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This work is concerned with the transmissibility of a disease, on observation of an outbreak of lim- 

ited size. When such an outbreak occurs, an accurate estimate of the transmissibility of the responsible 

pathogen is essential for an appropriate response to future outbreaks. Transmissibility is usually charac- 

terised in terms of the reproduction number, R , which is the mean number of new cases of infection 

produced by a single infectious individual. A subcritical reproduction number ( R < 1) guarantees that 

an outbreak will eventually die out of its own accord. By contrast, a supercritical reproduction num- 

ber ( R > 1) does not guarantee spread of the disease, since even with appreciable transmissibility, an 

outbreak may become extinct due to stochastic effects associated with a small number of infected indi- 

viduals. Once the number of infectious individuals is conditioned on extinction, we show that an exact 

symmetry of the underlying theory ensures two distinct values of R , one larger than unity, the other 

smaller than unity, for which all outbreak properties are identical, with no signature of difference. There- 

fore a disease with a subcritical R , or its supercritical counterpart, when conditioned on extinction, have, 

for a given outbreak, identical individual likelihoods. In the full likelihood, this symmetry is lost, since 

the individual likelihood for a subcritical R is weighted by an extinction probability of unity, but the in- 

dividual likelihood of a supercritical R is weighted by a sub-unity extinction probability. However, the 

inference can still benefit from the underlying symmetry, since it yields a mapping of all supercritical 

reproduction numbers onto the subcritical domain ( R < 1), thereby speeding up evaluation of the likeli- 

hood profile. The symmetry holds in the standard situation, where the distribution of secondary cases is 

Poisson, as well as where this distribution has a negative binomial form and super-spreading can occur. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Over the past two decades, outbreaks of SARS ( Riley et al.,

2003 ), pandemic flu ( Cauchemez et al., 2013 ), MERS-CoV

( Cauchemez et al., 2016 ), Ebola ( WHO Ebola Response Team, 2014 )

and more recently Zika ( Ferguson et al., 2016 ), have illustrated

the importance of early characterisation of the transmissibility of

emerging or re-emerging pathogens. Typically, characterisation is

achieved by estimating either the basic reproduction number R 0 ,

which applies in a large population that is fully susceptible, or

the instantaneous reproduction number R t , which applies at time

t after start of an outbreak, and which accounts for past exposure
∗ Corresponding author at: School of Life Sciences, University of Sussex, Brighton 

BN1 9QG, UK. 

E-mail address: Pierre.nouvellet@sussex.ac.uk (P. Nouvellet). 
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nd any interventions which have mitigated the spread of the

athogen. Such estimates of transmissibility have been used to

ssess the level of intervention required to control an outbreak.

or instance, if R 0 > 1 and vaccination is possible, then treating

 proportion of the population that exceeds 1–1/ R 0 will bring

n outbreak under control ( Fine et al., 2011 ). Furthermore, the

eproduction number (either R t or R 0 ) has multiple uses including:

i) forecasting future incidence of a pathogen ( Nouvellet et al.,

018 ), (ii) monitoring the impact of newly implemented control

trategies ( International Ebola Response Team, 2016 ), and (iii)

redicting current and future attack rates ( Ferguson et al., 2016 ). 

Future preparedness, however, ultimately relies on the early as-

essment of future threats, ideally before a full blown outbreak

r epidemic occurs ( Karesh et al., 2012 ). This requires characteris-

ng the transmissibility of pathogens that are responsible for short

ived outbreaks which have become extinct without any preven-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ative interventions ( Farrington et al., 2003; Farrington and Grant,

999 ). Intuitively, the limited nature of such an outbreak could

eflect a low transmissibility of the pathogen or it could reflect

tochastic behaviour of the early transmission process. 

Here, we provide properties and a characterisation of outbreaks

hat have become extinct in the absence of any intervention. A key

arameter of such outbreaks is the reproduction number R , namely

he mean number of new infections produced by a single infec-

ious individual ( Cori et al., 2013; Wallinga and Teunis, 2004 ) . We

hall assume that R remains constant throughout an outbreak that

oes extinct. 

Due to individual or environmental variation, there is variation

n the number of new infections produced by different inf ected in-

ividuals. The number of new infections (secondary cases) thus fol-

ows a probability distribution which is usually referred to as the

ffspring distribution ( Farrington et al., 2003; Farrington and Grant,

999 ). By definition, the mean of this distribution is the reproduc-

ion number R . 

. Choice of offspring distribution 

Typically, the offspring distribution is modelled by either a Pois-

on distribution, a geometric distribution, or negative binomial

istribution ( Garske and Rhodes, 20 08; Lloyd-Smith, 20 07; Lloyd-

mith et al., 2005 ). In this work we shall adopt a negative bino-

ial form for the offspring distribution. This is a somewhat flexi-

le choice since this distribution depends on two parameters and

as two standard distributions as limiting cases (see below). 

We write the negative binomial distribution as NB( δ, p ) where

and p are parameters of the distribution, and lie in the ranges

> 0 and 0 < p < 1. In terms of these parameters, the form of the

egative binomial distribution we adopt is such that the mean and

ariance are given by pδ/ ( 1 − p ) and pδ/ ( 1 − p ) 2 , respectively . 

In what follows, we shall take p = R/ ( R + δ) , in which case

he mean and the variance of the offspring distribution are R and

 + R 2 /δ, respectively. The mean, R , is thus the reproduction num-

er and the quantity δ is conventionally referred to, in the liter-

ture, as the dispersion . Generally, large values of δ correspond to

ow levels of heterogeneity (i.e., a low variance) in realised values

f the infectiousness, while small values of δ correspond to high

evels of heterogeneity. For more details about heterogeneity, see

he work of Garske and Rhodes (2008 ), Lloyd-Smith et al. (2005 ).

n the particular case of no over-dispersion ( δ = ∞ ), the negative

inomial distribution reduces to a Poisson distribution, while when

here is unit dispersion ( δ = 1 ) the negative binomial distribution

educes to a geometric distribution. 

. Modelling the dynamics 

In modelling the dynamics of infection we shall, for the sake of

implicity, work with a discrete time model. We define the mean

ime between a primary case becoming infected and the resulting

roduction of a secondary case as the generation time . The model

hen describes the number of new infections at discrete multiples

f the generation time—i.e., in different generations. 

We proceed by first defining the disease incidence. This is the

andom number of infected individuals at a given time. For gen-

ration t = 0, 1, 2, …, we denote the disease incidence by X t , and

odel the dynamics of disease incidence as a branching process

 Lloyd-Smith et al., 2005 ), based on an offspring distribution of

egative binomial form. We then have 

 t+1 = 

X t ∑ 

j=1 

ξ j (1) 
here ξ j is the number of newly infected individuals (number of

offspring’) arising from the j th infected individual. The ξ j are in-

ependent and identically distributed (iid) random variables that

re drawn from the negative binomial distribution described above,

ence ξ j ∼ NB ( δ, R 
R + δ ) . This form of offspring distribution leads to

he distribution of X t+1 , conditional on the value of X t , also having

 negative binomial distribution, which is given by 

 t+1 | X t ∼ NB 

(
X t δ, 

R 

R + δ

)
(2) 

see the Supplementary Information). Eq. (2) is a convenient rep-

esentation since even in an appreciable population, only a single

andom number needs to be generated to produce all ‘offspring’ of

 generation. 

.1. Two possible reproduction numbers 

An outbreak that has become extinct can always be described

y a ‘small’ reproduction number R s that lies below unity (thus

 s is subcritical). However, as we show in the Supplementary In-

ormation, all dynamical properties of such an outbreak are com-

letely indistinguishable from an outbreak characterised by a ‘large’

eproduction number R l that lies above unity (thus R l is supercriti-

al), but where the incidence of the disease is conditioned so that

t eventually achieves extinction. The two reproduction numbers

atisfy the inequality R l > 1 > R s > 0. 

Generally, all dynamical results calculated for R l , when condi-

ioned on eventually achieving extinction, are identical to the re-

ults calculated for R s . Another way of saying this is that given

he eventual occurrence of extinction, and given that there were

 t cases in generation t , the probability of observing X t + s cases in

eneration t + s is the same for outbreaks with either R s or R l . This

s ultimately a property of Eq. (1) and follows from mathemati-

al results which apply for branching processes ( Athreya and Ney,

972; Waugh, 1958 ). We shall refer to the identity of results for R s 
nd R l as the symmetry of the problem. 

To the best of our knowledge, this symmetry was first im-

lied by Kendall (1956 ) in the context of stochastic dynamics of

pidemics. The symmetry was then further explored in the con-

ext Markov processes ( Athreya and Ney, 1972; Daly, 1979; Waugh,

958 ) and more recently in the context of infectious disease out-

reaks ( Guttorp and Perlman, 2015 ). 

In the Supplementary Information we use elementary ap-

roaches to provide intuition about the origin of this symmetry

nd establish some relevant results. Our demonstration of the sym-

etry, unlike previous ones does not rely on probability generating

unctions, but rather is derived directly from the properties of the

ransition matrix. 

In what follows, when we discuss the large reproduction num-

er R l , we shall often leave implicit the fact that the population

as been conditioned upon the occurrence of eventual extinction. 

To establish some useful results and relations, we have found it

seful to introduce the quantity ɛ , which is the probability of even-

ual extinction of a disease outbreak when: (i) the outbreak starts

ith a single infected individual, and (ii) the reproduction number

s larger than unity . We note that condition (i) readily generalises:

hen there are n infected individuals, the probability of eventual

xtinction is ɛ n , (see the Supplementary Information). Furthermore,

ecause of condition (ii) eventual extinction is not inevitable and

o ɛ < 1. 

It is convenient to proceed using ɛ and δ as the independent

arameters in the problem, and then determining other quantities

n terms of these. We find that for ɛ < 1, independent of the actual

nitial size, n , of the outbreak, the two reproduction numbers are
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1 An equivalent relationship applies for the probabilities of outbreak duration 

(Fig. SI.2). 
given by 

R s = g ( δ, ε ) (3a)

and 

R l = g 

(
δ, 

1 

ε 

)
(3b)

where the function g ( d, x ) is given by 

g ( d, x ) = d 
x 1 /d − 1 

1 − x −1 
(3c)

(see the Supplementary Information). 

3.2. Relationships involving the reproduction numbers and 

parameters 

We note that Eq. (3b) relates the large reproduction number,

R l , to the dispersion, δ, and to the probability of extinction given

a single infected individual, ɛ . Thus given a reproduction number

that is greater than unity, and given the value of the dispersion,

we can use Eq. (3b) to compute the probability of extinction. This

result allows us to illustrate that increasing the dispersion (i.e.,

decreasing δ) reduces the probability of extinction ( Blumberg and

Lloyd-Smith, 2013a,b; Lloyd-Smith et al., 2005 ), see Fig. 2 A. 

We additionally note that using Eqs. (3a-c) ) allows us to deter-

mine a very simple relation between R s and R l , namely 

R s = ε ( 1+ 1 
δ ) R l . (4)

This can be interpreted as saying that the small reproduction

number R s is a discounted version of the large reproduction num-

ber R l , with the discount a power of the extinction probability, ɛ ,
associated with R l . 

Additionally, writing ε = e −α , ( 3b ) and ( 3c ) yield the exact re-

sult 

α = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

R l + W 

(
−R l e 

−R l 
)

for a Poisson distribution of offsprin

ln ( R l ) for a geometric distribution of offsp

−ln 

[(
1 − p 

1 − pe −α

)δ
]

for a negative binomial distribution 

(see the Supplementary Information). 

Eq. (4) provides a simple way to map reproduction numbers

that are above unity (supercritical R values) to dynamically equiv-

alent reproduction numbers of a finite outbreak that all lie below

unity (subcritical R values). The result of Eq. (4) also allows us to

show how, for a given value of R l , the corresponding value of R s is

higher as over-dispersion increases (i.e., δ decreases), see Fig. 2 B. 

4. Statistics 

4.1. Outbreak size 

Finite outbreaks are often quantified in terms of the outbreak

size ( Farrington et al., 2003 ) (also called final size ), which is a ran-

dom variable we denote by Z and which is defined by Z = 

∑ ∞ 

t=0 X t .

This random variable counts the total number of individuals who

suffered inf ection during the entire course of the outbreak. In the

Supplementary Information, we provide an analytical treatment of

the outbreak size distribution, when the offspring distribution is

a negative binomial. This treatment can be used to estimate the

reproduction number given observation(s) of outbreak size(s). We

also present a numerical method to evaluate the distribution of

outbreak sizes associated with outbreaks that eventually become

extinct. 

We verify to high accuracy, with simulations, that the repro-

duction numbers R s and R l of Eqs. (3a) and ( 3b ) lead to the same

distribution of outbreak sizes (see Fig. 1 A). 
 ( x ) is Lambert " s W function ) 

fspring 

(
p = 

R l 

R l + δ

)

.2. Outbreak duration 

The outbreak duration ( Farrington and Grant, 1999 ) is a random

ime we denote by T ext , that corresponds to the number of gen-

rations where the incidence of the disease is different from zero.

his also has identical dynamics for the reproduction numbers R s 
nd R l of Eqs. (3a) and ( 3b ), see Fig. 1 B. An analytical treatment of

he outbreak duration distribution can be found in the Supplemen-

ary Information. 

.3. Mean and standard deviation of final size and duration 

For a finite outbreak, rather than characterising the complete

istribution of the final-size and the complete distribution of the

uration (as in Fig. 1 ), we note that knowledge of the mean and

tandard deviation of those distributions can be sufficient to char-

cterise broad dynamical patterns ( Fine et al., 2011 ). In the Supple-

entary Information, we provide a simple formulation that allows

recise numerical computation of the mean and variance of both

he final size distribution and the duration distribution, see Fig. 2 C

nd D. Again, we show that the means and standard deviations

or both of these distributions are identical when the reproduction

umber is R s and when it is R l and eventual extinction is condi-

ioned upon. 

.4. Estimate of reproduction number 

From a practical point of view, on observing an extinct out-

reak of final size z (with z = 1 , 2 , 3 . . . ), the key issue is to esti-

ate the reproduction number characterising the disease. Estimat-

ng such reproduction number involves computing the probability

f observing a final outbreak size, given a value of the reproduc-

ion number, i.e. the likelihood of the parameter. Conditional on

ventual extinction, given the symmetry in outbreak size distribu-

ions for either R l or R s , the individual likelihoods of observing the

nal size, given a reproduction number of either R l or R s are also

dentical ( Fig. 3 A). 

However, 1 the full likelihood, i.e. unconditional on extinction,

ust be weighted by the probability of extinction having occurred.

iven this weight is unity for R s and ɛ n for R l , the symmetry in

he likelihood is lost after accounting for extinction, as illustrated

n Fig. 3 B (see the Supplementary information). 

Conveniently, when estimating the reproduction number, the

apping of R s onto R l , means that the likelihood can be evaluated

nly on the R s domain (i.e., 0–1) and the likelihood of R l follows by

imply weighting the results on R s by the probability of extinction.

We note that the increased level of randomness/uncertainty as-

ociated with a small outbreak leads, perhaps counterintuitively,

o a greater chance of inferring a larger reproduction number than

hen a large outbreak is observed. For example, Fig. 3 C shows that

here is a larger probability of R l being greater than 2, when the

nal outbreak size is small, than when the final outbreak size is

arge (e.g., Pr ( R > 2 | Z = 1 ) > Pr ( R > 2 | Z = 10 ) ). 
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Fig. 1. Distribution of outbreak duration (A) and final-size (B) given extinction ultimately occurs. The distributions were simulated for two reproduction numbers given by 

Eqs. (3) and (4) , where one was greater than unity (red) and one smaller than unity (blue), using a negative binomial offspring distribution with δ = 0.5. The solid lines show 

the predicted distributions (see Supplementary Information). (An equivalent figure, using a Poisson offspring distribution, can be found in the Supplementary information. 

Fig. 2. Characterising extinct outbreaks and their cryptic symmetry. (A) Probability of extinction ( P ext ) for outbreaks characterised by different reproduction numbers ( R ), 

and different offspring distributions. (B) Mapping of R l onto R s : extinct outbreaks originating from pathogens with mean transmissibility R l or R s have identical properties. 

Finally, given that extinction occurs, the symmetry demonstrated in this work allows the mean and standard deviation of outbreak size (C) and duration (D), for R ’s greater 

than unity, to be easily obtained from the analytical formulation of those quantities that applies for R ’s below unity. 
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Fig. 3. Inferring the reproduction number and evaluation of future risk from observation of a single outbreak size. (A) Normalised likelihood profile of R , given extinction 

occurs, and observation of Z cases. The symmetry in the vicinity of x = 1 is evident, especially for lower values of Z . (B) The same likelihood profile, without conditioning on 

extinction. This could be interpreted as a posterior distribution of R given that Z cases were observed. (C) Probability that R is above a threshold, given a past outbreak size, 

Z . (D) Probability that a future outbreak will not naturally become extinct, given the same pathogen was previously observed to cause an outbreak of size Z : future risk. We 

assume a negative binomial offspring distribution with δ = 0.5. (Equivalent figures related to time to extinction and using a Poisson offspring distribution can be found in 

the SI). 
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Ultimately, given observation of a single outbreak of final size

z, one would want to know the risk of a future outbreak of

the pathogen running out of control, and leading to an epi-

demic. The probability of such an epidemic, which we write as

Pr( Epidemic | Z = z ), can be formalised in a branching process as the

probability that extinction will not occur in a future outbreak, given

that a total of z cases were previously observed in an ultimately

extinct outbreak. With FutureExt the event of extinction given rein-

troduction of the pathogen, we can write Pr( Epidemic | Z = z ) = 1 −
Pr (F ut ureExt | Z = z) and this is illustrated in Fig. (3D) . Interestingly,

this result allows us to show that Pr( Epidemic | Z = z ) decreases as

the size of the initial extinct outbreak increases. This illustrates the

effect, on prediction, of an increased uncertainty associated with a

small outbreak. 

5. Discussion 

The analysis presented in this work provides a demonstration

that the dynamics of a supercritical process conditioned on ex-

tinction is in every way identical to the dynamics of a subcriti-

cal process. Unlike previous demonstrations ( Guttorp and Perlman,
015; Kendall, 1956; Waugh, 1958 ), we have relied on the prop-

rties of the transition matrix to derive the result. A benefit in

his approach is to allow us to derive (i) explicit analytic results

or mapping a supercritical reproduction number to its subcritical

ounterpart, and (ii) explicit analytic results for the expected dis-

ributions, means and variances of the final size and duration of

he extinct outbreak. The results obtained are applicable when the

ffspring distribution is characterised by a Poisson, geometric or

egative binomial distributions. 

While the collapsing of supercritical dynamics conditioned on

xtinction onto subcritical dynamics has been known ( Guttorp and

erlman, 2015; Kendall, 1956; Waugh, 1958 ), it is clearly under-

xploited, or has not been appreciated in the literature of infec-

ious disease dynamics. As highlighted by Nishiura et al. (2012 ),

tudies of minor outbreaks typically adopt ‘ the key assumption

hat a subcritical process ( i.e. R 0 < 1) resulted in the observation ’

 Blumberg and Lloyd-Smith, 2013a , b ; Cauchemez et al., 2013; Fer-

uson et al., 2004; Kucharski and Edmunds, 2015 ). However, we

how the likelihood of a supercritical process can also be explored,

herefore we see no reason to restrict any such analyses to subcrit-

cal process assumptions. We provide a simple way to explore the
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ull range of reproduction number values (i.e. beyond the subcrit-

cal range) using likelihood framework. Such framework is easily

pplicable and has already been in part implemented in an R pack-

ge (see http://github.com/reconhub/branchr) and used in a recent

ublication ( Cori et al., 2018 ). 

Like many other applications ( Blumberg and Lloyd-Smith,

013a , b ; Cauchemez et al., 2013; Ferguson et al., 2004; Kucharski

nd Edmunds, 2015 ), our work assumes that the reproduction

umber remains constant during the duration of the outbreak.

hile public health and clinical interventions ( Cori et al., 2013 ), as

ell as behaviour ( Funk et al., 2009 ), can affect the reproduction

umber during an outbreak, we believe that it is reasonable to as-

ume a constant reproduction number when the outbreaks are of

imited durations and sizes. As well as there often being limited

vailable time to intervene, for many diseases (including emerg-

ng zoonotic diseases), we have limited knowledge of how to curb

ransmission, which is further complicated by availability and ac-

ess to treatment. Additionally, when interventions have been im-

lemented, one could view the estimated reproduction number as

n effective reproduction number, see e.g., Blumberg et al. (2015 ).

n practical terms, once again, our conclusions best applies in the

ontext of relatively small outbreaks of short duration, where the

onditioning on extinction is realistic. For large outbreaks, it is

ikely that other factors such local depletion of the susceptible

opulation or the implementation of public health interventions,

layed a stronger role in the extinction process than stochasticity

y reducing the reproduction number. 

Our work illustrates the importance of stochastic factors during

he early phase of an outbreak ( Ferguson et al., 2004; Lloyd-Smith

t al., 2005 ). The symmetrical property of the dynamics emerging

or either a small R or a large R conditioned on extinction may

ppear initially counter-intuitive. However, a simple intuition may

ome from the following: when R is small, large outbreaks are

nlikely to occur, while when R is large, large outbreaks are un-

ikely to remain finite, therefore after conditioning on extinction,

nly small outbreaks will be observed. The occurrence of extinc-

ion when R is larger than unity must not be under-estimated. For

nstance, perhaps slightly counterintuitively, when a disease reap-

ears, a full-blown outbreak is more likely to occur following a

mall extinct outbreak rather than following a moderately large

ne, assuming the same transmissibility applies to the new and

xtinct outbreaks. However, as the size of an outbreak becomes

arger, there is a shift in the impact of stochastic factors toward

eterministic behaviour: moderately large (ultimately extinct) out-

reaks reflect an R close to unity, but given extinction occurred

espite a relatively large outbreak size, stochastic factors have a

ecreased influence, leading to higher confidence that R lies below

. Conversely, a small outbreak may reflect a small R , but the large

ncertainty means a large R cannot be ruled out. 

Overall, we have considered the transmissibility of a disease, on

bserving a finite outbreak, and believe we have shed light on its

ature and provided some useful analytical and numerical meth-

ds for its investigation. 
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