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Summary

	 Background:	 Within erythrocytes (RBCs), cAMP levels are regulated by phosphodiesterases (PDEs). Increases 
in cAMP and ATP release associated with activation of b-adrenergic receptors (bARs) and prosta-
cyclin receptors (IPRs) are regulated by PDEs 2, 4 and PDE 3, respectively. Here we establish the 
presence of cytosolic PDEs in RBCs and determine a role for PDE5 in regulating levels of cGMP.

	Material/Methods:	 Purified cytosolic proteins were obtained from isolated human RBCs and western analysis was per-
formed using antibodies against PDEs 3A, 4 and 5. Rabbit RBCs were incubated with dbcGMP, a 
cGMP analog, to determine the effect of cGMP on cAMP levels. To determine if cGMP affects re-
ceptor-mediated increases in cAMP, rabbit RBCs were incubated with dbcGMP prior to addition 
of isoproterenol (ISO), a bAR receptor agonist. To demonstrate that endogenous cGMP produc-
es the same effect, rabbit and human RBCs were incubated with SpNONOate (SpNO), a nitric ox-
ide donor, and YC1, a direct activator of soluble guanylyl cyclase (sGC), in the absence and pres-
ence of a selective PDE5 inhibitor, zaprinast (ZAP).

	 Results:	 Western analysis identified PDEs 3A, 4D and 5A. dbcGMP produced a concentration dependent in-
crease in cAMP and ISO-induced increases in cAMP were potentiated by dbcGMP. In addition, in-
cubation with YC1 and SpNO in the presence of ZAP potentiated bAR-induced increases in cAMP.

	 Conclusions:	 PDEs 2, 3A and 5 are present in the cytosol of human RBCs. PDE5 activity in RBCs regulates cGMP 
levels. Increases in intracellular cGMP augment cAMP levels. These studies suggest a novel role for 
PDE5 in erythrocytes.
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Background

Activation of G-protein coupled receptors present on mam-
malian erythrocytes stimulates the synthesis of cAMP, a cy-
clic nucleotide involved in signaling pathways that culmi-
nate in the release of ATP [1]. It has been demonstrated 
that, in human and rabbit erythrocytes, receptor-mediated 
activation of either the prostacyclin receptor (IPR) or b-ad-
renergic receptor (bAR) stimulates adenylyl cyclase (AC) ac-
tivity resulting in increases in cAMP and subsequently ATP 
release [1,2]. ATP is a stimulus for the synthesis and release 
of endothelium-derived relaxing factors [3,4]. The regulat-
ed release of ATP allows the erythrocyte to participate in 
the local control of vascular caliber [3,5,6].

The magnitude and duration of increases in cAMP, as well 
as the localization of those increases to discrete signal-
ing pathways, requires local control of the rates of cAMP 
synthesis by AC and its hydrolysis by phosphodiesterases 
(PDEs) [7–9]. PDE enzymes include 11 families that dif-
fer in their genetic derivation, molecular structure, sub-
strate specificity, inhibitor sensitivity and mode of regula-
tion [10,11]. PDEs are the sole known physiological means 
of inactivation of cyclic nucleotide activity in cells. It has 
become clear that specific PDEs are associated with indi-
vidual signaling pathways. Importantly, this specificity per-
mits increases in cAMP to be compartmentalized, allowing 
activation of individual receptors to produce discrete cel-
lular responses [7,12,13].

The activity of several PDEs that hydrolyze cAMP has been 
demonstrated in both human and rabbit erythrocytes 
[14–16]. In addition, the presence of PDE 2A and 3B pro-
tein has been identified in membranes of these cells [14,16]. 
It has been shown that PDE3, a cGMP-inhibited PDE, reg-
ulates cAMP increases associated with activation of the IPR 
[14–16] while PDE2, a cGMP-activated PDE, as well as PDE4 
are associated with regulation of increases in cAMP result-
ing from activation of the bAR in erythrocytes [15]. Here we 
demonstrate the presence of two PDE isoforms that hydro-
lyze cAMP in the cytosol of human erythrocytes, PDEs 3A 
and 4D. We also report for the first time that PDE5, a PDE 
that hydrolyzes cGMP is present in the cytosol of these cells. 
In addition, we examined the contribution of increases in 
cGMP and the activity of PDE5 to the regulation of cAMP 
levels under basal conditions as well as in response to re-
ceptor-mediated activation of the bAR. Finally, we show that 
cGMP and PDE5 can participate in the regulation of cAMP 
levels in these cells.

Material and Methods

Isolation of erythrocytes

Male New Zealand white rabbits were anesthetized with 
ketamine (12.5 mg/kg) and xylazine (1.5 mg/kg) intra-
muscularly, followed by pentobarbital sodium (10 mg/kg) 
administered via a cannula placed in an ear vein. A cath-
eter was subsequently placed in a carotid artery and hep-
arin (500 units) was administered. After 10 min, the an-
imals were exsanguinated. Human blood was obtained 
by venipuncture using a syringe containing heparin (500 
units). Immediately after collection of blood, erythrocytes 
were isolated by centrifugation at 500 × g for 10 min at 4°C 

with the supernatant and buffy coat removed by aspira-
tion. Packed erythrocytes were re-suspended and washed 3 
times in a physiological salt solution containing (in mM); 
4.7 KCl, 2.0 CaCl2, 1.2 MgSO4, 140.5 NaCl, 21.0 Tris-base 
and 5.5 dextrose with 0.5% bovine serum albumin, pH ad-
justed to 7.4. Erythrocytes were prepared on the day of use. 
The protocols for blood collection from rabbits and hu-
mans were approved by the Institutional Animal Care and 
Use Committee and the Institutional Review Board of Saint 
Louis University, respectively.

Isolation of protein from erythrocyte cytosol

Isolated packed human erythrocytes, 3 ml, were lysed in ice 
cold hypotonic buffer (5mM NaPi, pH 7.5/ 0.5mM EGTA) 
supplemented with protease inhibitors (Complete Protease 
Inhibitor Cocktail Tablets, Roche) and centrifuged at 30,000 
× g for 20 min to separate the cytosolic fraction from the 
membrane fraction. The supernatant (cytosolic fraction) was 
removed and the pellet (membrane fraction) was discarded. 
To remove hemoglobin from the cytosol, a DE52 column 
was equilibrated with binding buffer (200 mM Tris/HCl 
[pH 7.5], 200mM NaCl, and 5 mM EGTA) diluted ten-fold 
with H2O and supplemented with 5 mM MgCl2 and 1 mM 
DTT. The column was packed to 3–4 cm in height. The cy-
tosol was loaded onto the column (6 ml/1 ml DE52 matrix) 
and cleared of hemoglobin with 3 washes of 1mL of binding 
buffer. The remaining cytosolic bound proteins were elut-
ed with elution buffer containing (3 ml of 0.4M NaCl) in 
binding buffer. The eluate was dialyzed overnight in 1L of 
buffer containing (in mM); 21.0 tris(hydroxymethyl)ami-
nomethane, 4.7 KCl, 2.0 CaCl2, 140.5 NaCl, 1.2 MgSO4) and 
concentrated on Centricon-10 spin concentrator (Amicon) 
to a volume of 200–250 µl [17].

Western analysis

Purified cytosolic proteins were solubilized in SDS buffer 
(0.277 M SDS, 60% glycerol, 0.25 M Tris-HCl (pH 6.8), 
0.004% bromophenol blue, and 0.400 M dithiothreitol). 
The sample was boiled and 40 µg of protein was loaded 
onto a pre-cast gel (Pierce) and subjected to electropho-
resis. The proteins were transferred to a polyvinylidene 
difluoride (PVDF) membrane in buffer containing 25 mM 
Tris, 192 mM glycine, and 20% methanol. Membranes 
were blocked overnight with 5% non-fat dry milk in PBS 
containing 0.1% Tween-20. PDE4 isoforms were identified 
by immunoblotting with an affinity purified PDE4D anti-
body directed against the C-terminus of all PDE4D variants 
(Fabgennix). To identify PDE3A, PVDF membranes were 
blocked overnight with starting block (Thermo Scientific) 
containing 0.05% Tween-20 then immunoblotted with two 
different goat polyclonal antibodies directed against either 
the N-or C-terminus of PDE3A (Santa Cruz). Finally, PDE5A 
isoforms were identified by immunoblotting with an affinity 
purified PDE5A antibody generated against peptides from 
unique sequences of the PDE5A gene (Fabgennix). The 
PVDF membranes were then incubated with an appropri-
ate secondary antibody in 1% non-fat dry milk or starting 
block and protein-antibody complexes were visualized us-
ing enhanced chemiluminesence (Pierce). These selected 
antibodies have been used in other studies to identify the 
resepective PDEs [18–22].
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Effect of cGMP on basal and receptor-mediated increases 
in cAMP in rabbit erythrocytes

Isolated rabbit erythrocytes were diluted to a 50% hematocrit 
(1 ml) and incubated with increasing concentrations of the 
cGMP analog, dbcGMP (1, 10 or 30 µM, Biomol) or its vehi-
cle, saline for 30 min prior to determination of cAMP. In sep-
arate studies, rabbit erythrocytes were incubated absence and 
presence of dbcGMP (10 µM) prior to stimulation with the 
b-agonist, isoproterenol (ISO, 1 µM) for 30 min in order to 
determine the effect of cGMP on receptor-mediated increas-
es in cAMP. Importantly, the cGMP analog does not interfere 
with EIA determination of cAMP levels (GE Healthcare).

Effect of activators of soluble guanylyl cyclase (sGC) and 
a PDE5 inhibitor on basal and ISO-induced increases in 
cAMP in rabbit and human erythrocytes

Isolated rabbit and human erythrocytes (50% hematocrit) 
were pretreated with YC1 (sGC activator, 100 µM) and the 
nitric oxide donor spermine nonoate (SpNO, 100 nM) 
in the presence and absence of either the selective PDE5 
inhibitor, zaprinast (ZAP, 10 µM) or the PDE1 inhibitor, 
vinpocetine (VIN, 30 µM) for 30 min prior to addition 
of ISO (1 µM) for determination of cAMP. The vehicles 
for the agonists used were saline (ISO, SpNO) or N’,N-
dimethylformamide (DMF) (YC1, ZAP, VIN). The vehicles 
had no effect on basal cAMP levels. The concentrations of 
zaprinast and vinpocetine were chosen based on published 
IC50 values for inhibition of PDE5 in other cell types and 
our previous experience with VIN [1,14,23,24]. At the con-
centrations chosen the inhibition of the respective PDE is 
highly selective [10,25–29].

Measurement of cAMP

Reactions were stopped with the addition of 4 ml ice-cold 
acidified ethanol containing 1 mM HCl per 1 ml of erythro-
cyte suspension. The erythrocyte-ethanol mixture was cen-
trifuged at 14,000 × g for 10 min at 4°C, to remove precip-
itated proteins. The supernatant was removed and stored 
overnight at –20°C. Samples were centrifuged a second 
time at 3,700 × g for 10 min at 4°C, to remove cryoprecipi-
tates. The supernatant was again removed and dried under 
vacuum centrifugation. Concentrations of cAMP were de-
termined by EIA (GE Healthcare) according to the manu-
facturer’s instructions. Cell counts were obtained from the 
erythrocyte suspension prior to addition of acidified ethanol 
and cAMP values were corrected to 1×1010 erythrocytes/ml.

Measurement of cGMP

Samples were prepared as described above for cAMP de-
termination and concentrations of cGMP were determined 
by EIA acetylation procedure (GE Healthcare). Cell counts 
were obtained from the erythrocyte suspension prior to ad-
dition of acifided ethanol and cAMP values were corrected 
to 1×1010 erythrocytes/ml.

Data analysis

Statistical significance was determined using an analysis of 
variance (ANOVA). In the event that the F-ratio indicated 
a change had occurred, a Fisher’s LSD test was performed 

to identify individual differences. Results are reported as 
means ± the standard error of the mean (SEM).

Results

Identification of PDE4 in the cytosol of human 
erythrocytes

PDE2 and PDE4 activity regulate increases in cAMP stim-
ulated by isoproterenol (ISO)-induced activation of the 
bAR. PDE2 protein is present in human erythrocyte mem-
branes [14]. In other cell types, it has been demonstrated 
that PDE4D splice variants 3, 4 or 5 are associated with this 
receptor [13,30,31]. Using Western analysis, we determined 
that PDE4D is present in human erythrocyte cytosol prep-
arations. A non-isoform selective PDE4D antibody identi-
fied three bands with predicted molecular weights of 119, 
105 and 98 KDa corresponding to those of PDE4D4, 5 and 
3, respectively (Figure 1), [17,32].

Identification of PDE3A in the cytosol of human 
erythrocytes

PDE3B protein is present in human erythrocyte membranes 
and inhibitors of PDE3 activity augment increases in cAMP 
produced by activation of the prostacyclin receptor (IPR) in 
these cells [14–16]. However, PDE3 inhibitors inactivate both 
isoforms of PDE3, PDE3A and PDE3B, and it is the 3A iso-
form that has been associated with IPR signaling in human 
platelets [33,34]. There are three splice variants of PDE3A 
(3A1, A2, and A3) [35–37]. Using antibodies generated 
against both the N-(Figure 2A) and C-terminus (Figure 2B) 
of human PDE3A, we identified a band with a predicted 
molecular weight of 74 KDa which corresponds to the mo-
lecular weight reported for the PDE3A3 isoform [36,38] 

Identification of PDE5 in the cytosol of human 
erythrocytes

Activation of the particulate or soluble form of guanyl-
yl cyclase increases cGMP in human erythrocytes [39,40]. 
However, the contribution of PDEs to the regulation of 
cGMP levels in erythrocytes has not been fully character-
ized. Here, cytosol preparations were probed with an anti-
body against the N-terminus of human PDE5A. This anti-
body identified a band with a predicted molecular weight 
of 105 KDa which corresponds to that of PDE5A (Figure 3) 
[27,41–43].

Figure 1. �Identification of PDE4D isoforms in human erythrocytes. 
Erythrocyte cytosol preparations were incubated with 
an affinity purified primary antibody generated against 
the C-terminus of all PDE4D variants (representative of 5 
individual samples, 40 µg protein per lane).
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Effect of a cGMP analog on cAMP levels in erythrocytes

It has been reported that cGMP can inhibit PDE3 and acti-
vate PDEs 2 and 5 [11,22]. To determine the effect of cGMP 
on cAMP levels in rabbit erythrocytes, we incubated these 
cells with a cell permeable cGMP analog, dbcGMP that is 
hydrolyzed to cGMP in erythrocytes [40,44]. Incubation of 
rabbit erythrocytes with dbcGMP (1 to 30 µM) resulted in 
concentration-dependent increases in cAMP (Figure 4).

Effect of an activator of soluble guanylyl cyclase (sGC), 
YC1, a nitric oxide donor, spermine NONOate (SpNO) 
and selective inhibitors of either PDE5, zaprinast (ZAP), 
or PDE1, vinpocetine (VIN), on cGMP levels in rabbit 
erythrocytes

Since stimulation of sGC has been reported to generate 
increases in cGMP in human erythrocytes, we determined 
if: 1) stimulation of sGC with YC1 and SpNO would gen-
erate increases in cGMP in these cells and if 2) inhibitors 
of cGMP-hydrolysing PDEs would potentiate that increase. 
Rabbit erythrocytes were incubated with YC1 (100 µM) 
and SpNO (100 nM) in the presence and absence of ei-
ther VIN (30 µM) or ZAP (10 µM). Stimulation of sGC in-
creased cGMP in these cells (Figure 5). The increases were 
potentiated by the selective PDE5 inhibitor, ZAP whereas, 
the selective PDE1 inhibitor, VIN had no effect on cGMP 
increases (Figure 5). At the concentration chosen neither 

VIN nor ZAP has an effect on baseline cGMP levels (data 
not shown).

Effect of cGMP on ISO-induced increases in cAMP in 
rabbit and human erythrocytes

In non-erythroid cells, cGMP has been shown to either 
positively or negatively influence increases in cAMP pro-
duced by activation of the bAR depending on the profile 
of PDEs present [23,45]. To determine the effect of cGMP 
on ISO-induced increases in cAMP in erythrocytes, cells 
were incubated with ISO (1 µM) in the absence and pres-
ence of dbcGMP (10 µM). The addition of dbcGMP poten-
tiated ISO-induced increases in cAMP in rabbit erythrocytes 
(Figure 6). To determine if increases in endogenous cGMP 
synthesis would have the same effect, erythrocytes were in-
cubated with the combination of (SpNO, 100 nM) and YC1 
(100 µM) in the presence and absence of VIN (30 µM) or 
ZAP (10 µM) prior to addition of ISO (1 µM). The combi-
nation of activation of sGC and inhibition of PDE5 (ZAP) 
potentiated ISO-induced increases in cAMP in both rabbit 
(Figure 7A) and human erythrocytes (Figure 7B), while in-
hibition of PDE1 had no effect.

Figure 2. �(A) Identification of the PDE3A isoform in human 
erythrocytes. Erythrocyte cytosol preparations were 
incubated with a goat polyclonal primary antibody 
directed against the N-terminus of PDE3A (representative 
of 8 individual samples, 40 µg protein per lane). (B) 
Identification of the PDE3A isoform in human erythrocytes. 
Erythrocyte cytosol preparations were incubated with a 
goat polyclonal primary antibody against the C-terminus 
of PDE3A (representative of 8 individual samples, 40 µg 
protein per lane).

A

B

Figure 3. �Identification of the PDE5A isoform in human erythrocytes. 
Erythrocyte cytosol preparations were incubated with an 
affinity purified primary antibody against the C-terminus 
of PDE5A (representative of 5 individual samples, 40 µg 
protein per lane).
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Discussion

Cyclic nucleotides are multifunctional second messenger 
molecules that mediate diverse physiological functions in 
cells [22,46]. To prevent cAMP or cGMP generated in one 
signaling pathway from activating unwanted downstream 
effectors of another pathway or to control interaction be-
tween pathways, local levels of these cyclic nucleotides must 
be precisely regulated. It has been increasingly recognized 
that such regulation is accomplished by PDEs that are lo-
calized to individual signaling pathways. Indeed, it has been 
suggested that, rather than total expression of PDEs, it is 
the compartmentalization of specific PDEs that is the impor-
tant factor in modulating localized cAMP levels [9,29]. Here 
we report, for the first time, the presence of three cytosolic 
PDEs in human erythrocytes and suggest a role for cGMP 
and PDE5 in the regulation of cAMP levels in these cells.

Previously, using selective inhibitors, it was demonstrated 
that the activity of PDE4 and PDE3 regulates cAMP levels as-
sociated with activation of the b-adrenergic receptor (bAR) 
and prostacyclin receptor (IPR), respectively [14]. Here, us-
ing Western analysis, we determined that the PDE4D iso-
form known to be associated with the bAR pathway [47,48] 
as well as PDE3A, the PDE3 isoform associated with hydro-
lysis of IPR-mediated increases in cAMP in platelets [33], 
are present in erythrocytes (Figures 1, 2). We also demon-
strated the presence of PDE5, a cGMP-specific PDE in the 
cytosol of human erythrocytes (Figure 3).

In the work presented here, we demonstrate that, in hu-
man and rabbit erythrocytes, cGMP can inhibit hydroly-
sis of cAMP. When rabbit erythrocytes were incubated with 
dbcGMP, a cell permeable cGMP analog that is converted 
to cGMP within cells via hydrolyases [40,42–44], cAMP lev-
els were increased in a concentration-dependent manner 
(Figure 4). In addition, we found that ISO-induced increas-
es in cAMP were augmented by dbcGMP (Figure 6) estab-
lishing that cGMP can regulate cAMP increases associat-
ed with a discrete signaling pathway in rabbit erythrocytes.

However, a more compelling argument for a physiological 
role of cGMP in the regulation of cAMP levels in erythro-
cytes is derived from studies in which endogenous cGMP 
synthesis is stimulated. In order to examine the effects of 
cGMP in erythrocytes we activated soluble guanylyl cyclase 

(sGC) in both rabbit and human erythrocytes with the com-
bination of an NO donor (spermine NONOate, SpNO) and 
a direct activator of sGC (YC1) in the presence and absence 
of either a selective inhibitor of PDE1 (VIN) or PDE5 (ZAP).

YC1 is a compound that sensitizes the sGC to NO and en-
hances the ability of sGC to generate cGMP [24,48,49]. It 
has also been reported that YC1 can inhibit the activity of 
some PDEs [49,50]. However, at the concentrations used in 
our studies, YC1 and SpNO had no effect on cAMP levels 
in the presence or absence of ISO (Figure 7). In contrast, 
the selective PDE5 inhibitor, ZAP, significantly increased 
cAMP levels in erythrocytes in both cases (figure 7). Thus, 
the effects of YC1 in our studies are not the result of inhi-
bition of PDE activity.

Finally, we exposed erythrocytes to ISO in the absence and 
presence of either the PDE1 inhibitor, VIN, or the PDE5 
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inhibitor, ZAP, and measured receptor-mediated cAMP gen-
eration [1,10,19,31,35]. The combination of activation of 
sGC and inhibition of PDE5 potentiated ISO-induced in-
creases in cAMP in both rabbit (Figure 7A) and human 
erythrocytes (Figure 7B), while inhibition of PDE1 had no 
effect. These results do not negate the importance of PDE1 
in hydrolyzing cGMP in erythrocytes but do support the 
conclusion that this PDE is not involved in the bAR signal-
ing pathway. Inhibitors of PDE5 are used in the treatment 
of erectile dysfunction as well as pulmonary hypertension 
[20,36,51]. These drugs have been associated with decreas-
es in systemic arterial blood pressure, especially when ad-
ministered in conjunction with nitrates and prostacyclin 
(PGI2) analogs presumably due to the increases in cyclic 
nucleotides leading to vasodilation [52,53]. Although not 
addressed in the present study, it is possible that a compo-
nent of the vasodilation associated with the use of PDE5 
inhibitors is the result of enhanced cAMP levels in eryth-
rocytes leading to increased ATP release. Such a finding 
would make the erythrocyte a novel therapeutic target for 
the development of drugs to lower blood pressure in both 
the pulmonary and systemic circulations.

Conclusions

We demonstrate, for the first time, the presence of three cy-
tosolic PDEs, PDE4D, PDE3A and PDE5, in human eryth-
rocytes. In addition, we show that cGMP can increase basal 
cAMP levels and augment increases in cAMP produced by 
receptor-mediated activation of the bAR in rabbit and hu-
man erythrocytes. Finally, we demonstrate that the combi-
nation of endogenous activators of sGC (YC1 and SpNO) in 
combination with a selective inhibitor of PDE5 (zaprinast) 
augments increases in cAMP produced by ISO. Taken to-
gether, these data suggest a heretofore unrecognized role 
for cGMP and PDE5 in the regulation of agonist-induced 
increases in cAMP in rabbit and human erythrocytes.
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