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A B S T R A C T   

The exposure of ethanol increases the risk of head and neck inflammation and tumor progression. However, 
limited studies have investigated the composition and functionality of laryngeal microbiota under ethanol 
exposure. We established an ethanol-exposed mouse model to investigate the changes in composition and 
function of laryngeal microbiota using Metagenomic shotgun sequencing. In the middle and late stages of the 
experiment, the laryngeal microbiota of mice exposed to ethanol exhibited obvious distinguished from that of the 
control group on principal-coordinate analysis (PCoA) plots. Among the highly abundant species, Salmonella 
enterica and Mycobacterium marinum were likely to be most impacted. Our findings indicated that the exposure to 
ethanol significantly increased their abundance in larynxes in mice of the same age, which has been confirmed 
through FISH experiments. Among the species-related functions and genes, metabolism is most severely affected 
by ethanol. The difference was most obvious in the second month of the experiment, which may be alleviated 
later because the animal established tolerance. Notable enrichments concerning energy, amino acid, and car-
bohydrate metabolic pathways occurred during the second month under ethanol exposure. Finally, based on the 
correlation between species and functional variations, a network was established to investigate relationships 
among microbiota, functional pathways, and related genes affected by ethanol. Our data first demonstrated the 
continuous changes of abundance, function and their interrelationship of laryngeal microbiota under ethanol 
exposure by Metagenomic shotgun sequencing. 
Importance: Ethanol may participate in the inflammation and tumor progression by affecting the composition of 
the laryngeal microbiota. Here, we applied the metagenomic shotgun sequencing instead of 16 S rRNA 
sequencing method to identify the laryngeal microbiota under ethanol exposure. Salmonella enterica and Myco-
bacterium marinum are two dominant species that may play a role in the reconstruction of the laryngeal 
microenvironment, as their local abundance increases following exposure to ethanol. The metabolic function is 
most evidently impacted, and several potential metabolic pathways could be associated with alterations in 
microbiota composition. These findings could help us better understand the impact of prolonged ethanol 
exposure on the microbial composition and functionality in the larynx.   

1. Introduction 

Ethanol consumption, a common addictive behavior, is a primary 
risk factor that contributes to tumor occurrence and poor prognosis in 
patients with head and neck cancers [1]. Approximately 76,900 cases of 
cancer were attributed to ethanol consumption in 2016, among which 
nearly 60% of male cases were cancers of the upper aerodigestive tract 
including oral cavity, pharynx and larynx [2]. Our previous study also 

suggested that abnormal ethanol metabolism is closely related to the 
poor prognosis of patients with laryngeal squamous cell carcinoma 
(LSCC) [3]. According to current evidence, ethanol may exert carcino-
genesis effects through multiple biological pathways, including DNA 
damage, nutritional deficiencies and solvent effect for other carcinogens 
[4,5]. However, the existing findings cannot fully elucidate the carci-
nogenic mechanism of ethanol, indicating that there are still other 
pathways that remain to be explored. 
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Laryngeal microbiota plays a vital, but still largely unexplored, role 
in the formation of local tumor microenvironment. Microbiota is 
involved in the metabolism of ethanol to acetaldehyde, a key metabolite 
of ethanol with carcinogenic properties [6]. But these bacteria have a 
limited capacity to break acetaldehyde down further into its 
non-harmful compound acetate [7]. It has been suggested that long-term 
exposure with large amounts of ethanol can lead to prolonged direct 
exposure of the oropharyngeal mucosa to acetaldehyde [8–11]. 
Furthermore, prolonged ethanol consumption may cause dysbacteriosis 
of the oropharynx and enhance the pathogenicity of certain commensal 
microorganisms, thus forming a local microenvironment conducive to 
the occurrence and progression of tumors [12–14]. Take one of our 
previous findings, for instance, ethanol can promote Fusobacterium 
nucleatum, a conditioned pathogen enriched in the larynx of patients 
with laryngeal squamous cell carcinoma (LSCC), in accelerating cell 
metastasis and invasion [15]. Given that the composition of laryngeal 
microbiota in patients with head and neck carcinomas, especially those 
who have consumed ethanol for a prolonged period, is quite different 
from that in healthy people, other ethanol-induced pathogenic bacteria 
were speculated to be associated with these diseases [16–20]. Further-
more, the interaction between microbes, as well as their function al-
terations induced by ethanol, can be both involved in the malignant 
transformative event [21]. Nevertheless, limited studies have focused on 
the composition and function of microbiota located in larynx after a 
period of ethanol exposure, let alone its variation tendency during the 
period. 

In the present study, we established an ethanol-drinking mouse 
model. Metagenomic sequencing technology was used to detect the 
composition of the laryngeal microbiota and its potential functional 
changes. Tests were designed to be continuous for a continuous analysis 
of ethanol intake effects on the composition and function of laryngeal 
microbiota. A comprehensive network was further summarized, high-
lighting correlations among the species, their altered functions and 
related genes, with the purpose of identifying potential factors 
contributing to the poorer prognosis of LSCC under ethanol exposure. 

2. Results 

2.1. Effects of ethanol on laryngeal microbiota composition 

The Alpha diversity metrics, including the Chao1 index, Simpson 
index, and Shannon index, have revealed distribution of species within 
each group (Fig. 1A). The species-level analysis revealed no statistically 
significant difference in the community richness of laryngeal commu-
nities among different groups. However, temporal fluctuations in com-
munity diversity were observed in both NC and Ethanol groups, 
indicating its dynamic nature over time. The results of Principal Coor-
dinate Analysis (PCoA) further corroborate the aforementioned findings. 
PERMANOVA demonstrated that there were significant compositional 
differences in the larynx microbiota the second and third months 
(PERMANOVA, Padj = 0.015 between NC 2 month and NC 3 month; 
PERMANOVA, Padj = 0.007 between Ethanol 2 month and Ethanol 3 
month) (Fig. 1 B, C). The disparity between the NC and Ethanol group 
gradually widened with the progression of experiments, indicating that 
ethanol exposure had an impact on the composition of laryngeal 
microbiota in mice (PERMANOVA, Padj= 0.039 between NC 2 month 
and Ethanol 2 month; PERMANOVA, Padj= 0.008 between NC 3 month 
and Ethanol 3 month) (Fig. 1 D-F). By presenting a bar chart illustrating 
the distribution of the top 16 species, we can gain a comprehensive 
understanding of the species composition in mouse larynx, thereby 
facilitating subsequent analysis on fluctuations in abundance among 
dominant species (Fig. 1 G). Given that long-term consumption of 
ethanol may cause systemic effects, we have recorded the body weight 
and liquid feed intake of mice in different treatment groups and results 
were put in supplement Fig. 1 A, B. 

2.2. Changes and trends in laryngeal bacterial abundance induced by 
ethanol exposure 

By comparing the relative abundance of the top 5 bacterial genera 
and species in the NC and Ethanol group simultaneously, we observed 
that ethanol exposure could enhance Salmonella enrichment (Fig. 2A-F). 
Specifically, Salmonella enterica emerged as the predominant species in 
larynx in the ethanol-exposed group at the third month, exhibiting a 
significantly higher abundance compared to that of the NC group 
(P = 0.0215). In order to find biomarkers with statistical differences 
between different groups, we used linear discriminant analysis (LDA) 
effect size (LEfSe) to screen out different taxa at genus and species levels 
between different groups based on a standard LDA value greater than 
four (Fig. 2G). In the subsequent analysis of dominant species and their 
temporal dynamics in Ethanol group, the abundances of Salmonella 
enterica (P = 0.0493) and Mycobacterium marinum (P = 0.0092) exhibi-
ted temporal variations (Fig. 2H). In the NC group, the monthly decrease 
of Salmonella enterica (P = 0.0185) is also evident (Fig. 2I). The 
remaining species exhibit a lack of temporal continuity. Additionally, 
two species of Pseudomonas were involved in this change. Pseudomonas 
pelagia gradually decreased with ethanol exposure,while Pseudomonas 
aeruginosa, which increased in the third month, indicating the response 
to ethanol can vary significantly among different species belonging to 
the same genus. 

2.3. Salmonella enterica and Mycobacterium marinum were observed in 
the larynxes of mice 

To further clarify the highest relative abundance of Salmonella and 
Mycobacterium in the larynxes of mice, Fluorescence in Situ Hybridiza-
tion (FISH) was conducted to confirm their presence in tissues. Results 
showed that, in the third month, Salmonella enterica and Mycobacterium 
marinum were observed in the larynxes of mice in Ethanol groups 
(Fig. 3A, B). 

2.4. Changes and trend of laryngeal bacterial functions caused by ethanol 
exposure 

To investigate the changes in bacterial functions within the laryngeal 
microbiota regulated by ethanol exposure, the KEGG pathway enrich-
ment analysis was performed. The most enriched function was meta-
bolism, including energy metabolism, carbohydrate metabolism, amino 
acid metabolism and metabolism of other amino acids (Fig. 4A, B). 
KEGG analyses of pathways were performed each month on pathway 
level 2 (Fig. 4C-E), among which differences between groups were most 
pronounced in the second month. The abundance of energy and amino 
acid metabolism showed an obvious increase after ethanol exposure in 
the second month, while the abundance of translation revealed a 
reduction (Fig. 4D). KEGG analyses on pathway level 3 were further 
conducted to clarify the enrichment degree of specific pathways 
(Fig. 4F). 

The abundances of biosynthesis of secondary metabolism, carbon 
metabolism, glyoxylate and dicarboxylate metabolism, tryptophan 
metabolism signaling pathway, significantly increased in the Ethanol 
group. The multi-group comparison and analyses clearly demonstrated 
the abundance of pathways, especially metabolic pathways, in different 
groups within three months (Fig. 4G). The results showed that many 
metabolic pathways were significantly enriched in the Ethanol group in 
the second month. Synthesizing the above analytical results, there is a 
great possibility that underlying changes in genes or enzymes have been 
involved in the process during the second month of the ethanol diet. 

2.5. Connections between bacterial function and genes under ethanol 
exposure 

Species and functional regression analyses indicated that Alpha 
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Fig. 1. Effects of ethanol exposure on the diversity and overall structure of oropharyngeal microbiota at different periods. (A) Alpha diversity indicated by Chao 
index, Shannon index, and Simpson index at the species level (Welch’s t test, 95%, FDR). Adjusted P values are listed at the top of the bar charts. (* P < 0.05, 
** P < 0.01, *** P < 0.001) (B, C) Principal coordinate analysis (PCoA) maps based on Bray-Curtis dissimilarity describe beta diversity at species level in NC and 
Ethanol groups. Each dot represents one sample, and the ellipse represents the 95% confidence interval (ANOSIM). (D-F) PCoA maps describe beta diversity at species 
level at same tine point (1, 2 and 3 months) in NC and Ethanol groups (ANOSIM). (G) Bar chart of the top 16 species in six groups. Each color bar represents one 
species of bacteria. 
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Fig. 2. Differences and the variation tendency of laryngeal microbiota composition induced by ethanol consumption. (A-F) Relative abundance of the top five 
bacterial genera and species between NC and Ethanol groups (Wilcoxon rank-sum test, two tail, 95%, FDR). (G) Differentially enriched taxa identified by linear 
discriminant analysis effect size (LEfSe) among the six groups (One-against-all). The length of the column represents the influence of significantly different species on 
relative abundance (LDA scores [log10] > 4). (H, I) Changes in the relative abundance of species over time in the NC and ethanol groups (Kruskal-Wallis H test, 95%, 
FDR, Tukey-Kramer). (J) Comparison of bacterial content and its change trend between ethanol feeding group and control group. 
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(R2 =0.74) and Beta (R2 =0.86) diversity of species and function were 
consistent with each other (Supplement figure1C, D). Analysis of the 
contribution capacity of different species suggested that microbiota 
contribute to metabolism (Fig. 5A). Take energy metabolism, for 
instance, microbiota in the Ethanol group contributed far more than that 
in the control group (Fig. 5B). The effects of Acinetobacter baumannii in 
the Ethanol group were all focused on energy metabolism (Fig. 5C). The 
KEGG analyses of differentially expressed genes, modules, and enzymes 
between NC and Ethanol groups were conducted later (Fig. 5D-F). 
Various modules with the highest enrichment were involved in energy 
metabolism (Fig. 5D). Enriched genes and enzymes were also related 
with metabolic pathways (Fig. 5F). Synthesizing all the above analytical 
results, a network was established to display the potential connection 
among the affected bacteria, function and KEGG pathways, KEGG 
modules, KEGG genes, and KEGG enzymes (Fig. 5G). 

3. Discussion 

Laryngeal microbiota has been identified as a key participant in the 
occurrence and progression of head and neck malignancies, due to 
variations in its basal composition and its critical role in promoting the 
formation of the local tumor microenvironment [12]. A link between 
ethanol consumption and the laryngeal microbiome has been identified 
in the progression of head and neck malignancies mainly through the 
alcohol dehydrogenase (ADH) expressed by certain bacteria species, 
while the exact relationship remains to be clarified [22–24]. In this 
study, a mouse model was constructed to explore the relationship be-
tween the composition and function variations of laryngeal microbiota 
under ethanol exposure, together with the potential genes that are 
related to bacterial function. 

The laryngeal microbiota undergo significant changes due to pro-
longed ethanol exposure, resulting in an increased prevalence of Sal-
monella enterica and Mycobacterium marinum. 

Previous studies suggest that persistent colonization by Salmonella 
enterica may contribute to chronic gastrointestinal inflammation and 
cell proliferation through modulation of the Wnt pathway, thus pro-
moting tumorigenesis [25,26]. Additionally, effective colonization of 
tumors enhances the potential use of live-attenuated Salmonella enterica 
Strains as a microbial-based treatment in cancer therapy [27,28]. A 
recent study has demonstrated that when combined with Alb-IL2, a 
genetically modified strain of Salmonella enterica serves as an innova-
tive therapeutic approach, inducing T cell-mediated antitumor immu-
nity and exerting long-term tumor control in a murine model of colon 
cancer [29]. Therefore, apart from its potential association with local 
inflammation and tumorigenesis, Salmonella enteric may offer promising 

prospects for therapeutic interventions targeting head and neck tumors 
in individuals with chronic alcohol consumption. 

As for Mycobacterium marinum, a well-known pathogenic mycobac-
terium for skin and soft tissue infections, its abundance in the larynx was 
also upregulated with ethanol exposure [30]. Studies of Mycobacterium 
marinum have revealed its relationship with skin lesions including the 
pustular, nodular-ulcerative, granulomatous, and verrucous plaque [31, 
32]. Though there is no study focusing on its effects on laryngeal dis-
eases, considering that more than 95% of laryngeal cancers are squa-
mous cell carcinoma (LSCC), as well as the susceptibility of the 
squamous epithelium to Mycobacterium marinum, it suggests that the 
formation of laryngeal tumor microenvironment and tumorigenesis may 
be at play. In addition, Mycobacterium-macrophage interaction and the 
resultant increase in macrophage necrosis facilitate unrestricted extra-
cellular growth of Mycobacterium marinum, leading to the host being 
hypersusceptible and making tissues more susceptible to repeated in-
flammatory exposure, thus increasing the possibility of tissue malignant 
transformation [33,34]. 

Interestingly, in the alcohol exposure group, the proportion of 
Pseudomonas decreased sharply at 2 months and increased dramatically 
at 3 months (Fig. 2G). This phenomenon may be due to the difference in 
the tolerance of different Pseudomonas to alcohol, resulting in changes 
in the composition of Pseudomonas genus. Proportion of Pseudomonas 
pelagia gradually decreased at 2 months, while proportion of Pseudo-
monas aeruginosa significantly increased at 3 months (Fig. 2H, I). Studies 
have reported that ethanol can promote the enrichment of Pseudomonas 
aeruginosa, which also has a certain ability to catabolize ethanol [35,36]. 
Furthermore, ethanol was reported to promote Pseudomonas aeruginosa 
colonization of cystic fibrosis airway epithelial cells, which supports our 
findings to some extent [37]. It is worth noting that the detection results 
of metagenome can only reflect the relative content of bacteria, so the 
above results may be related to the overall abundance of microorgan-
isms in the larynx of mice under ethanol exposure. 

In terms of function, ethanol could accelerate the decay rate of 
enrichment degree of transcription-related pathways, indicating its 
inhibitory effect on laryngeal bacterial transcription. In addition, coin-
ciding with the peak enrichment of catalase (CAT, EC 1.11.1.6), a 
notable enrichment of energy, amino acid, and carbohydrate metabolic 
pathways occurred in the second month in the Ethanol group, but fell 
back later in levels. As a key enzyme in the metabolism of H2O2, CAT can 
reduce the by-products of ethanol metabolism and improve the activities 
of alcohol dehydrogenase (ADH), thus scavenging free radicals and 
protecting cells against oxidative damage [38]. CAT may also have 
additional roles such as anti-tumor compounds. Studies have shown a 
change in catalase expression in cancer cells is related to cellular 

Fig. 3. FISH assays to identify Salmonella enterica and Mycobacterium marinum in the larynxes of mice. Images showing EUB338 and bacteria were cropped digitally 
using the SlideViewer software; bar is 20 µm and 100 µm. (A) Mycobacterium marinum in larynxes of mice. (B) Salmonella enterica in larynxes of mice. 
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Fig. 4. Differences and the variation tendency of oropharyngeal microbiota functions induced by ethanol consumption. (A, B) Circos diagram of the KEGG pathways 
enrichment analysis, the left half circle represents the function abundance composition of the group, and the right half circle represents the distribution ratio of the 
function. (C-G) Relative abundance of KEGG pathways between the NC and Ethanol group (Wilcoxon rank-sum test, 95%, FDR, Tukey-Kramer; Kruskal-Wallis H test, 
95%, FDR, Tukey-Kramer). (H) Comparison of bacterial content and its change trend between ethanol feeding group and control group. 
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Fig. 5. Summary of the underlying connection between the affected microbes, their altered functions and several potentially related genes under ethanol exposure. 
(A-C) Bar plot of species and functional contribution analysis indicates the dominant species composition of a particular function. (D-F) Relative abundance of KEGG 
modules, enzymes and genes between the NC and Ethanol groups (Kruskal-Wallis H test, 95%, FDR, Tukey-Kramer). (G) A relationship network concerning the 
underlying connection between the microbes, their altered functions and several potentially related genes under ethanol exposure. 
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chemoresistance [39,40]. Despite the overall low amount of CAT in 
tumor cells, a locally high expression of CAT on the membrane of tumor 
cells was also found, indicating that CAT may serve as a potential target 
in exploring new cancer therapies [41,42]. Combined with the results of 
this study, in the early stage of ethanol exposure, the abundance of the 
catalase gene in the laryngeal flora increased, which could promote the 
expression of energy pathways such as carbohydrate metabolism. 
Though not sustained, this effect may be a kind of self-protection of 
bacteria under ethanol exposure and reduce the concentration of local 
ethanol and its metabolic by-product, H2O2. 

Limited by the experimental time and the tolerance of mice, further 
investigation is required to study changes in laryngeal microbiota in 
mice exposed to long-term ethanol (more than six months). Although no 
significant differences in body weight were observed between the 
ethanol exposure group and the control group during the experiment, 
mice in the experimental group consumed significantly less food 
compared to those in the control group during the first two weeks. 
Moreover, aggression among mice escalated with prolonged ethanol 
intake, leading us to terminate the experiment after three months and 
indicating systemic effects of ethanol on mice. Since this study primarily 
focused on exploring changes in throat flora due to ethanol exposure, 
limited attention was given to overall energy metabolism and other 
organs of mice. It should be acknowledged that unmeasured indirect 
mechanisms may contribute to laryngeal dysbiosis in mice. Fortunately, 
species and functional regression analysis revealed associations between 
ethanol exposure and alterations in bacterial species functions. Conse-
quently, genes, enzymes, modules, and pathways related to these 
changes were summarized. 

In summary, this experiment utilized a mouse model to investigate 
the impact of ethanol exposure on the laryngeal microbiota. Through 
metagenomic sequencing, we explored the dynamic changes in both 
abundance and function of these microbial communities upon exposure 
to ethanol. Additionally, we aimed to elucidate their relationship with 
the formation of a microenvironment that promotes local inflammation 
and tumorigenesis by identifying potential bacterial genes involved in 
this process. By establishing a network analysis, we have summarized 
the key findings of our research and identified several genes that war-
rant further investigation. We are delighted to offer novel insights to 
explain the laryngeal inflammation and cancer-promoting microenvi-
ronment induced by chronic ethanol exposure from a microbial 
perspective. 

4. Materials and methods 

4.1. Animal treatment and sample collection 

Six-week-old C57BL/6 mice (Shanghai Laboratory Animal Company, 
Shanghai, China) were housed under controlled environmental condi-
tions (temperature 22–24 ◦C, relative humidity 50–60%, and 12 h light/ 
dark cycle). All experiments involving mice were performed using pro-
tocols approved by the Animal Center at the Eye & ENT Hospital, Fudan 
University (No.2022076). The liquid diet used in this experiment was 
designed based on the AIN-93 M standard (Trophic Animal Feed High- 
tech Co., Ltd., China). In this experiment, 42 mice were randomly 
divided into 6 cages, 3 cages were randomly selected as the ethanol 
exposure group and the other 3 cages as the control group. Mice in the 
Ethanol group were administered a liquid diet containing 4% ethanol, 
while the NC group received a liquid feed. Although mice were in 
different cages, we tried to make sure they all lived in the same envi-
ronment except for their diet. During the study, the liquid feed on the 
cage was changed daily (the remaining feed was discarded every day) 
and the liquid feed bottle was cleaned daily. After feeding for a period of 
time, mice were sacrificed using cervical vertebra dislocation on a sterile 
operation platform in batches. In the first and second months, we 
randomly selected 2 to 3 mice from each cage, bringing together 7 mice 
in the alcohol exposure group and 7 mice in the control group for follow- 

up experiment. This method helped us avoid cage differences to some 
extent. The larynxes were removed, and the laryngeal tissues of two 
mice within each group were randomly selected and soaked in formalin 
solution, while the rest of the tissues from the other five mice were 
stored at − 80 ◦C until further analysis. 

4.2. Fluorescence in situ hybridization (FISH) 

Localizations of Salmonella enterica and Mycobacterium marinum were 
evaluated by FISH on 5-μm-thick FFPE sections using a Fluorescence in 
Situ Hybridization Kit (RiboBio, Guangzhou, China). 16 S ribosomal 
RNA sequences were obtained from probeBase (http://www.probebase. 
net) and probes were synthesized by Sangon Biotech (Shanghai) Co., 
Ltd. The sequence of “the universal bacterial” probe was EUB338 (5’- 
GCTGCCTCCCGTAGGAGT-3’, Alexa Fluor 488-labeled), the sequence of 
probe targets Salmonella enterica was Sal3 (5’-AATCACTTCACC-
TACGTG-3’, Alexa Fluor 647-labeled), and the sequence of probe targets 
Mycobacterium marinum was M.marinum (5’-CGGGATT-
CATGTCCTGTGGTGGAA-3’, Alexa Fluor 568-labeled). 

4.3. DNA isolation and metagenomic sequencing 

Total genomic DNA was extracted from laryngeal tissue samples of 
mice using the QIAamp BiOstic Bacteremia DNA Kit (Qiagen, USA) ac-
cording to the manufacturer’s instructions and checked by 1% agarose 
gel electrophoresis. The DNA was fragmented into an average size of 
approximately 350 bp using the Covaris M220 system (Gene Company 
Limited, China). A paired-end library was constructed utilizing the 
NEXTFLEX Rapid DNA-Seq (Bioo Scientific). Paired-end sequencing was 
performed on the Illumina NovaSeq 6000 platform at Majorbio Bio- 
Pharm Technology Co., Ltd. (Shanghai, China). 

4.4. Sequence quality control, gene assembly, and prediction 

The 3 ’end and 5’ end adapter sequences were cut and low-quality 
reads (length <50 bp or with an average mass value <20 or having N 
bases) were removed using fastp software (https://github.com/OpenG 
ene/fastp, version 0.20.0). The preprocessed reads were mapped to 
the reference Mus musculus genome (GRCm39) using BWA software (htt 
p://bio-bwa.sourceforge.net/, version 0.7.17), and any contaminated 
reads exhibiting high similarity were removed. Within the metagenomic 
data after the above screening, contigs with lengths at or above 300 bp 
were selected for further assembly by Megahit (https://github. 
com/voutcn/megahit, version 1.1.2) [43]. The outcomes of gene as-
sembly can be observed in supplement table 1. The contig length dis-
tribution for each sample is depicted in supplement Figs. 2 and 3. Open 
reading frames (ORFs) from each assembled contig were predicted using 
MetaGene (http://metagene.cb.k.u-tokyo.ac.jp/) [44]. The predicted 
ORFs (no less than 100 bp) were retrieved and translated into amino 
acid sequences. 

4.5. Gene catalog establishment and abundance calculation 

To explore the commonalities and differences between different 
samples, CD-HIT software (http://weizhongli-lab.org/cd-hit/, version 
4.6.1) was used to cluster the gene sequences and generate the non- 
redundant gene catalog with 90% sequence identity and 90% 
coverage [45]. Using the SOAPaligner software (https://github. 
com/ShujiaHuang/SOAPaligner, soap 2.21 release), high-quality reads 
of each sample were compared with non-redundant genes catalog (95% 
identity) to count the abundance information of genes in corresponding 
samples [46]. 

4.6. Species and functional annotation 

The BLASTP tool [47] (v 2.2.28 +, http://blast.ncbi.nlm.nih.gov/Bla 
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st.cgi) was utilized to eliminate redundant gene sets and compare them 
against the NR database (08/2022) and KEGG gene database (v 89.1), 
with a BLAST alignment parameter setting an expectation value of 1e-5. 
Taxonomy information from the NR library was then used to annotate 
species comments accordingly. Subsequently, the abundances of each 
species were calculated by summing up their corresponding gene 
abundances. The abundance profiles at various taxonomic levels 
including Domain, Kingdom, Phylum, Class, Order, Family, Genus, and 
species were constructed. The KEGG Orthology Based Annotation Sys-
tem (KOBAS 2.0) [48] was utilized for function annotation, enabling the 
calculation of function category abundance by summing the gene 
abundances corresponding to KO, Pathway, EC, and Module. 

4.7. Statistical analysis 

Data were expressed as mean ± SEM and analyzed with SPSS 22.0. 
For samples that were normally distributed, Student’s t-test or Welch’s t- 
test were used to evaluate the differences between the two groups. For 
those that were not normally distributed, Wilcoxon rank-sum test was 
used to seek significant differences. When investigating three or above 
groups, one-way ANOVA with Bonferroni’s multiple comparison test 
was applied. 

Alpha diversity was calculated by Chao, Simpson and Shannon 
index, based on filtered and normalized counts with rarefying to the 
lowest taxonomy using the vegan v2.5.6 R package. The beta diversity 
was calculated by principal coordinates analysis (PCoA), using Bray- 
Curtis dissimilarity and visualized using ggplot2 packages. PERMA-
NOVA of the cohorts was performed using the adonis function of the 
vegan package in R software with permutations of 999 and Bray-Curtis 
dissimilarity. Microbiota functions were predicted using PICRUSt2 (htt 
ps://github.com/picrust/picrust2). The Reads Per Kilobase Million 
(RPKM) and relative Reads Number method were utilized to compute 
gene abundance in the analysis of species and functional contribution. 
For RPKM, the formula is: RPKMi = Ri∗106

Li∗
∑n

1
(Rj)

, while for relative Reads 

Number is: Genei = Ri∑n
1
(Rj)

. Ri represents the number of Reads correlated 

to Genej in that sample; Li represents nucleotide length; 
∑n

j (Rj) represents the sum of reads corresponding to all genes in the 
sample. Based on species annotation and KEGG annotation of microbial 
gene set, the functions of the top 15 abundant species were analyzed at 
specific classification levels (kingdom, species etc.) and specific func-
tional levels (pathway level, module, etc.) [49]. The results were visu-
alized using an R language package. 

Differences were considered significant when P < 0.05 and 
extremely significant when P < 0.01. 
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