
We have previously described isolation and prelimi-
nary identifi cation of a virus related to Dugbe virus (DUGV), 
family Bunyaviridae, genus Nairovirus. Six isolates of the 
virus were obtained from pools of Amblyomma gemma and 
Rhipicephalus pulchellus ticks collected from hides of cattle 
in Nairobi, Kenya, in October 1999. We report results of 
further characterization of this virus, including growth kinet-
ics in cell culture and full-length genome sequencing and 
genetic characterization, which show it to be distinct from 
DUGV. We suggest that this is a new virus in the family 
Bunyaviridae, genus Nairovirus, and we propose that it be 
designated Kupe virus.

The genus Nairovirus in the family Bunyaviridae com-
prises 7 species groups containing primarily tick-borne 

viruses, some of which have been identifi ed as human or 
animal pathogens. The genome of the nairoviruses consists 
of 3 segments of negative-sense, single-stranded RNA, 
small (S), medium (M), and large (L), which encode the 
nucleocapsid protein, glycoproteins (Gn and Gc), and vi-
ral polymerase, respectively. Additionally, an M segment–
encoded nonstructural protein, NSM, was recently identifi ed 
in the nairovirus Crimean-Congo hemorrhagic fever virus 
(CCHFV) (1). In recent years, nucleotide and amino acid se-
quence information has become available so that additional 
characterization of these viruses is possible, including fur-
ther analysis of relationships among members of the genus. 
Full-length sequence data are now available for CCHFV, 
Hazara virus (HAZV) and Dugbe virus (DUGV), and par-
tial sequences are available for many other members of the 

genus. CCHFV, which ranges from sub-Saharan Africa to 
western People’s Republic of China, is currently the most 
well characterized member of the genus. DUGV, also well 
characterized, is commonly isolated in surveillance studies 
conducted in Africa and appears to be endemic in most of 
the drier parts of this continent. DUGV is transmitted by 
ticks to vertebrates, including humans, and causes a mild 
febrile illness and thrombocytopenia (2).

In a recent survey of ticks infesting market livestock 
in Nairobi, Kenya, we identifi ed 26 isolates of DUGV and 
additionally obtained several isolates of a virus that was 
identifi ed as a nairovirus related most closely to DUGV (3). 
We report further characterization of the K611 isolate of 
this virus, including the full-length genome. Our fi ndings 
suggest that this is a new virus in the genus Nairovirus, and 
we propose that it be designated Kupe virus (Kupe is the 
Kiswahili word for tick).

Materials and Methods
Isolates of viruses were obtained from pools of ticks 

collected at abattoirs in Nairobi, Kenya, as described (3). 
The K611 isolate used in this study was obtained from a 
pool of Amblyomma gemma ticks in October 1999.

Characterization of Viruses in Cell Culture and Mice
Growth of Kupe virus and DUGV was tested in Vero 

(African green monkey kidney), LLC-MK2 (rhesus mon-
key kidney), BHK (baby hamster kidney), SW-13 (hu-
man adrenal cortex carcinoma), HeLa (human cervical 
adenocarcinoma), HUH-7 (human hepatocarcinoma), 
and C6/36 (Aedes albopictus mosquito) cells in culture. 
Growth kinetics of the 2 viruses were compared in a 13-
day growth curve in which cells were infected at a mul-
tiplicity of infection of 0.01 and aliquots removed daily. 
Virus titers were assayed on Vero cell monolayers in 
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6-well plates by using a published double-overlay method 
(4). Second overlays containing neutral red were added at 
6-days postinfection.

Nucleic Acid Sequencing
Viruses to be sequenced were amplifi ed in Vero cells, 

and viral RNA was extracted from cell culture supernatant 
by using the QIAamp Viral RNA Mini Kit (QIAGEN, Va-
lencia, CA, USA). Reverse transcription–PCR was con-
ducted by using the Titan One Tube Reverse Transcription–
PCR system (Roche, Indianapolis, IN, USA). Amplifi ed 
products were purifi ed by agarose gel electrophoresis, and 
DNA fragments were extracted by using the MinElute Gel 
Extraction Kit (QIAGEN). Purifi ed DNA fragments were 
sequenced by using the BigDye 3.1 kit (PE Applied Bio-
systems, Foster City, CA, USA) and analyzed by using 
a model 3130 automated sequencer (PE Applied Biosys-
tems). Both strands of the DNA were sequenced.

The full-length genome of Kupe virus isolate K611 
was sequenced, beginning with fragments amplifi ed by 
Nairobi sheep disease virus (NSDV)–specifi c primers or 
DUGV-specifi c primers from each segment. Full-length 
sequence was obtained by using a previously described 
method of primer walking and the 5′/3′ Rapid Amplifi -
cation of cDNA Ends (RACE) Kit (Roche), which was 
used to determine the sequence of the segment ends (5). 
Fragments of the S (nt 413–916), M (nt 408–2372), and L 
(nt 6656–8185) segments from other Kupe virus isolates 
were also sequenced for comparison (3). Additionally, 
fragments of the S, M, and L segments from isolates of 
DUGV collected in 1999 from the Nairobi abattoirs were 
sequenced by using primers designed from the published 
sequence of DUGV (3).

Genome Characterization and Comparison 
with Other Viruses

The nucleotide sequence of each segment of the 
Kupe virus genome was analyzed for open reading frames 
(ORFs) by using the EditSeq module of Lasergene (DNAS-
TAR, Inc., Madison, WI, USA) and translated into deduced 
amino acid sequence. Identifi cation of protein motifs and 
potential sites for glycosylation was accomplished by us-
ing Prosite (http://ca.expasy.org/prosite), psi-BLAST and 
CDS-BLAST (www.ncbi.nlm.nih.gov/BLAST), NetOGlyc 
3.1, and MOTIFS in the Wisconsin Package version 11.1.2 
(6,7). Nucleotide and amino acid sequences were compared 
with DUGV, CCHFV, NSDV, and HAZV sequences. Gen-
Bank accession numbers for sequences used in this study 
are listed in Table 1 or in the text below. Sequence align-
ments were performed by using the PILEUP and GAP pro-
grams in the Wisconsin Package. Sequence identities were 
calculated by using the GAP program (Wisconsin Package) 
or MegAlign (Lasergene; DNASTAR, Inc.). Phylogenetic 
analysis of alignments was conducted by using the maxi-
mum parsimony method with 500 bootstrap replicates in 
MEGA, version 3.1 (www.megasoftware.net).

Results
Viruses were isolated from pools of ticks collected 

from livestock driven to market at 2 abattoirs in Nairobi, 
Kenya, as described (3). Several isolates made from pools 
of A. gemma and Rhipicephalus pulchellus ticks collected 
on 4 days during the fall of 1999 were identifi ed as similar 
to DUGV on the basis of nucleotide sequence of a frag-
ment of the S segment genomic RNA. This virus has been 
designated Kupe virus.

Growth kinetics of Kupe virus and DUGV were com-
pared in 7 cell types (Figure 1). Neither virus replicated 
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Table 1. Virus sequences used in phylogenetic comparisons* 

Genome segment Virus Strain
GenBank nucleotide 

accession no. 
GenBank amino acid 

accession no. 
Small Dugbe ArD44313 AF434161 AAL73396

Dugbe KT281/75 AF434165 AAL73400
Dugbe IbAr1792 AF434164 AAL73399
Dugbe IbH11480 AF434163 AAL73398
Dugbe ArD16095 AF434162 AAL73397

Nairobi sheep disease RV082 AF504294 AAM33324
Hazara JC280 M86624 AAA43842

Crimean-Congo hemorrhagic fever IbAr10200 U88410 AAB48501
Kupe K611 EU257626 NA

Medium Dugbe ArD44313 M94133 AAA42974
Hazara JC280 DQ813514 ABH07417

Crimean-Congo hemorrhagic fever IbAr10200 AF467768 AAM48106
Kupe K611 EU257627 NA

Large Dugbe ArD44313 U15018 AAB18834
Hazara JC280 DQ076419 AAZ38668

Crimean-Congo hemorrhagic fever IbAr10200 AY389508 AAQ90157
Kupe K611 EU257628 NA

*NA, not available.  
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in C6/36 mosquito cells. Kupe virus and DUGV replicated 
in all mammalian cell types tested, and maximum titers 
were observed 1–2 or 2–4 days postinfection, respective-
ly. The Kupe virus titer increased more rapidly than the 
DUGV titers and achieved peak titers 1–2 days earlier. The 
subsequent decrease in titer was also more rapid (Figure 
1). In all mammalian cell types except BHK cells, we ob-
served earlier appearance of cytopathic effects (CPE) in 
Kupe virus–infected cells; CPE progressed more rapidly 
in DUGV-infected BHK cells. However, in all but LLC-
MK2 cells, Kupe virus caused greater overall destruction 
of the cell monolayer by the end of the growth curve ex-
periment. In Vero cell plaque assays, DUGV plaques were 
slower to form than those caused by Kupe virus, although 
plaque morphology of the 2 viruses was similar (2–4 mm 
in diameter).

Genome Analysis
The 3 genomic RNA segments of Kupe virus, isolate 

K611, were completely sequenced, ORFs were identifi ed, 
and deduced amino acid sequences were determined. Simi-
lar to other viruses in this family, the ends of each RNA 
segment contain a conserved sequence, the terminal 9 nt of 
which are identical to those found in all segments of DUGV, 
CCHFV, and HAZV and in the S segment of NSDV (se-
quence of other NSDV segments not available). The S seg-
ment of Kupe virus has 1,694 nt, an ORF of 483 aa, and 
5′ and 3′ noncoding regions (NCRs) of 49 nt and 193 nt, 

respectively. The DUGV S segment has 1,716 nt, 5′ and 3′ 
NCRs of 51 nt and 213 nt, and an ORF of 483 aa (8,9).

The Kupe virus M segment RNA has 4,818 nt and con-
tains 1 ORF fl anked by 5′ and 3′ NCRs of 47 nt and 121 
nt, respectively. The DUGV M segment has 4,888 nt and 
its 5′ and 3′ NCRs are 47 nt and 185 nt, respectively (9). 
As observed in other nairoviruses, the Kupe virus M ORF, 
which has 1,549 aa, is longer than those of other members 
of Bunyaviridae (9,10). The Kupe virus M ORF contains 
8 potential sites for N-linked glycosylation (N-gly); the 
DUGV M ORF contains 10 potential sites (Table 2). Kupe 
virus contains a unique potential N-gly site in the Gn and 
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Figure 1. Growth of Dugbe (black lines) and Kupe (red lines) viruses in A) Vero (African green monkey kidney), B) LLC-MK2 (rhesus monkey 
kidney), C) BHK (baby hamster kidney), D) SW-13 (human adrenal cortex carcinoma), E) HeLa (human cervical adenocarcinoma), and F) 
HUH-7 (human hepatocarcinoma) cells in culture. 

Table 2. Potential N-linked glycosylation sites in the medium 
segment of Dugbe and Kupe viruses 

Amino acid location* 
Dugbe virus Kupe virus Region†

25 16 Mucin-like, variable 
30 – Mucin-like, variable 
80 – Mucin-like, variable 

142 140 Upstream of Gn
413 414 Gn

– 612 Gn
827 829 Unknown 
848 – Gc precursor 

1201 1203 Gc
1258 – Gc
1420 1421 Gc

–- 1514 Gc
*Amino acid location in the translated open reading frame. 
†Gn and Gc are glycoproteins. 
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Gc glycoprotein regions (aa 612 and aa 1514) and was 
missing potential sites found at aa 30, 80, 848, and 1258 in 
DUGV. Further analysis is necessary to determine which of 
the potential N-gly sites are used in DUGV and Kupe virus 
proteins. DUGV and Kupe virus M segment ORFs contain 
a highly variable, mucin-like region near the amino termi-
nus, as described for the genome of CCHFV (9,11). This 
≈100-aa region in DUGV and Kupe virus is shorter than the 
243–248-aa region identifi ed in CCHFV, but this region in 
both viruses contains similarly high amino acid sequence 
variability, increased frequency of serine, threonine, and 
proline residues, and more highly predicted O-linked gly-
cosylation than for the rest of the ORF.

Previous studies of CCHFV and DUGV suggest that 
precursors of Gn and Gc glycoproteins are produced and 
then post-translationally cleaved to form mature glycopro-
teins. Potential tetrapeptide cleavage sites for SKI-1/S1P 
protease or a related protease have been identifi ed immedi-
ately upstream of the N-termini of the CCHFV (RRLL519– 
Gn, RKPL1040– Gc) and DUGV (RKLL374– Gn, RKLL896– 
Gc[predicted]) glycoproteins; similar peptides are found in 
the Kupe virus ORF (RRIL375 and RRLL898) (11–13). Addi-
tionally, a furin-like cleavage recognition motif (RSKR247) 
has been identifi ed in CCHFV upstream of the amino ter-
minus of Gn that has been shown to produce an additional 
glycoprotein; however, DUGV and Kupe virus do not share 
this motif (14). They contain an additional SKI-1/S1P-like 
cleavage motif in this region (DUGV–RRII204; Kupe virus–
RRIL202).

As reported for DUGV and CCHFV, the length of the 
L segment RNA (12,330 nt) and ORF (4,050 aa) of Kupe 
virus is almost twice that of other bunyaviruses (15,16). The 
L RNA contains a 5′ NCR of 40 nt and a 3′ NCR of 137 
nt; the 5′ and 3′ NCRs of DUGV are 40 and 104 nt, re-
spectively. The Kupe virus ORF aa sequence shows a high 
degree of homology to that of DUGV, with the exception of 
a highly variable region (Kupe virus aa 755–896) that shows 
low homology (24.8%) and in which the DUGV sequence 
is 14 aa shorter than Kupe virus (42 nt deletion in DUGV 

relative to Kupe virus). In this same region, a 92-nt deletion 
has been shown in CCHFV relative to DUGV, and a similar 
deletion is observed in HAZV (17). All conserved motifs 
in the RNA-dependent RNA polymerase (RDRP) module 
(region 3), as well as other conserved domains upstream and 
downstream of the polymerase module (regions 1, 2, and 4), 
were conserved in the Kupe virus ORF, as shown in DUGV 
and CCHFV (16). Kupe virus L segment ORF also contains 
several protein motifs previously identifi ed in DUGV and 
CCHFV, including an ovarian tumor–like cysteine protease 
domain, a DNA topoisomerase–like domain (aa 76–94), 
and a C2H2-type zinc fi nger motif (aa 608–631) (17,18). 
However, Kupe virus ORF did not contain the leucine zip-
per motif identifi ed in CCHFV and DUGV.

Phylogenetic Analysis
Nucleotide and deduced amino acid sequences of 

Kupe virus segments were compared with sequences from 
other nairoviruses available in GenBank and with partial 
sequences of DUGV isolates obtained in the 1999 Kenya 
survey in which Kupe virus was isolated (Tables 3–6) (3). 
Comparison of full-length S segment sequences showed 
68.8%–69.4% nt and 74.9%–75.5% aa sequence identity 
between Kupe virus and 5 strains of DUGV. Identities 
among the 5 DUGV strain sequences were nt  90.9%–
99.4% and aa 98.1%–99.8%. Pairwise, full-length S seg-
ment nucleotide and amino acid identities among DUGV, 
CCHFV, NSDV, and HAZV ranged from 59.0%–64.1% 
and 55.3%–63.2%, respectively (see Table 3 for specifi c 
pairwise identities). A 428-nt fragment of the S segment, 
corresponding to Kupe S nt 44–471, was also sequenced 
from 26 DUGV isolates obtained during the 1999 abattoir 
survey (GenBank accession nos. FJ422213–FJ422238) and 
compared with available DUGV sequences from GenBank 
(Table 1) and Kupe virus. Results of these comparisons 
are shown in Table 6. Nucleotide and amino acid sequence 
identities among 5 Kupe virus isolates for a 504-nt frag-
ment (nt 413–916) of the S segment were 95.0%–98.4% 
and 98.8%–100.0%, respectively (GenBank accession nos. 
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Table 3. Pairwise comparison of full-length nucleotide and amino acid sequences of the small segment of Kupe virus with other 
nairoviruses* 

Virus Kupe 
Dugbe

ArD44313
Dugbe

ArD16095
Dugbe

KT281/75
Dugbe

IbH11480
Dugbe

IbAr1792 NSDV HAZV CCHFV 
Kupe  69.3 69.4 69.4 68.8 69.1 65.1 60.4 61.2 
Dugbe ArD44313 75.2  99.3 91.1 98.9 99.1 63.6 60.0 59.6 
Dugbe ArD16095 75.2 99.4  91.7 99.2 99.2 64.1 59.9 59.6 
Dugbe KT281/75 74.9 98.1 98.3  91.0 90.9 63.3 59.1 59.0 
Dugbe IbH11480 74.9 99.6 99.4 98.6  99.4 63.7 59.6 60.3 
Dugbe IbAr1792 75.5 99.8 99.6 98.3 99.8  63.8 59.6 60.1 
NSDV 64.0 59.9 60.1 59.5 59.9 60.1  63.5 63.1 
HAZV 57.6 55.7 55.7 55.3 55.7 55.9 63.2  60.4 
CCHFV 57.5 56.4 56.2 56.4 56.0 56.2 62.7 59.5  
*Nucleotide identity (%) is shown above the diagonal, and amino acid identity (%) is shown below the diagonal. NSDV, Nairobi sheep disease virus; 
HAZV, Hazara virus; CCHFV, Crimean-Congo hemorrhagic fever virus. 
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EU257626, EU816906–EU816909). Results of phyloge-
netic analysis of the full-length S segment amino acid se-
quence alignment is shown in Figure 2, panel A. Kupe vi-
rus is shown as most closely related to DUGV, although it 
is distinct from the clade containing the 5 DUGV strains.

Full-length M segment sequences are available for only 
3 of the known nairoviruses: DUGV (strain ArD 44313), 
HAZV, and CCHFV. Comparison of these viruses with 
Kupe virus M segment sequence showed 61.9%, 54.7%, 
and 52.1% nt identity and 57.0%, 47.7%, and 43.0% aa 
identity, respectively (Table 4). Additionally, a 308-nt 
fragment (Kupe M segment, nt 2181–2488) was sequenced 
from 25 DUGV isolates obtained in Kenya in 1999 (Gen-
Bank accession nos. FJ422239–FJ422263) and compared 
with DUGV ArD44313 and Kupe virus. Results of these 
comparisons are shown in Table 6. Sequence identities be-
tween 5 Kupe virus isolates for a 1,965-nt fragment of the 
M segment (nt 408–2372) were 90.9%–98.8% for nt and 
96.0%–99.4% for aa (GenBank accession nos. EU257627, 
EU816902–EU816905). Phylogenetic analysis of full-
length M segment amino acid sequences resulted in a tree 
with topology similar to that of the S segment tree (Figure 
2, panel B).

Full-length L segment sequences are available only for 
DUGV (strain ArD 44313), HAZV, and CCHFV. Compar-
ison of these sequences with Kupe virus sequence showed 
77.4%, 62.8%, and 61.5% nt identity and 89.0%, 66.3%, 
and 63.7% aa identity, respectively (Table 5). As expected 
from this data, phylogenetic analysis of full-length L seg-
ment aa sequence resulted in a tree showing Kupe virus 
more closely related to Dugbe virus than in the S or M seg-
ment trees (Figure 2, panel C).

Nucleotide and amino acid sequence comparisons of a 
441-nt fragment of the highly conserved L segment RDRP 
catalytic core domain (Kupe virus nt 6986–7426) were also 
made between Kupe virus and sequences of 14 other virus-
es representing 7 groups of the Nairovirus genus published 
by Honig et al. (19). A phylogenetic tree derived from the 
amino acid alignment of these sequences shows Kupe virus 
most closely related to DUGV (82.8% nt identity/95.9% aa 
identity), NSDV (74.9%/92.5%), CCHFV (71.9%/88.4%), 
and HAZV (71.7%/87.8%) (Figure 3). An additional 603-nt 

L fragment alignment overlapping the RDRP core domain 
(Kupe virus nt 7292–7894) included sequences from 26 
DUGV isolates obtained in Kenya in 1999 (GenBank ac-
cession nos. EU359010–EU359035), DUGV ArD 44313, 
and Kupe virus. Results of these comparisons are shown in 
Table 6. Sequence identities among 5 Kupe virus isolates 
for this fragment were nt 91.2%–100.0% and aa 98.5%–
100.0% (GenBank accession nos. EU257628, EU816898–
EU816901).

Discussion
Although little genetic information is available for 

most viruses in the genus Nairovirus, current classifi cation 
of the diverse group of viruses in the genus is in relative 
agreement with available genetic analyses (19,20). Genetic 
information is useful in identifying emerging viruses and in 
analysis of relationships between viruses, especially given 
the segmented nature of the nairovirus genome, which can 
lead to generation of new viruses by segment reassortment 
(21). Within the genus, however, limited species and strain 
comparisons are available, making the defi nition of a ge-
netic classifi cation criteria diffi cult, and the segmented na-
ture of the genome confounds the analysis. These fi ndings 
are shown by a recent in-depth genetic analysis of CCHFV 
strains that demonstrated a high degree of genomic plas-
ticity and RNA segment reassortment among virus strains 
studied (22).

Detailed study of the complete genome of 13 geo-
graphically and temporally diverse strains of CCHFV dem-
onstrated nt/aa sequence identities of 80%/92%, 69%/73%, 
and 78%/90% for the S, M and L segments, respectively 
(22). Similarly, comparison of published full-length S seg-
ment sequences from 5 strains of DUGV isolated in Sene-
gal, Nigeria, and Kenya between 1964 (IbAr1792) and 1985 
(ArD443143) demonstrated sequence identities >90% at the 
nucleotide and amino acid levels (Table 3). Likewise, >89% 
identities were observed when a fragment of S segment se-
quence from these 5 strains was compared with 26 DUGV 
isolates from the 1999 Kenya abattoir survey (Table 3). S 
segment sequence identity between Kupe virus and DUGV 
falls well below identities observed among strains of ei-
ther DUGV (Tables 3, 6) or CCHFV and is closer to that 
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Table 4. Pairwise comparison of full-length nucleotide and amino 
acid sequences of the medium segment of Kupe virus with other 
nairoviruses* 

Virus Kupe
Dugbe

ArD44313 HAZV CCHFV
Kupe 61.9 54.7 52.1
Dugbe ArD44313 57.0 53.7 52.5
HAZV 47.7 44.4 50.8
CCHFV 43.0 38.3 41.4
*Nucleotide identity (%) is shown above the diagonal, and amino acid 
identity (%) is shown below the diagonal. HAZV, Hazara virus; CCHFV, 
Crimean-Congo hemorrhagic fever virus. 

Table 5. Pairwise comparison of full-length nucleotide and amino 
acid sequences of the large segment of Kupe virus with other 
nairoviruses* 

Virus Kupe
Dugbe

ArD44313 HAZV CCHFV
Kupe 77.4 62.8 61.5
Dugbe ArD44313 89.0 63.4 62.1
HAZV 66.3 66.1 62.3
CCHFV 63.7 63.4 64.0
*Nucleotide identity (%) is shown above the diagonal, and amino acid 
identity (%) is shown below the diagonal. HAZV, Hazara virus; CCHFV, 
Crimean-Congo hemorrhagic fever virus. 
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observed in S segment sequence comparisons among 
DUGV, CCHFV, NSDV, and HAZV (Table 3) (22).

Although comparison of full-length M segment se-
quence among multiple DUGV strains is not possible be-
cause of lack of available sequence information, sequence 
identities for comparison of a fragment of the M segment 
of DUGV ArD44313 and the 26 isolates obtained in Kenya 
in 1999 were >86% for nt and >93% for aa. In contrast, 
identities observed between Kupe virus and the DUGV se-
quences were considerably lower and, similar to the S seg-
ment sequence, were closer to identities observed among 
DUGV, CCHFV, and HAZV. In addition, differences in 

the number and positions of potential N-gly sites in the M 
segment ORF between DUGV and Kupe virus suggest sub-
stantial differences between these viruses.

Comparison of Kupe virus L segment sequences was in-
conclusive in determining its relationship to DUGV. Again, 
because of lack of available sequence information, compar-
ison of multiple full-length DUGV strains is not possible 
at this time; comparison of a fragment of the L segment 
between the Kenya DUGV isolates and DUGV ArD44313 
showed identities >91%. The relatively high full-length L 
segment nt/aa sequence identities of 77.4%/89.0% observed 
between Kupe virus and DUGV strain ArD 44313 are simi-
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Table 6. Nucleotide and amino acid sequence comparisons between fragments of Kupe and Dugbe viruses* 
Segment and virus Virus
Small (428 nt) Kupe Dugbe, Kenya, 1999 Other Dugbe† 
 Kupe 68.8–70.9 69.2–70.9
 Dugbe, 1999, Kenya 67.6–69.7 89.3–97.9
 Other Dugbe† 69.0 95.8–100.0
Medium (308 nt) Kupe Dugbe, Kenya, 1999 Dugbe ArD44313 
 Kupe 63.9–65.2 65.8
 Dugbe, 1999, Kenya 61.8–64.7 86.8–92.3
 Dugbe ArD44313 63.7 93.1–98.0
Large (603 nt) Kupe Dugbe, Kenya, 1999 Dugbe ArD44313 
 Kupe 81.8–82.4 81.3
 Dugbe, 1999, Kenya 94.5–96.0 91.0–92.0
 Dugbe ArD44313 94.5 96.0–98.0
*Nucleotide identity (%) is shown above the diagonal, and amino acid identity (%) is shown below the diagonal. 
†Dugbe viruses listed in Table 1. 

Figure 2. Phylogenetic trees produced by 
using maximum-parsimony analysis with 500 
bootstrap replicates on alignments of full-
length amino acid sequences of the A) small 
segment, B) medium segment, and C) large 
segment of Kupe virus with other available 
full-length nairovirus sequences. Scale bars 
indicate branch length and bootstrap values 
>50% are shown above branches. 
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lar to identity levels reported among full-length L segment 
comparisons of CCHFV strains. This fi nding suggests that 
the L segment of Kupe virus may have been acquired from 
DUGV by reassortment. However, identities observed for 
the highly conserved 603-nt L segment fragment between 
Kupe virus and DUGV ArD44313 were somewhat lower 
compared with identities between DUGV ArD44313 and 
other Kenya DUGV isolates. These lower identities, com-
bined with differences observed in the L segment variable 
region (Kupe virus aa 755–896), suggest otherwise.

Little is known about the ecology of Kupe virus other 
than its isolation from ticks infesting cattle. DUGV has 
been reportedly isolated from several tick species, includ-
ing A. gemma and R. pulchellus, the species from which 
Kupe virus was isolated (19,23,24). In the 1999 Kenya ab-
attoir survey, DUGV was isolated from 4 species of ticks, 
A. variegatum, A. gemma, A. lepidum, and R. pulchellus (3). 
Although ≈1,000 specimens each of A. variegatum and A. 
lepidum were collected and tested in that study, no isolates 
of Kupe virus were found in those species, which suggested 
that vector hosts for DUGV and Kupe virus may differ (3). 
Specifi c vector competence studies will be needed to re-
solve this point. The pathogenesis, if any, of Kupe virus in 
mammals is unknown.

Kupe virus and DUGV were observed to replicate and 
cause CPE in a variety of cultured mammalian cell types. 
Kupe virus was observed to have a more rapid increase and 
subsequent decrease in viral titer, an earlier onset of visible 
CPE, and greater destruction of the cell monolayer in most 
of the mammalian cells tested. These fi ndings show that 
this virus is more virulent than DUGV in the mammalian 
cells tested.

Taxonomic classifi cation of viruses is an evolving 
discipline that in early years was based primarily on mor-

phologic characters. More recently, better classifi cation has 
been obtained by using antigenic relationships and infor-
mation gained from genetic characteristics. The Interna-
tional Committee on Taxonomy of Viruses has defi ned a 
virus species as “a polythetic class of viruses that constitute 
a replicating lineage and occupy a particular ecological 
niche” (25). This defi nition and its use in virus classifi ca-
tion has been the subject of much discussion in the litera-
ture, and its application to newly described viruses is often 
diffi cult because of incomplete descriptive information 
about the new virus and other viruses in the group to which 
it is related (26,27).

For Kupe virus, nucleotide and amino acid sequence 
variation between the S and M segments of Kupe virus and 
DUGV, or any other genetically characterized nairovirus, 
was greater than expected between strains of a single virus 
in the genus Nairovirus. We also noted differences in other 
genetic characteristics between Kupe virus and DUGV, in-
cluding M segment N-gly sites, L segment variable region, 
and NCR length variations. This evidence, combined with 
increased virulence of Kupe virus in cultured mammalian 
cells and potential differences in vector hosts, shows that 
Kupe virus is substantially different from, although closely 
related to, DUGV and is a new virus in the genus Nairovi-
rus. However, further studies are necessary to determine 
the hosts, vectors, and geographic range of Kupe virus 
along with its virulence as a human or animal pathogen. 
Such information will aid in appropriate classifi cation of 
this new virus.

Ms Crabtree is a researcher at the Centers for Disease Con-
trol and Prevention in Fort Collins, Colorado. Her research inter-
est is the molecular biology of arboviruses.
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