, 2.368). In comparison, concentration distribution in cattle faeces was estimated as
LN(0.75 × log(10), 1.39 × log(10)) as an origin of contamination for raw milk in [50].

Salmonella in eggs: in the EU, sample prevalence of positive eggs 29/9700 was
reported in [52]. In [53], 20 positive concentrations below 20 cfu/egg were reported
(i.e., 1–20 cfu/egg) for raw eggs. Three concentrations were interval censored between
101–1000 cfu/egg and two were 1.5× 104 and 1.2× 105. Assuming egg weight 64 g, the
distribution was converted as per gram. With flat priors for µ and σ, posterior means were
used for parameter estimates leading to (−1.347, 2.992).

Salmonella in fish: the sample prevalence in raw fish was reported in [49] as 6/2086.
Concentration data are very rare, but two out of three PCR positive samples (25 g) from
black tiger prawns were reported in [54] as 40/100 cfu/g and <30/100 cfu/g. Taking these
as 40/100, 1/25–30/100, and 1/100–1/25 and using flat priors for µ and σ, gives posterior
distributions with fairly long tails. Therefore, posterior medians were used for parameter
estimates (−2.318, 3.025).

Salmonella in vegetables: the sample prevalence of 6/1860 was reported in [55],
and concentrations 0.02, 0.019, 0.019, 0.024, 0.024, 0.281 and >0.281 cfu/g were reported
from various vegetables. With flat priors for µ and σ, the resulting posterior means for
parameters were (−2.936, 2.152).

Campylobacter in broiler meat: prevalence and concentrations in retail raw broiler
meat were described in [56]. Sample prevalence was 76/608, and 34 measurements were
taken as exact and 42 as censored between 1/25–0.5. With flat priors for µ and σ this gives
posterior means of parameters (−0.7075, 1.521).

Campylobacter in milk: in the EU, sample prevalence of positive milk units 30/1554
(1.9%) was reported in [52]. In a contaminated farm [57], concentrations 1, 2, 4, 5,
100 cfu/100 mL were reported and 6 were below detection limit, from samples of 500 mL.
Assuming all 500 mL samples were contaminated, and detection limit of analysed samples
was 1 cfu/100 mL, the 6 results were taken as censored within [1/500, 1/100] cfu/g. With
flat priors for µ and σ this gives posterior means of parameters (−4.243, 1.97).

Campylobacter in eggs: in [58], sample prevalence of 11/2710 was reported (egg
shells). Concentrations 240, 5× < 3, 7.4, 3, 3× < 3, 93, 15, 3.5, < 3, 3, 2× < 3 per 100 mL
in positive egg yolks were reported in [59]. Assuming lower limits 1 per 100 mL for the
left-censored positive results, and flat priors, the posterior means of parameters were
(−3.237, 1.599).

Campylobacter in fish: Campylobacter in fish is generally rare [60]. In [61], Campy-
lobacter jejuni was isolated in 36/240 samples of blue crab meat (50 g), but all quantitative
levels were <0.3 MPN/g. Interpreting these as 36 values between [1/50, 0.3], and the rest
as either true zeros or values <1/50, with flat priors on µ, σ and vague informative prior on
p (Beta(2,4)) in a zero inflated model gives posterior means (−3.672, 0.706, 0.3123).

Campylobacter in vegetables: in [55], the sample prevalence of 3/1810 was reported,
and concentrations 0.024, 0.024, 0.096 cfu/g. From only three measurements and flat priors,
posterior distribution of µ and σ was computed. Since the posterior density of σ had very
long tail, posterior mean of µ and posterior median of σ were used (−3.228, 1.671).

Lead: the chemical concentrations of lead in chicken meat, liquid milk, fresh eggs, fish
meat and leaf vegetables were reported in [62]. Unfortunately no raw data were shown, but
instead summaries obtained after substituting left-censored values with e.g., Middle Bound
values. Also the reporting limits varied over the original measurements and were not
shown in detail. Although proper parameter estimates for concentration distributions are
not feasible from this information, rough estimates may be sketched. Using the mean and
95% percentile (Middle Bound substitutions) gives a standard deviation, and transforming
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these parameters to log-normal parameters gives distributions: broiler: LN(1.710, 1.244),
milk: LN(0.719, 1.155), eggs: LN(1.575, 1.283), fish: LN(2.455, 1.128) vegetables: LN(3.422,
0.764), in µg/kg. Final synthetic data was simulated as µg/g with LOD = 0.005 and LOQ =
0.01 so that some values will be censored.

Cadmium: the chemical concentrations of cadmium in chicken meat, liquid milk,
fresh eggs, fish meat and leaf vegetables were reported in [63]. Unfortunately, no raw
data were shown, but instead only mean values obtained after substituting left-censored
values with e.g., Middle Bound values. No information was shown on concentration
variances or quantiles. The following means (µg/kg) from Middle Bound substitutions
were reported: poultry 7.99, liquid milk 1.05, fresh eggs 3.33, fish meat 26.0, leaf vegetables
36.4. Assuming that the standard deviations are equal to means, and transforming to
log-normal parameters gives distributions: broiler: LN(1.732, 0.833), milk: LN(−0.298,
0.833), eggs: LN(0.856, 0.833), fish: LN(2.912, 0.833), vegetables: LN(3.248, 0.833). Final
synthetic data was simulated as µg/g with LOD = 0.001 and LOQ = 0.005, except LOQ =
0.002 for milk so that some values will be censored.

In all cases, real or synthetic data should contain at least some concentration values
measured above LOQ (as ‘exact’) for the density estimation to be possible in BIKE. This
may not automatically occur in small samples, so the data generator should be used
cautiously. Likewise, real data should be inspected for a sanity check before modeling to
assess whether there is sufficient information at all for the attempted estimation.
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