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Abstract

Several models for the long-term development of T2DM already exist, focusing on the

dynamics of the interaction between glycemia, insulinemia and β-cell mass. Current models

consider representative (fasting or daily average) glycemia and insulinemia as characteriz-

ing the compensation state of the subject at some instant in slow time. This implies that only

these representative levels can be followed through time and that the role of fast glycemic

oscillations is neglected. An improved model (DPM15) for the long-term progression of

T2DM is proposed, introducing separate peripheral and hepatic (liver and kidney) insulin

actions. The DPM15 model no longer uses near-equilibrium approximation to separate fast

and slow time scales, but rather describes, at each step in slow time, a complete day in the

life of the virtual subject in fast time. The model can thus represent both fasting and post-

prandial glycemic levels and describe the effect of interventions acting on insulin-enhanced

tissue glucose disposal or on insulin-inhibited hepatic glucose output, as well as on insulin

secretion and β-cell replicating ability. The model can simulate long-term variations of com-

monly used clinical indices (HOMA-B, HOMA-IR, insulinogenic index) as well as of Oral Glu-

cose Tolerance or Euglycemic Hyperinsulinemic Clamp test results. The model has been

calibrated against observational data from the Diabetes Prevention Program study: it shows

good adaptation to observations as a function of very plausible values of the parameters

describing the effect of such interventions as Placebo, Intensive LifeStyle and Metformin

administration.

Introduction

Mathematical modelling is being increasingly used in diabetology, in order to help explain the

mechanisms of normal and diseased control of the glucose-insulin system, both in short-term

dynamical perturbation experiments and in the long-term development of the disease [1–6].
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In particular, in order to understand quantitatively the interplay between insulin sensitivity,

pancreatic β-cell responsiveness and β-cell population dynamics, several mathematical models

of the long-term development of Type 2 Diabetes Mellitus (T2DM) have been formulated [7–

14]. Besides the Topp [7] and deWinter [9] models, which were extensively commented upon

in comparison with our previous model [10], in the past few years contributions on long-term

diabetes progression modelling by Bagust [8], Ribbing [11], Boutayeb [12], Palmer [13] and

Ha [14] have appeared in the literature.

Bagust et al. [8] developed a first-principles spreadsheet model linking several clinically

observable physiologic variables, essentially centered on HOMA. No equations or computa-

tional formulas are reported in this publication, and the model cannot therefore be reproduced

in any way nor can the assumptions be quantitatively tested. However, these Authors show

plausible curves of evolution of several clinical indices over long times, specifically highlighting

the eventual therapeutic failure of the sequence of progressively more intensive treatment regi-

mens they simulate (sulfonilureas, metformin, insulin etc.).

Ribbing et al. [11] used the original Topp [7] model to represent the relationship between

fasting glycemia, fasting insulinemia and β-cell mass, as these evolve over the years. In order

to adapt model forecasts to patient subgroups from the GLAD and GALLANT clinical studies,

these Authors introduce at some point in the life of each subject a discrete step-up (OFFSET)

in the fasting glycemia “set-point” for β-cell mass dynamics. Following this regime shift the

patients, over time, become diabetic. In fact, these Authors state that “. . .Reduced insulin sen-

sitivity alone does not cause diabetes. . .”.

Boutayeb et al. [12] introduce yet again another modification to the Topp [7] model by add-

ing an � factor (taking values between 0 and 1) multiplying the glucose toxicity term in Topp’s

model, arguing therefore that with � = 1 their β-cell dynamics equation reduces to that of

Topp, while with � = 0 no genetic predisposition to diabetes exists, no glucose toxicity occurs

and no diabetes develops. They also replace the mass balance equations for glucose and insulin

with more general equations involving Michaelis-Menten terms, without however clarifying

the physiological basis of the new formulation. They finally conduct a local stability study of

the qualitative behavior of the solutions of the model thus defined.

Palmer et al. [13] used our previously published model [10] as a basis for focusing on the

effect of IL-1β (Inter-Leukin -1 β) inhibitors such as anakinra [15, 16]. They derived their

parameter values from available literature sources and came to the conclusion that most of the

effect of IL-1β blockers is likely due to improvement of insulin secretion by existing β-cells,

whereas appreciable changes in β-cell mass could take several years to occur. This is consistent

with the interpretation of the findings by Sloan-Lancaster et al. [17].

Ha et al. [14] again started from Topp’s model[7] adding to it a dose-response shift in glu-

cose-stimulated insulin secretion (governed by a dynamically varying coefficient γ), and an

increase in maximal insulin secretory capacity under persistent hyperglycemia (governed by

a dynamically varying coefficient σ). In this way they introduced an intermediate time-scale

between fast glucose-insulin equilibration and slow diabetes evolution. They calibrated param-

eter values for their model in order to represent the time-course of the disease in experimental

ZDF (Zucker Diabetic Fatty) rats. These Authors reached the conclusion that an emergent

threshold in glycemia separates two stability basins, one (at lower glycemia) leading to com-

pensation, the other (at higher glycemia) leading to manifest diabetes. There are clear similari-

ties between this work and our previous model [10], in that both predict the eventual fast

acceleration of the development of diabetes once insulin hypersecretion slows down, and

both account for the bistability of achievable compensation (in case of normoglycemia and/or

maintained pancreatic reserve) or development of disease (in case of prolonged hyperglycemia

with reserve exhaustion due to glucotoxicity).
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We previously introduced a mathematical model of T2DM [10], which was able to replicate

acceptably well the observed time courses of fasting glycemia and diabetes incidence [18],

when compared quantitatively with the results of the non-intervention group in a large study

of individuals at-risk for T2DM [the Diabetes Prevention Program (DPP) study [19–21]]. In

addition to exploring physiological processes and the natural history of T2DM, such models

can be utilized to predict the long-term effects of pharmacological or non-pharmacological

interventions. To this end, our model was also able to replicate the effects of metformin, trogli-

tazone, and intensive LifeStyle modification arms in the DPP study [18].

One limiting feature of our previous model, as well as other models which have appeared

in the literature [7–14], was that the considered model structure did not allow for an indepen-

dent assessment of post-prandial or post-OGTT (Oral Glucose Tolerance Test) glycemia, and

lacked the ability to represent separately hepatic and peripheral insulin sensitivity. It was felt

that this limitation was of practical importance in the use of the model for physiologically-

based clinical trial simulation in diabetes and the exploration of potential effects of diverse

pharmacologic mechanisms. We have therefore developed a new version of the Diabetes Pro-

gression Model (DPM). In this context, the mathematical approach used to reconcile daily

glucose homeostasis (fast) with compensatory evolution of β-cell population and pancreatic

reserve (slow) in the previous version of DPM (i.e. the consideration that in slow time fast vari-

ables are essentially at equilibrium, while in fast time slow variables are essentially constant)

proved to be insufficient in capturing the possible effects of variable daily glycemia on long-

term compensation mechanisms. Also, in the course of the study leading to the final form

chosen for the new version of the model (DPM15), collateral issues arose, such as the represen-

tation of renal glucose reabsorption, or the possible modeling of Type 1 Diabetes Mellitus

(T1DM) and its therapy. All of the above considerations determined a substantial restructur-

ing of the whole modeling approach, which had the additional benefit of making the model

versatile, allowing us to simulate with it other experimental conditions and perturbations (e.g.

OGTT and Euglycemic Clamp).

The goal of the present work is to detail the assumptions underlying the functional form of

the new model, named DPM15; to justify the numerical values assigned to its parameters; and

to show model forecasts corresponding to all of the endpoints that were recorded in the DPP

study (fasting glycemia and insulinemia, 30-min. glycemia and insulinemia during OGTT,

2-hr glycemia during OGTT).

Materials and methods

The model to be described is named DPM15 since it is the 15th version of Diabetes Progres-

sion Model we built in the ongoing effort to capture the relevant features of the development

of this disease. In the following, the model equations defining the model variables will be intro-

duced and discussed. The model variables and parameters are summarized in Tables 1 and 2

respectively.

In the Parameters table (Table 2) the Value reported refers to the calibrated “baseline”

value, the hypothetical value in the untreated DPP cohort. All DPP treatment arms shared

these same general parameter values except for those specific parameters (Table 3) embodying

the differences between groups induced by the different treatments.

Aspects of the model that are retained from the previous model are discussed here only

briefly. Further details can be found in DeGaetano et al. [10]. This holds in particular for the

choice of parameter values as distilled from the literature or from the adaptation of specific

sub-models to available observations.

A novel fast-slow model of diabetes progression

PLOS ONE | https://doi.org/10.1371/journal.pone.0222833 October 10, 2019 3 / 39

https://doi.org/10.1371/journal.pone.0222833


In the present work, a rather mechanistic, physiologic approach has been followed, explic-

itly computing the daily time-course of glycemia, insulinemia and related variables, at each

step of the numerical integration of the slow system (say, every month), using a model of fast

glucose homeostasis. From this daily portrait, the desired target descriptors of glucose/insulin

control at that moment in slow time may be computed (e.g. average daily insulinemia or glyce-

mic Area Under the Curve AUC after meals), and their value used to affect the further evolu-

tion of the slow pancreatic compensation system. In this way, a kind of alternating-step

Table 1. Variables.

Variable Units Meaning

B [Mc] β-cell population size in Millions β-cells

kBB [/mo] β-cell net replication rate in fraction β-cells per month

μ [/mo] rate constant for additional β-cell mortality

η [/mo] β-cell replication reserve

kXηG [/mo] glucotoxicity (glucose-dependent pancreatic replication reserve decay) as modified by

therapy

kη [/mo2] spontaneous recovery rate of the pancreas

Gf [mM] fasting glycemia

A [%] glycosylated haemoglobin (percent)

If [pM] fasting serum insulin concentration

kXI [/min] apparent first-order elimination rate constant for insulin

kmax
XGI [/min] maximal insulin-dependent tissue glucose uptake rate as modified by therapy

λGI [/pM/mM] hepatic insulin sensitivity (natural value of insulin- and glucose-dependent HGO

suppression) as modified by therapy

kmax
IB [pmol/min/

Mc]
maximal insulin secretion per Million β-cells as modified by therapy

kJS [/min] apparent first-order stomach emptying as modified by therapy

Gf24 [mM] FPG early next day

Gη [#] weighted glycemia toxicity determining η suppression, as fraction of normal

GB [mM] weighted glycemia average stimulating β-cell replication

HomaIR [(μIU/ml)
mM]

homeostasis model assessment index of insulin resistance

HomaB [(μIU/ml)/
mM]

homeostasis model assessment index of β-cell function

Igenicx [(μIU/ml)/
mM]

Insulinogenic index

ClampM1 [mg/kgBW/

min]

Clamp M value first step

ClampM2 [mg/kgBW/

min]

Clamp M value second step

S [mmol] glucose content in the stomach

J [mmol] glucose content in the absorptive bowel (jejunum, ileum)

ra [mmol/min] rate of glucose appearance in the systemic circulation (from the gut)

G [mM] plasma glucose concentration (in fast time)

L [pM] serum glucagon concentration (in fast time)

I [pM] serum insulin concentration (in fast time)

q [mmol/z] density of glucose amount in tubule with respect to normalized tubule length

v [L/z] density of tubular water volume with respect to normalized tubule length

C [mM] concentration of glucose in pre-urine

ur [mmol/min] rate of urinary glucose loss

https://doi.org/10.1371/journal.pone.0222833.t001
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Table 2. Parameters.

Parameter Units Meaning Value

t0 [mo] starting age for numerical integration of slow model, in months 0

tend [mo] final age for numerical integration of slow model, in months 1080

Bmax [Mc] maximal beta-cell population size (carrying capacity) 4000

B0 [Mc] baseline value of B at slow initial time (age t0) 1000

νBG [#] exponent of the Hill function describing replication stimulation by glycemia 2

GB50 [mM] glycemia of half-maximal beta-cell replication stimulation 9

η0 [/mo] baseline value of η at slow initial time (age t0) 0.04

kXηG0 [/mo] baseline value of kXηG at slow initial time (age t0) 0.02

kηendprop [#] Level of kη at the end of life (at tend) as proportion of kη start 0.4

kGG [/mo] rate of convergence of fasting glycemia from start-of-day to end-of-day values 0.4

Gf0 [mM] fasting glycemia at age t0 4.2

kXA [/mo] spontaneous elimination rate constant of (glycosylated) Haemoglobin 0.4

A0 [%] baseline value of A at slow initial time (age t0) 5

VG [L/kg] glucose distribution volume 0.19

VI [L/kg] insulin distribution volume 0.19

W [kg] experimental subject’s body weight 70

kXIstart [/min] apparent first-order elimination rate constant for insulin at baseline (at age t0) 0.05

kXIend [/min] apparent first-order elimination rate constant for insulin at the end of a normal life (e.g. at age 90 years) 0.045

kmax
XGI0 [/min] baseline value of kmax

XGI at slow initial time (age t0) 0.08

k0
XGI0 [/min/pM] baseline value of k0

XGI at slow initial time (age t0) 0.00015

f min
kXGI [#] minimum value possible for kmax

XGI as proportion of its baseline value at age t0 0.05

tkXGIstart [mo] starting time of kmax
XGI decrease 216

νkXGI [#] exponent for kmax
XGI decrease 3

tkXGI50 [mo] time of half-maximal kmax
XGI decrease 800

λGI0 [/pM/mM] baseline value of λGI at slow initial time (age t0) 0.015

f min
lGI [#] minimum value possible for λGI as proportion of its baseline value at age t0 0.05

tλGIstart [mo] starting time of λGI decrease 216

νλGI [#] exponent for λGI decrease 8

tλGI50 [mo] time of half-maximal λGI decrease 550

kmax
IB0

[pmol/min /Mc] baseline value of kmax
IB at slow initial time (age t0) 0.5

f min
kIB [#] minimum value possible for kmax

IB as proportion of its baseline value at age t0 0.25

tkIBstart [mo] starting time of kmax
IB decrease 216

νkIB [#] exponent for kmax
IB decrease 2.5

tkIB50 [mo] time of half-maximal kmax
IB decrease 950

kJS0 [/min] baseline value of kJS at slow initial time (age t0) 0.0235

αLyKxgi [/mo] rate of onset of effect of Ly on kXGI 0.1

βLyKxgi [/mo] rate of decay of effect of Ly on kXGI 0.009

LyKxgiCurr [#] maximal effect of Ly therapy as proportional increase of kXGI above current level. 0

αLyLamgi [/mo] rate of onset of effect of Ly on λGI 0.3

βLyLamgi [/mo] rate of decay of effect of Ly on λGI 0.01

LyLamgiCurr [#] maximal effect of Ly therapy as proportional increase of λGI above current level. 0

αLyKjs [/mo] rate of onset of effect of Ly on kJS 0.05

βLyKjs [/mo] rate of decay of effect of Ly on kJS 0.002

LyKJS [#] Effect of Ly therapy on gastric emptying rate kJS as fraction of current value, when positive accelerates gastric emptying 0

τ0 [min] starting time for numerical integration of fast model, in minutes after midnight 360

τend [min] final time for numerical integration of fast model, in minutes 1800

τ1 [min] time of breakfast in minutes after midnight 420

(Continued)

A novel fast-slow model of diabetes progression

PLOS ONE | https://doi.org/10.1371/journal.pone.0222833 October 10, 2019 5 / 39

https://doi.org/10.1371/journal.pone.0222833


solution is obtained: the overall compensation status as reflected by the current values of the

slow model variables (e.g. β-cell mass) is used as framework for the reconstruction of the daily

profiles of fast model variables. In turn, fast variables can impact slow variables (e.g. potential

effects of daily glycemia on β-cell replication) and these effects are allowed to integrate over

another slow time interval. The model structure described above portrays explicitly the inter-

play of a slow model for the evolution of pancreatic compensation and changes in insulin

sensitivity, with a fast model for immediate glucose/insulin homeostasis. The possibility of

availing oneself of a (simplified but) complete description of glucose homeostasis at any time

in the life of the subject allows the investigator to study new issues, which a solely slow model

Table 2. (Continued)

Parameter Units Meaning Value

Mgluc

1
[mmol] breakfast contribution to circulating glucose 417

τ2 [min] time of lunch in minutes after midnight 720

Mgluc

2
[mmol] lunch contribution to circulating glucose 280

τ3 [min] time of dinner in minutes after midnight 1080

Mgluc

3
[mmol] dinner contribution to circulating glucose 280

kmax
Xg brox [mmol /kgBW

/min]

maximal brain glucose oxidation 0.0059

Gbrox50 [mM] glycemia of half-maximal brain glucose oxidation 0.5

kGJ [/min] transfer rate constant from intestine to plasma, absorption rate 0.025

fGJ [#] proportion of absorbed nutrients entering the circulation 0.9

kXG [/min] first-order insulin-independent glucose tissue uptake rate 0.001

kmax
GI [mmol /min] maximal rate of insulin-dependent hepatic glucose production 0.75

LG50 [pM] glucagon concentration of half-maximal stimulation of gluconeogenesis or glycogen lysis 0.05

L0 [pM] fasting Glucagon plasma concentration 15

kXL [/min] first-order glucagon elimination rate from plasma 0.04

f min
LG [#] minimum possible value for glucagon secretion rate as proportion of its max value at zero glycemia 0.15

λLG [/mM] exponential rate of decay of glucagon secretion with increasing glycemia 0.55

fIJ [#] maximum jejunal glucose content additional effect (as proportion of plasma glucose effect) towards insulin secretion by

pancreas, max incretineffect

1.15

JG50 [mmol] jejunal glucose content at which incretin effect is half-maximal 200

νIG [#] exponent for increase in β-cell-mass-specific insulin secretion rate with increasing glycemia 3

GI50 [mM] glycemia of half-maximal β-cell-mass-specific insulin secretion rate 14.4

ClInulin [L/kgBW /min] Inulin clearance or glomerular filtration rate 0.0018

Furine [L/kgBW /min] Urinary flow 0.00002

Du [/z2] tubular glucose diffusion coefficient 0

kmax
GU [mmol /kgBW

/min]

maximal rate of glucose transfer from pre-urine to plasma (glucose reabsorption) 0.027

CGU50 [mM] tubular glucose concentration of half-maximal transport 19

λVZ [/z] Exponent for decay of water or volume flow along tubule 8

λQZ [/z] Exponent for decay of glucose reabsorption along tubule 7

If0 [pM] fasting insulinemia at age t0 19.8

IKXGI50 [pM] insulinemia of haf-maximal effect on peripheral tissue glucose uptake 333

kmax
GL [mmol /min] maximal rate of glucagon-dependent, treatment-insensitive hepatic glucose production 0.0685

kmax
LG [pM/min] maximal rate of glucose-dependent glucagon secretion effect on glucagon concentration 2.56

kη start [/mo2] spontaneous recovery rate of the pancreas at t0 0.00085

kmin
BB [/mo] minimum value of the replication rate kBB -0.0104

kAG [%/mo /mM] rate constant of production of glycosylated haemoglobin from circulating glucose 0.395

https://doi.org/10.1371/journal.pone.0222833.t002
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could not address: such are, for instance, the implications of assuming β-cell glucose toxicity

to be due to elevated peak rather than average glycemias. Another new issue that can be

addressed by this change of strategy is that of explicitly modeling, at any given time in the

patients life, some clinical indices (e.g. HOMA-IR and HOMA-B) and the expected response

of the subject to some commonly used experimental perturbation procedures, such as the

Intra-Venous Glucose Tolerance Test (IVGTT), the OGTT or the Euglycemic Hyperinsuline-

mic Clamp (EHC). In this way the investigator has the possibility of correlating directly

the hypothesized lifetime evolution with observed experimental measures and commonly

employed clinical indices.

Given the slow-fast structure of the model, in order to avoid confusion when referring to

“time”, the letter t (months) has been reserved for slow time, indicating the evolution of overall

compensation on a scale of months to years, while the letter τ (minutes) has been used to indi-

cate the evolution of the glucose homeostasis mechanism after acute perturbations such as

meals.

Slow model

β-cell mass (B). Eq 1 defines the variation of the β-cell population B as depending on a

(variable) net replication coefficient kBB and on a possible additional coefficient of β-cell mor-

tality μ, through which it is possible, for instance, to represent the early auto-immune develop-

ment of T1DM or the postulated cytotoxic effects of cytokines or lipid species in T2DM.

Besides the introduction of μ, the form of the equation differs from the previous model in that

a limiting ‘carrying capacity’ for B has been introduced, transforming the previous exponential

model [10] into the present logistic model. The value of the carrying capacity Bmax has been set

at 4 billion cells, i.e. four times the normal value of approximately 1 billion β-cells previously

estimated on the basis of several literature sources [22–27] and assumptions about cell size.

Pregnancy and obesity may be associated with a doubling of β-cell mass [28, 29]. A maximal

four-fold increase does not seem unreasonable and may allow ample space for normal varia-

tion.

dBðtÞ
dt
¼ kBB Z; GBð Þ B 1 �

B
Bmax

� �

� mB ; B t0ð Þ ¼ B0 ð1Þ

β-cell net replication rate (kBB). A fundamental assumption of the present model is the

dual effect of glycemia on β-cell replication: β-cell population dynamics is affected by hyper-

glycemia through both a direct short-term stimulation [30–32] and an indirect longer-term

inhibition of net replication, possibly due to glucose toxicity “exhausting” β-cell replication

reserve [22, 33–36]. The same assumption underlies our previous model [10] and is similar to

what was postulated by Topp et al. [7].

Table 3. Parameter value configurations.

Parameter Units DPP no treatment DPP Placebo DPP LifeStyle DPP Metformin

αLyKxgi [/mo] 0.1 0.03 0.1 0.03

βLyKxgi [/mo] 0.009 0.012 0.009 0.012

LyKxgiCurr [#] 0 2.3 4.2 2.3

αLyLamgi [/mo] 0.3 0.3 0.5 0.3

βLyLamgi [/mo] 0.01 0.025 0.03 0.022

LyLamgiCurr [#] 0 0.2 1.2 1.2

LyKJS [#] 0 0.05 -0.05 0.1

https://doi.org/10.1371/journal.pone.0222833.t003

A novel fast-slow model of diabetes progression

PLOS ONE | https://doi.org/10.1371/journal.pone.0222833 October 10, 2019 7 / 39

https://doi.org/10.1371/journal.pone.0222833.t003
https://doi.org/10.1371/journal.pone.0222833


Eq 2 relates the replication coefficient kBB (β-cell net replication rate) with (short-term) gly-

cemic stimulation:

kBB Z;GBð Þ ¼ kmin
BB þ Z

GnBG
B

GnBG
B50 þ GnBG

B
; kBB t0ð Þ ¼ kBB Z0;GB0ð Þ ¼ 0 ð2Þ

The net replication rate is increased by hyperglycemia (with a nonlinear, saturating mecha-

nism depending on pancreatic replication reserve η) above a minimum rate kmin
BB , taken to be

negative. In this way, allowance is made for both positive and negative oscillations of β-cell net

replication rate, translating into increments and decrements of β-cell mass. Notice that in this

formulation GB is some function assumed to best describe the aggregated effect of the daily gly-

cemic variations in stimulating β-cell replication: for the current implementation of the model,

GB has been taken simply as average daily glycemia.

β-cell replication reserve (η). The possible excursion of the β-cell net replication rate kBB
has been termed Z ¼ kmax

BB � kmin
BB . It is non-negative and is governed by Eq 3:

d ZðtÞ
dt
¼ � kXZG GZ Z þ kZ; Z t0ð Þ ¼ Z0

ð3Þ

This excursion or range is a measure of the maximal replication rate of the pancreatic β-

cells as depending on the current state of pancreatic “health”: in other words, it represents

pancreatic β-cell replication reserve. It has some starting value η0 and then increases to a

maximum ηmax or decreases towards zero depending on glycemia levels. Hyperglycemia is

supposed to be toxic to β-cell replication [33, 34], hence sustained hyperglycemia will lead to

a decrease of η. Notice that setting kη at zero, we would assert that pancreatic reserve neces-

sarily decreases with age.

The function Gη is computed as the integrated mean over 24 hours (computed from the fast

daily model) of the glucose toxicity produced by the varying glucose concentrations through-

out the day. Glucose toxicity is monotonically increasing with glycemia, has been calibrated

on TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) data [37, 38] and

indicates η suppression as a fraction of normal (normal = 1 = 100% at fixed 5.5 mM glycemia).

In other words, at each instant in fast time the current glycemia determines the current glucose

toxicity following Maedler et al. [37, 38] (according to an increasing, saturating Hill function

with 0 toxicity at 0 mM glycemia, toxicity 1 at 5.5 mM, toxicity 3.5 at 30 mM and asymptotical

toxicity 4 at infinite glycemia); toxicities throughout the day are integrated and then divided

by the day’s duration in order to obtain the integrated average toxicity Gη for that day.

Pancreatic glucose toxicity. In Eq 3, kXηG is the coefficient expressing the intensity of

pancreatic glucose toxicity. It may be allowed to vary over time, starting at some value kXηG0

and being possibly modified by therapy.

Glycemia-independent β-cell mortality rate (μ). Independent factors, such as inflamma-

tion or auto-immune processes, may contribute to β-cell mortality independently of glycemic

levels. Eq 4 allows the expression of this excess mortality rate μ over time, starting from a level

μ0 (assumed to be zero in health) and progressing sigmoidally towards a maximum additional

mortality rate μmax:

m tð Þ ¼
m0 þ mmax � m0ð Þ

ðt � tm startÞ
nm

ðtm 50 � tm startÞ
nmþ ðt � tm startÞ

nm ; t � tm start

m0 otherwise

8
<

:
ð4Þ
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This equation is used, for instance, when using the model to represent the time course of

Type 1 Diabetes Mellitus (T1DM), when additional β-cell mortality leads to rapid disappear-

ance of most of the β-cell population over a relatively short time period.

Spontaneous pancreatic recovery rate. In Eq 5, kη indicates the current ability of the pan-

creas to increase (recover) its β-cell proliferation rate. This ability is assumed to vary linearly

between t0 and tend (from young age to end of life) so as to allow the possibility of representing

non-constant spontaneous pancreatic recovery rate throughout the subject’s lifetime. This is of

interest when considering that natural aging may reduce, over time, β-cell proliferative capac-

ity [39, 40].

kZ tð Þ ¼ kZstart 1 þ
t � t0

tend � t0
ðkZ end prop � 1Þ

� �

ð5Þ

Fasting plasma glucose concentration. Given the current slow state, a Daily run of

the fast model, inclusive of meals etc., when starting at glycemia Gf calculates glycemia Gf24

exactly 24 hours later. In the long run therefore, Gf will tend to the value Gf24 over slow

time, and this is assumed in the model to occur at a rate kGG. In general, we do not expect Gf

to be equilibrated within a day, in particular when glycemia is in a rising phase (e.g. in the

pre-diabetic state). Writing Eq 6 we recognize that slow Gf(t) may differ from the corre-

sponding slow Gf24(t) and assume that Gf tends to Gf24 (in the pre-diabetic state example, we

assume it increases towards Gf24) with rate kGG. Equilibrium may in fact never be attained,

because as Gf converges to Gf24, Gf24 itself may shift due to the concurrent change in slow

model variables. It is to be noticed here how the concept of the convergence of Gf to Gf24

provides the link between fast time and slow time glycemia, so that changes in Gf24 due to

fast-time dynamics in fact drive the evolution of the whole system of glucose homeostasis in

slow time.

dGf ðtÞ
dt

¼ kGG Gf 24 � Gf

� �
; Gf t0ð Þ ¼ Gf 0

ð6Þ

Fasting serum insulin concentration. The fasting serum insulin concentration is com-

puted as the fast-equilibrium value at current β-cell mass and fasting glycemia values. The

function c
gluc
I ðB;GÞ indicates glucose-driven pancreatic insulin secretion at given β-cell

mass B and driving glycemia G:

If tð Þ ¼
c

gluc
I ðBðtÞ; Gf ðtÞÞ

VI W kXI
; If t0ð Þ ¼ If 0 ð7Þ

c
gluc
I B;Gð Þ ¼ kmax

IB B
GnIG

GnIG
I50 þ GnIG

ð8Þ

In Eq 8 insulin secretion depends therefore on current β-cell mass B, on kmax
IB , the glucose

sensitivity of the existing β-cells, and on a saturating stimulus provided by increasing glucose

concentrations.

Difference of exponentials. In the following, we use a standard difference-of-exponen-

tials functional form to express the time-course of the action of a given therapy on some

control variable, i.e. on some key state variable determining the evolution of the whole sys-

tem:

fexpðAmpl; a; b; tÞ ¼ Ampl
ðe� b t � e� a tÞ

peakða; bÞ
; t � 0 ð9Þ
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peakða; bÞ ¼
�
e� b tpeakða;bÞ � e� a tpeakða;bÞ

�
ð10Þ

tpeak a;bð Þ ¼
log ða=bÞ
a � b

ð11Þ

The difference of exponentials defines a curve starting from 0 at time 0, rising to a peak

amplitude Ampl and redescending to zero (α> β) as t!1, with respective rates of increase

and decrease defined by the relative values of α and β, the larger the α the faster the rise, the

larger the β the faster the fall.

Using the difference of exponential formula, it is possible to specify a progressive rise of the

effect of therapy on some control variable, starting at some therapy initiation time tthx.
Notice how, by changing the values of α and β appropriately, it is possible to specify very

different time courses of the effect: for instance, with α very large and β very small, the differ-

ence of exponentials can approximate a step function, with immediate increase and essentially

permanent effect.

Insulin secretory function. We indicate with ~kmax
IB the “natural” maximal insulin produc-

tion rate per million β-cells, which can be made to vary (decrease) over time in order to express

a possible decay of functional secreting ability:

~kmax
IB ¼

kmax
IB0

1 � 1 � f min
kIB

� �
ðt� tkIBstartÞ

nkIB

ðtkIB50 � tkIBstartÞ
nkIB þ ðt� tkIBstartÞ

nkIB

� �
; t > tkIBstart

kmax
IB0

; t � tkIBstart

8
<

:
ð12Þ

so that tkIB is, for any value of νkIB, the time at which ~kmax
IB has changed by 50% of kmax

IB ð1 � f min
kIB Þ.

In the present work, we assume insulin secretion ability to (possibly) decrease over time: by

suitably varying the parameters, the model may represent insulin secretory function becoming

severely impaired at different epochs in the subject’s lifetime (early, late or never, by increasing

tkIB50), changing less or more suddenly (by increasing νkIB), beginning to deteriorate earlier or

later (by increasing tkIBstart), starting with a smaller or larger value (kmax
IB ) and attaining eventu-

ally a smaller or larger proportion of the initial value (f min
kIB ). This “natural” value ~kmax

IB may then

be modified by therapy to yield the actual current value kmax
IB .

Insulin elimination rate. Over time, the apparent elimination rate of insulin from serum

may be supposed to vary. In fact, it is presumed to be slowly decreasing over lifetime [41] (i.e.

kXIend< kXIstart):

kXI tð Þ ¼ kXIstart þ
t � t0

tend � t0
kXIend � kXIstartð Þ ð13Þ

Peripheral insulin sensitivity. In order to represent variable maximal insulin-dependent

tissue glucose uptake (Peripheral Glucose Disposition, PGD) rate, we may take the “natural”

value of kmax
XGI to be represented by:

~kmax
XGI ¼

kmax
XGI0 1 � 1 � f min

kXGI

� �
ðt� tkXGIstartÞ

nkXGI

ðtkXGI50� tkXGIstartÞ
nkXGI þ ðt� tkXGIstartÞ

nkXGI

� �
; t > tkXGIstart

kmax
XGI0 ; t � tkXGIstart

8
<

:
ð14Þ

Expressing the possible decay of insulin sensitivity over time in the same form as that used

above for the time-course of insulin secretory function offers a large flexibility in the kind of
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behavior that can be represented (early or late start, fast or slow decrement, large or small

eventually preserved function etc.). The “natural” value of peripheral insulin sensitivity ~kmax
XGI ,

determined by a combination of genetic factors, lifestyle etc., is then possibly modified by ther-

apy, with effect expressed by fexp(LyKxgiCurr, αLyKxgi, βLyKxgi, t − tthx) at any given time after

the initiation of therapy, so as to yield the actual current value kmax
XGI .

We note that hepatic glucose uptake is here comprised in the total Peripheral Glucose Dis-

position, and is considered to be insulin sensitive in the normal individual. There has been

debate about this point. It is true that the hepatic glucose transporter (GLUT2) is not respon-

sive to insulin [42]. It is also true that some studies have not shown stimulation of hepatic

glucose uptake by hyperinsulinemia. Nevertheless, compelling evidence exists for insulin stim-

ulation of hepatic glucose uptake [43–45]. While the assumption, that the effect of insulin on

hepatic (or splanchnic) glucose uptake is similar to insulin-dependent glucose disposition in

other tissues, is clearly an oversimplification of the differential mechanisms of insulin stimu-

lated glucose uptake in liver and peripheral tissues, the above literature supports similar effects

and overlapping concentration-responses in liver and other insulin-responsive tissues. The

assumption, that we may model with a single overall effect the composition of peripheral and

hepatic glucose uptake, seems not unreasonable in the light of the above considerations.

Hepatic insulin sensitivity. In the present version of the model, “Hepatic Insulin Sensitiv-
ity” refers to the action of insulin to decrease hepatic glucose output (HGO) and also kidney

glucose output to the extent that it is significant. More specifically, hepatic insulin sensitivity

(λGI) is formalized as the rate of the exponential decay of hepatic glucose output with increas-

ing glycemia and insulinemia (see Eq 20). This relationship is supported by experimental

observations [46, 47]. Note that this expression only reflects the effect of insulin on hepatic glu-

cose production and not on hepatic glucose uptake (so that HGO is always non-negative in

our model). Instead, the effect of insulin on hepatic (or splanchnic) glucose uptake is assumed

to be similar to insulin-dependent glucose disposition in other tissues and is therefore incorpo-

rated in the kXGI (peripheral insulin sensitivity) term. The study by Basu and colleagues [45]

supports this assumption.

In order to represent variable hepatic insulin sensitivity (decreasing over slow time), we

may take its “natural” value ~lGI to be represented by:

~lGI ¼
lGI0 1 � 1 � f min

lGI

� �
ðt� tlGIstartÞ

nlGI

ðtlGI50 � tlGIstartÞ
nlGI þ ðt� tlGIstartÞ

nlGI

� �
; t > tlGIstart

lGI0 ; t � tlGIstart

8
<

:
ð15Þ

so that tλGI50 is, for any value of νλGI, the time at which ~lGI has decreased by 50% of

lGI0ð1 � f min
lGI Þ. This “natural” value of hepatic insulin sensitivity ~lGI is also possibly modified

by therapy to yield the actual current value λGI, depending on therapy effect fexp(LyLamgiCurr,

αLyLamgi, βLyLamgi, t − tthx).
Stomach emptying rate. kJS is the rate expressing apparent first-order stomach emptying.

In order to allow for the possibility that its value changes over time (e.g. it may be affected by

drugs slowing gastric emptying), it is represented as a variable rather than a parameter. Its

healthy constant average value is indicated by

~kJS ¼ kJS0
ð16Þ

and may be modified by therapy to yield the actual current value kJS, depending on therapy

effect fexp(LyKJS, αLyKjs, βLyKjs, t − tthx).
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We therefore endowed the model with the ability to represent in general, for each treatment

and for each affected control variable, arbitrary rates of onset of effect and arbitrary rates of

loss of the same. In the current version of the model, the five control variables for which this

scheme has been implemented are η (β-cell replication reserve restoration), kXGI (peripheral

insulin sensitivity), λGI (hepatic insulin sensitivity), kIB (insulin secretory function)and kJS (glu-

cose absorption rate from the GI tract).

Daily model

In order to describe the fast variations of glycemia over minutes, across a time span typically

not exceeding the length of one day, a fast, “Daily” model is utilized. The present version of the

fast model borrows heavily from previous rapid glucose-insulin control models, which proved

to be effective and parsimonious representations of fast dynamics during acute perturbation

experiments (both Intra-Venous and Oral Glucose Tolerance Tests, IVGTT and OGTT) [48–

51]. As mentioned above, we denote “fast” time with the greek letter τ in order to underscore

the difference between “fast” variables and slowly varying phenomena, which change over the

months of “slow” time t, as in the previous equations.

Gastrointestinal glucose transit and absorption. The variation of S(τ), glucose content

in the stomach, is described as a simple first-order linear elimination after impulsive loading

corresponding to the meals:

dS
dt
¼ � kJS S þ

X3

m¼1

dðt � tmÞM
gluc

m ; Sðt0Þ ¼ 0 ð17Þ

Similarly, the rate of change of glucose content in the intestine (indicated as “Jejunum”, J),

based on delivery from the stomach and exit into the circulation, is expressed as a simple linear

ODE:

dJ
dt
¼ kJS S � kGJ J; Jðt0Þ ¼ 0 ð18Þ

The rate of glucose appearance in the systemic circulation, following intestinal absorption,

is a fraction of the disappearance rate of glucose from the “jejunum” (since some of the

absorbed glucose is either utilized or stored by the gut and/or liver):

ra ¼ fGJ kGJ J ð19Þ

Fast plasma glucose concentration. It is first of all to be clarified that “Fast” is here meant

as the opposite of “Slow” and not as characterizing an early morning or otherwise “fasted”

state. The point here is that while some characteristic daily glucose concentrations, such as for

instance early-morning fasting glycemia Gf(t), vary over the months of a lifetime, glucose con-

centration G(τ) can also be thought of as varying, minute-by-minute, over the period of an

experiment or over a given day in the life of the individual. The mass balance considerations

determining the evolution of plasma glucose concentration over a given day are described by

the following Equation, contemplating insulin-dependent glucose elimination (saturating),

possible insulin-independent linear glucose elimination, and contributions to the variations

of plasma glycemia deriving from liver gluconeogenesis and glycogen lysis, from the action of

glucagon (L), from brain glucose oxidation, from the appearance of foodstuff-derived glucose,
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and from the loss of glucose in the urine:

dG
dt
¼ � kmax

XGI
I

I þ IKXGI50

G � kXG G

þ
1

VGW
kmax
GI e� lGIIG þ kmax

GL
L

LG50 þ L
� W kmax

Xg brox
G

Gbrox 50 þ G
þ ra � ur

� �

;

Gðt0Þ ¼ Gf ðtÞ

ð20Þ

At any slow time t, we assume we start our daily evolution from a fasting glycemia value

Gf(t). Peripheral insulin sensitivity depends on the prevailing levels of insulin (in the sense

that the marginal utility of an increase in insulin decreases as levels of the hormone increase).

When considering tissue insulin sensitivity to be nonlinearly increasing with increasing insu-

lin concentration, we wish in any case to retain the common notion of a (linear) insulin sensi-

tivity index at zero insulinemia, k0
XGI , with the same measurement units and with comparable

numerical values with respect to previously published insulin sensitivity indices (see Panunzi

et al. [50] for a comparative discussion of two such indices). In the present formulation, k0
XGI

expresses the slope of the non-linearly increasing peripheral tissue insulin sensitivity at I = 0.

Its value should be around 1.e − 4[/min/pM] for normal individuals [48, 50] and somewhat

higher for fit, athletic individuals. At a value k0
XGI ¼ 1:e � 4 =min=pM and with a reason-

able insulinemia at half-effect IKXGI50 ¼
kmax
XGI0
k0
XGI
¼ 500 pM [52] we find a current value

kmax
XGI0 ¼ IKXGI50 k0

XGI ¼ 500 � 1:e � 4 ¼ 0:05 =min, which seems very reasonable (i.e.

maximum tissue uptake of glucose at hyperinsulinization, or in other words maximal clear-

ance of glucose from plasma at extremely high levels of insulin, is approximately 5%/min).

We could directly extend the model by considering different meal compositions at break-

fast, lunch and dinner, with ensuing differences in gastric emptying rate and glucose absorp-

tion rate. This could be attained by considering Nfoods types of foodstuff indexed by j at each

meal m: different foodstuffs would load separate Sj and Jj compartments, with transit governed

by Mgluc
j , fGJj, kGJj, τj, and kJSj parameters. For simplicity, the uniform meal composition formu-

lation is retained. The ur renal glucose elimination rate is provided by the concurrently run-

ning nephron model (see below).

Fast serum glucagon concentration. The fast model contemplates glucagon as an index

of the overall counterregulatory response.

dL
dt
¼ � kXL Lþ kmax

LG f min
LG
þ ð1 � f min

LG
Þe� lLG G

� �
; Lðt0Þ ¼ L0

ð21Þ

Glucagon plasma concentration (L) is supposed to undergo first-order linear elimination

[53, 54]. This has in fact been demonstrated to be true in man [53] as well as in dogs, with a

suggestion that the process may be saturable at pharmacologic concentrations [55]. Glucagon

plasma concentration has also been shown to increase above some minimum (determined by

some measure of continuous production), in an exponentially increasing fashion as glycemia

decreases: a large set of experimental data were fitted to show this relationship [56]. We note

that there is literature support for the idea that insulin cannot override hypoglycemia in sup-

pressing glucagon secretion [57] (Cavallo-Perin et al. [58] showed only 20 − 40% suppression

of fasting glucagon levels with euglycemic clamps when plasma insulin was increased to 350

pM, and similarly Elahi et al. when using 700 pM [59]). A determinant role for insulin would

seem to be indicated by the observation of hyperinsulinemic coma with low glucose and gluca-

gon concentrations: the present form of the model has however been considered synthetic and
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sufficient to describe relative insulin deficiency situations, such as occur with the development

of T2DM. Clearly, insulinomas and similar conditions would be poorly represented by the

current form of Eq 21. Notice also that we assume the dynamics of glucagon to remain

unchanged over slow time. Even so, there are situations [60] where glucagon release is substan-

tially reduced in T1DM, though the mechanisms for this are not entirely clear [61].

Fast serum insulin concentration. Insulin kinetics in the short period may be approxi-

mated, following mass-balance considerations as

dI
dt
¼ � kXI I þ

c
gluc
I B; G 1þ fIJ

J
JG50þJ

� �h i� �

VI W
; Iðt0Þ ¼ If tð Þ ð22Þ

with c
gluc
I given by Eq 8.

Insulin is assumed to be eliminated from plasma in a first-order, linear fashion. The

entry of insulin into plasma derives from glucose-driven, saturable pancreatic secretion. For

the purpose of the present model we do not distinguish peripheral from portal insulin con-

centration, therefore hepatic insulin action will be made to depend on peripheral insulin

concentration itself (whose effect will be apparently larger with larger hepatic insulin extrac-

tion). The equations above express insulin secretion as depending linearly on the currently

available β-cell mass and nonlinearly, in a saturable way, on glycemia. Notice that, in order

to represent incretin contribution to the stimulation of insulin secretion, the effectiveness

of glycemia is supplemented (saturably) by current intestinal glucose contents, via a propor-

tionality constant fIJ.

Nephron model

The concept of Renal Glucose Threshold is well rooted in common medical and diabetological

practice. According to this concept, renal elimination of glucose occurs when, glycemia having

exceeded some threshold Gthresh, glucose delivery to the nephrons exceeds their reabsorptive

ability. While physiologically very plausible, the concept has unfortunately been translated,

typically, into a mathematical formulation stating that if at some time τ glycemia G(τ)>Gthresh,

then at that time there will be glucose loss in the urine at a rate proportional to the difference

G(τ) − Gthresh. The problems arising from this simplistic interpretation of the glucose threshold

principle have been treated in detail elsewhere [62]: in the same work, an alternative, partial

differential formulation of the principle, has been proposed, which does not suffer from the

problems described. In the current context we therefore use the same partial differential equa-

tions approach used in that publication in order to build a simple nephron sub-model, able to

realistically represent glucose elimination in the urine produced by glycemia oscillations over

time. For the reasons explained in detail in the work referred to above [62], we believe that the

simpler renal-threshold sub-model would predict glucose renal elimination inappropriately

over the very glycemic range around the supposed threshold, range that is repeatedly entered

by glucose concentrations in the course of the day, particularly in insulin-resistant subjects.

Having a more advanced nephron sub-model available, we took advantage of it, incorporating

it in the overall disease progression model. It is to be noticed that in the nephron model the

considered time τ in minutes is the same “fast” time as in the Daily model above: in fact, the

Nephron and Daily sub-models progress in parallel through a typical short time period (a

few hours), with the Daily model determining at each discretization step the current glycemia,

used by the Nephron model to determine at each step the corresponding urinary elimination,

used then again by the Daily sub-model to determine glycemia variations and the resulting gly-

cemia, and so on.
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Density q of glucose at time τ at nephron level z. The nephron model considers amounts

of glucose in small (infinitesimal) segments of an idealized single tubule, representing the col-

lection of glucose-reabsorbing proximal and distal nephron tubular sections. Henceforth, all

quantities are to be understood as referred to Kg body weight. The density q of glucose quan-

tity Q with respect to normalized tubule length z (z 2 [0, 1]) varies over time and along the

tubule, q = q(τ, z):

dq
dt ¼ DU

@2 C
@ z2 � �U zð Þ @ C

@ z �
kmax
GU
1
lQZ e� lQZz C

CGU50 þ C ;

qð0; zÞ ¼ G0 vðzÞ e� lQZz ;

qðt; 0Þ ¼ GðtÞ vð0Þ :

ð23Þ

The variation of glucose density over time at some point z in the tubule is given in general

by a transport equation with diffusion DU along the tubule, with advection driven by the flow-

rate ϕU (variable along the tubule), and by saturable extraction from the tubule lumen operated

by lining cells. All three effects are expressed in terms of concentration C = Q/V = q/v. The

notation
kmax
GU
1

indicates that the maximum total transport by the tubule is to be divided by the

total z-length of the tubule itself, which in the present normalized case equals exactly 1. We

further assume that glucose reabsorptive capacity is essentially zero at the end of the tubule,

so that e� lQZ �1 � 0 and
R 1

0
lQZ e� lQZ z dz � 1, so that kmax

GU does indeed represent the maximum

glucose absorptive capacity of the entire tubule system.

In this formalization, the volume density v (akin to the total tubular cross-sectional area at

some level in the tubular system) is defined as the density of water amount with respect to nor-

malized tubule length, reflecting progressive water reabsorption along the nephron, and is pro-

portional to 180 L/day ultrafiltration at z = 0 and to 2 L/day urine output at z = 1 (in a 70-kg

person). An approximation to the volume density profile v(z) at given depths down the renal

tubules is obtained by hypothesizing an exponential volume decay over the length of the

tubule, with entry proportional to the flow of ultrafiltrate and exit proportional to the flow of

urine:

v zð Þ ¼
ðClInulin � FurineÞ e� lVZz þ Furine

r
ð24Þ

where r is the apparent normalized rate of movement of ultrafiltrate along the tubule, set to

r ¼ 1

T, with T the hypothesized time of permanence of ultrafiltrate in the tubules. With this

notation, the flow-rate ϕU(z) is simply ϕU(z) = rv(z). Notice that for λVZ sufficiently large,

ϕU(1) is arbitrarily close to Furine.

The initialization profile q(0, z) is only a first rough (exponentially decaying) approxima-

tion to the quantity of glucose in tubular water: before starting with the Daily / Nephron

numerical integration, the Nephron model is run at G = G0 for as long as necessary to reach

convergence in the q profile. The boundary condition q(τ, 0), on the other hand, is given by

the glucose concentration in plasma at time τ times the volume density at z = 0.

Given quantity and volume, the concentration C of glucose in the pre-urine is algebraically

determined:

C t; zð Þ ¼
qðt; zÞ
vðzÞ

ð25Þ

Finally, the rate of glucose elimination in the individual at time t is given by the most distal/

caudal (pre-)urine glucose concentration (i.e. glucose concentration at z = 1) times the total
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urinary flow rate:

urðtÞ ¼ W � Cðt; 1Þ � Furine ð26Þ

Index variables

One fundamental assumption of the present model is that the variation over months and years

of the “slow” homeostasis variables (such as β-cell population size or pancreatic β-cell replica-

tion reserve) may depend not only on monthly averages of fast variables (such as glycemia or

insulinemia), but also on other slow functions of these same fast variables, possibly derived

from the explicit computation of the time course of the fast variables over a representative day.

Examples of these slow indices derived from fast dynamics and possibly affecting disease pro-

gression are average glycemia, glycemic variability, or post-meal glycemic peaks. Commonly

used clinical indices such as the HOMA-IR or the EHC M-values are also computed as slow

index variables. The weighted daily glucose toxicity determining η suppression, as fraction of

normal (normal = 100% at fixed 5.5 mM glycemia) derived from the TUNEL [37] study, also

belongs to this class. The definition of some such index variables is straightforward, assuming

the daily time course of the necessary fast variables to be available: mean daily glycemia and

insulinemia; their standard deviations, minima and maxima; their value at relevant times (e.g.

baseline, 30 min, 60 min, 2 hours after administration of the glucose bolus during an Oral Glu-

cose Tolerance Test). Given the availability of the necessary ingredients, the computation of

some clinically relevant slow indices (HOMA-IR, HOMA-B, insulinogenic Index) is also

straightforward. Finally, a two-step Euglycemic Hyperinsulinemic Clamp experiment (120

min at 100 pM insulinemia, followed by 120 min at 420 pM insulinemia, replicating conditions

that have been used previously to assess respectively hepatic and peripheral insulin sensitivity)

can be conducted on the virtual subject at any time, and the corresponding low- and high-

insulinization Glucose Infusion Rate (GIR) values, expressed in mg/kgBW/min are also slow

indices of interest and are indicated as ClampM1 and ClampM2.

Parameter assessment

The model proposed here combines disease progression over slow time with daily absorption,

metabolism and renal elimination in fast time. Parameter values for the slow time component

have been derived from the in-depth assessment undertaken with the publication of the

previous model [10] wherever applicable. This includes fasting glycemias and insulinemias;

deduced characteristics of β-cell replication (but see also [18] and above comments on the

switch from linear to saturable model of β-cell population dynamics); pancreatic β-cell replica-

tion reserve capacity; glucose toxicity; insulin secretion (per millon β-cells) and elimination

rates; glucose effectiveness; production and decay rates of glycosylated haemoglobin. However,

the model introduces separate insulin sensitivity components for hepatic (and possibly renal)

and peripheral (mainly referred to muscle and adipose tissue) insulin sensitivity, and assumes

that both components may vary over slow time (years or decades) depending on genetics, life-

style, intervening diseases etc.

Furthermore, insulin independent glucose clearance (mostly due to brain glucose con-

sumption) has been explicitly introduced in the fast glycemia equation.

Parameter value assessment, unless specifically discussed below, follows the same approach

as delineated for the previous model [10]. The majority of parameters were obtained from in

vivo studies on adult subjects, pediatric or developmental data were not considered. Typical

values and ranges at time t0 were generally taken from data obtained in young, healthy adults

(age 18-30 years): while t0 is defined as the time of birth for the present work, we make no
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attempt to actually replicate the physiological variations of the glucose-insulin system along

infancy and childhood. Rather, we let simulations through the first 18 years of age run on early

adulthood parameters, thereby reaching a normal or healthy steady state at age 18, and start

perturbing the model (e.g by imposing a progressive decrement in insulin sensitivity) after age

18 years.

Parameters describing the average evolution of insulin resistance in the whole patient

population were calibrated in order to achieve starting conditions at age 50 consistent with

the overall average starting conditions in the DPP study, where average age at enrollment was

approximately 50 years. More specifically, we simulated an average subject presenting as pre-

diabetic at age 50 by introducing a progressive decline (after age 18) in peripheral and hepatic

insulin sensitivity, as well as a modest, progressive decline in insulin secretory function (see

the functional description of kXGI, λGI and kIB in Eqs 15, 14 and 12, Table 2).

The next step was to calibrate those parameters describing the rates of onset and decay and

the size of the effects produced by the three experimental maneuvers considered (Placebo,

Metformin, LifeStyle), based on our understanding of the likely physiological effect of the

three treatments, in order to reproduce observed time courses for fasting and post-prandial

glycemias (Table 3). We assumed, in particular, that the DPP treatments would likely impact

hepatic and/or peripheral insulin sensitivity and would not have a direct effect on insulin

secretion; moving from this assumption, by changing the rapidity of onset, rapidity of decay

and size of the hepatic and peripheral insulin sensitivity improvements for each treatment,

we explored the ability of the model to reproduce simultaneously the size and shape of the

observed time courses of fasting and post-prandial glycemias and insulinemias.

The selection of parameter values was subjective (visual assessment). While a large number

of simulations were performed, no systematic exploration of the whole (high-dimensional)

parameter space was conducted, but rather the parameter value combinations reflecting our

understanding of the likely effects of the various interventions were marginally adjusted to bet-

ter approximate the data points. For example, when considering the adaptation of the model

predictions to the observed DPP averaged data points, we had to improve peripheral insulin

sensitivity, over predicted no-intervention levels, by a maximum of about 10% for Placebo

and Metformin and 22% for the Intensive LifeStyle group; further, while rates of decay of effect

were apparently similar for the three groups, onset of effect was much faster for Intensive Life-

Style than for Placebo or Metformin.

In the present work the emphasis was on showing the reasonableness and robustness

of the model rather than on estimating effect size. Since the model is relatively large with

respect to the independent sources of information from the DPP study (which, together with

likely correlations among parameters, would have made the model a-posteriori unidentifi-

able), we eschewed the use of formal optimization of some classical loss function for statisti-

cal parameter estimation. While the model structure is apparently correct in that it can

replicate observations, we cannot therefore assess the variability of the parameter estimates,

cannot construct confidence intervals around them and cannot offer measures of Goodness-

of-Fit.

DPP dataset

The objectives and results of the Diabetes Prevention Program (DPP) study have been exten-

sively described elsewhere [20, 21] Briefly, in this study the primary aim was that of evaluating

the incidence of T2DM in an at-risk population randomized to placebo (n = 1082), intensive

lifestyle modification (n = 1079), metformin (n = 1073), or troglitazone (n = 585). From 1996

to 1999, the study enrolled adult subjects with elevated Fasting Plasma Glucose (FPG from
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5.6 to 7.7 mmol/L before June 1997; FPG from 5.3 to 6.9 mmol/L after June 1997) and 2-hr-

Glucose (G2h from 7.8 to 11.0 mmol/L) during a 75g Oral Glucose Tolerance Test (OGTT),

as well as elevated Body Mass Index (BMI� 22 kg/m in Asians, BMI� 24 kg/m otherwise).

We obtained the original dataset from the DPP study through application from NIH-NIDDK

(February 2008 Full Scale data release; data request No.608, see Acknowledgements). The data

were fully anonymized as supplied by NID-NIDDK, not only was identifying information

eliminated from the data set, but also subjects’ ages were not reported as recorded, but only

in five-year classes. We excluded from this dataset a small number (59) of patients who pre-

sented with FPG in the diabetic range at entry into the study (“Entry Diabetics”) and proceeded

then to compute averages of FPG (Gf) at entry and at each six-monthly observation thereafter,

as well as averages of 30-minutes and 2-hour glycemia (G30m, G2h) and baseline (FSI) and

30-minutes insulinemia (If, I30m) after Oral Glucose Tolerance Test (OGTT), at entry into the

study and at each yearly interval thereafter.

We did not receive any special access or privileges to the data: interested researchers will be

able to access the data in the same manner as we did. Interested researchers can replicate our

study findings exactly and in their entirety by implementing the equations constituting the

model described in the Methods section, populating the implementation with the parameter

values reported in the Tables; and finally plotting the resulting model predictions together

with the averages of the DPP study data at each time point.

Implementation

The computational engine of the model has been implemented in C++ (Microsoft1 Visual

Studio Community Edition 2017), with a MATLAB1 graphical front-end (MATLAB version

R2009b, The MathWorks Inc.). The model engine is also accessible both for guest researchers

use (through a browser HTML interface) and as a web-service for guest machine-to-machine

use (via a WSDL) at the address biomatlab.iasi.cnr.it/models/login.php.

Results

Fig 1 shows the hypothesized disease progression in terms of the evolution of peripheral insu-

lin sensitivity (Panel a, substantially decreasing with age), hepatic insulin sensitivity (Panel b,

substantially decreasing around ages 40 to 60), and insulin secretory ability per unit β-cell

mass (Panel c, mildly decreasing with age). This is a combination of original modifications

(attributable to advancing age, lifestyle factors and dietary habits), which can explain, through

the model, the observed average changes in all three treatment arms.

Figs 2 through 6 show the time course, over an interval of slow time spanning the study

period, of the endpoints measured in the DPP study, together with the computed time-courses

of the corresponding model variables.

Fig 7 shows daily and OGTT time courses of both glycemia and insulinemia as predicted by

the model for a representative virtual DPP subject. From these, relevant clinical indices can be

computed.

Figs 8 through 12 show the time course, over the interval of slow time spanning the study

period, of some commonly employed clinical indices of diabetic (de-)compensation: HOMA-

IR, HOMA-B, insulinogenic index and 1st and 2nd phase clamp M indices.

Fig 13 finally shows the model-predicted time course of the five DPP-observed endpoints as

well as of glycated hemoglobin, over the whole adult life span of representative virtual subjects,

without treatment and undergoing each of the three examined DPP treatment protocols.

We would like to underscore that, of the many variables whose time course is predicted

by the model, only five (fasting glycemia, OGTT glycemia at 30 and 120 minutes, fasting
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insulinemia and OGTT insulinemia at 30 minutes) were actually observed within the DPP

study. All of the other variables were not observed (including the complete daily variations of

glycemia and insulinemia) and their time courses are inferred by the structure of the model

and the fit of the model, with given parameter values, with the actually observed variables.

Fig 1. Hypothesized disease progression. Time course of parameters indicative of peripheral insulin sensitivity, hepatic insulin sensitivity and insulin

secretory ability over the lifetime of a representative DPP study subject, as determined by genetic factors, alimentary habits and other life conditions.

Black refers to the natural course of the disease, blue to intervention with Placebo, green to intervention with Intensive Life-Style modification, red to

intervention with Metformin. In panel (a) the Metformin curve is identical with Placebo; the four forecasts are identical for insulin secretory ability in

panel (c).

https://doi.org/10.1371/journal.pone.0222833.g001

Fig 2. Fasting Plasma Glucose (Gf or FPG, indicated as GlucF). Time course of predicted and observed average

Fasting Plasma Glucose, around the period of study. The four curves refer to no intervention (black), Placebo (blue),

Metformin (red), Intensive LifeStyle (green). The data points refer to Diabetes Prevention Program (DPP) study means

for Placebo (blue circles), Metformin (red asterisks) and Intensive LifeStyle modification (green diamonds).

https://doi.org/10.1371/journal.pone.0222833.g002
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In the figures, numerical simulations obtained with the DPM15 model are shown together

with corresponding sample averages obtained from the Placebo, LifeStyle and Metformin

arms of the DPP study. In order to make predictions and average observations comparable, we

simulated a representative (“average”) subject, reconstructing the subject’s life-trajectory from

age 18 (assuming a completely normal insulin sensitivity and secretion profile at this age) until

age 50 (approximately the average age of entry into the DPP study [20].

In the last column of Table 2, the values attributed to the parameters under the assumption of

no intervention are reported. Table 3 reports those calibrated model parameter values which had

to be set differently for the four treatment options considered (no intervention, Placebo, LifeStyle

and Metformin). No change in insulin secretory capacity was hypothesized. Improvements in

peripheral and hepatic insulin sensitivity are not apparent from the table, as they are determined

by relative values of rate of onset, rate of decay and intensity of effect. The maximal improve-

ments are zero for “No treatment”; approximately + 10% and<+ 1% for Placebo; approximately

+ 22% and + 7% for LifeStyle; approximately + 10% and + 7% for Metformin, all expressed as as

percent of normal levels, respectively for peripheral and hepatic insulin sensitivity.

By comparing the values reported in Table 3 with the time-courses of the DPP endpoints in

Figs 2 through 6 it can be appreciated how changes in peripheral insulin sensitivity translated

mainly into changes in 30 min and 2 hr OGTT glycemia, while changes in hepatic insulin sen-

sitivity translated mainly into changes in fasting glycemia, consistently with common physio-

logical understanding.

Fig 3. Glycemia at 30’ during OGTT (G30m, indicated as Gluc30m). Time course of predicted and observed average

glycemia at thirty minutes during OGTT, around the period of study. The four curves refer to no intervention (black),

Placebo (blue), Metformin (red), Intensive LifeStyle (green). The data points refer to Diabetes Prevention Program

(DPP) study means for Placebo (blue circles), Metformin (red asterisks) and Intensive LifeStyle modification (green

diamonds).

https://doi.org/10.1371/journal.pone.0222833.g003
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The calibration exercise itself provided meaningful information in several ways.

First of all, it was supposed that patient’s glycemias would be progressively increasing, on

the average, right before the time of entry into the study: were this not the case, it would be

very difficult to imagine that patients could have arrived to pre-diabetic levels from normal

levels during young adulthood and that they would then have developed increasing glycemias

during the study.

Given the above assumption of increasing glycemias just before enrolment into the study,

since even for the Placebo group glycemias were not observed to increase immediately after

enrolment (indeed, for the placebo group the fasting glycemia at 6 months was on the average

smaller, even if minimally so, than the average fasting glycemia at entry into the study), some

clinically significant, even if small, Placebo effect on some of the control variables (peripheral

or hepatic insulin sensitivity, gastric emptying rate) must have been present, so we had to con-

clude that a positive Placebo effect existed.

Secondly, it was not possible to reproduce the observed data assuming the same rapidity of

onset and the same rapidity of progressive loss of efficacy of the treatments on each control

variable, even assuming possibly different effect sizes. In other words, we could not fit the data

assuming that say, metformin and placebo have the same rates of onset and loss of efficacy on

peripheral insulin sensitivity, or that metformin and intensive lifestyle differ only in effect size

with respect to their impact on hepatic insulin sensitivity. The converse was also true: it was

not possible to explain the observations for some treatment, say metformin, by assuming same

Fig 4. Glycemia at 2h during OGTT (G2h, indicated as Gluc2h). Time course of predicted and observed average

glycemia at two hours during OGTT, around the period of study. The four curves refer to no intervention (black),

Placebo (blue), Metformin (red), Intensive LifeStyle (green). The data points refer to Diabetes Prevention Program

(DPP) study means for Placebo (blue circles), Metformin (red asterisks) and Intensive LifeStyle modification (green

diamonds).

https://doi.org/10.1371/journal.pone.0222833.g004
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rapidity of onset and loss of efficacy on different control variables, e.g. on both hepatic and

peripheral insulin sensitivity. We had therefore to hypothesize differences in rate of onset and

rate of decay of effects for different treatments on the same control variable as well as for the

same treatment on different control variables.

The best fits with the observed data for metformin treatment were obtained when

we assumed that this intervention acts primarily on hepatic insulin sensitivity. This deter-

mined a glucose lowering effect largely limited to fasting glycemia. Interpretation and

observation are consistent with studies showing that metformin acts to reduce fasting glu-

cose mainly by decreasing hepatic glucose output and has little effect on peripheral insulin

sensitivity [63–65]. Metformin’s specific effect on hepatic insulin sensitivity appeared to be

transient; its more modest, but somewhat longer-lasting effects appeared indistinguishable

from placebo. The transient nature of metformin’s effects is consistent with previous reports

[66–68].

The observed time-course of the recorded variables for the ILS arm was best replicated by

the model when assuming an effect on hepatic insulin sensitivity of about the same order of

magnitude, and with the same rates of onset and decay, as that hypothesized for Metformin.

In addition, however, the observations on the ILS arm were consistent with a very substantial

effect on peripheral insulin sensitivity, increasing progressively from the start of treatment,

peaking in about two years on average, and, while decreasing thereafter, being substantially

maintained over the course of a few more years.

Fig 5. Fasting serum insulin (If or FSI, indicated as InsuF). Time course of predicted and observed average fasting

serum insulin around the period of study. The four curves refer to no intervention (black), Placebo (blue), Metformin

(red), Intensive LifeStyle (green). The data points refer to Diabetes Prevention Program (DPP) study means for

Placebo (blue circles), Metformin (red asterisks) and Intensive LifeStyle modification (green diamonds).

https://doi.org/10.1371/journal.pone.0222833.g005
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Over the 5-year period of the study the predicted change in β-cell mass in a typical subject

was greater than 10%, the model predicting in fact the fastest decrease in β-cell mass right at

this period in the lifetime of the kind of pre-diabetic subjects enrolled in the DPP study. The

treatments studied did not appreciably influence, over this time bracket, this apparent rate of

loss: model simulations suggest that earlier, more aggressive treatment aimed at drastically

reducing insulin resistance and possible additional causes of β-cell mass decrement, such as

systemic inflammation, would be beneficial.

Finally, while it may be imagined that model parameters could easily be varied so as to

arbitrarily change model output, the present model’s structure did not actually allow a wide

variety of possible forecasts. Model predictions for the five DPP endpoints are tightly con-

nected: the physiologic assumptions incorporated in the model equations and the relatively

small number of free parameters (when compared with the large number of different obser-

vations) coerce the predicted curves into rather rigid patterns. Still, parameter values had to

be found such that all five DPP endpoints were simultaneously matched when attributing to

the different treatments plausible effect sizes and temporal evolutions. This turned out to be

in fact possible. In other words, the model incorporates current knowledge in a coherent

mathematical structure that cannot be bent to reproduce whatever arbitrarily specified

behavior. Such mathematical structure, however, does translate physiologically plausible

parameter value changes into realistic predicted time-courses, matching the observed aver-

ages in the DPP patient sample.

Fig 6. Insulinemia at 30’ during OGTT (I30m, indicated as Insu30m). Time course of predicted and observed

average Serum Insulin at 30 minutes during OGTT, around the period of study. The four curves refer to no

intervention (black), Placebo (blue), Metformin (red), Intensive LifeStyle (green). The data points refer to Diabetes

Prevention Program (DPP) study means for Placebo (blue circles), Metformin (red asterisks) and Intensive LifeStyle

modification (green diamonds).

https://doi.org/10.1371/journal.pone.0222833.g006
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Discussion

Reasons for modelling diabetes progression

It is problematic to test alternative T2DM therapies over the long time-scale of the disease.

What data sets exist cover at most a few years for each subject. Mathematical models of disease

progression allow meaningful quantitative extrapolation beyond commonly observed time

intervals: such models can be used to predict outcomes for novel therapies with anticipated

disease-modifying properties and to help guide the design of clinical trials. Simulations can

be used to guide sample size and treatment duration based on hypotheses about mechanisms

of action (e.g. on insulin resistance or β-cell replication), about the magnitude of the effects,

about the variability in both disease severity and treatment effects.

The validity of the predictions depends crucially on the robustness of model assumptions

and on the mechanistic structure that results from them. The forecasts obtained are the direct

expression of what diabetological knowledge is incorporated in the equations. We describe

Fig 7. Fast glycemia and insulinemia. Time course of glycemia and insulinemia as predicted by the model for a representative virtual DPP subject,

studied at age 53, during a simulated whole day (top panels) and a simulated OGTT (bottom panels). The curves refer to no intervention (black),

Placebo (blue), Metformin (red), Intensive LifeStyle (green). Notice how the glycemic curve under Metformin tends to coincide with Intensive LifeStyle

at fasting and with Placebo under glucose load.

https://doi.org/10.1371/journal.pone.0222833.g007
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here a model, which we believe is robust and which has enough complexity to provide multiple

different outputs allowing the study of multiple, diverse mechanisms of intervention.

Changes with respect to the previous model

The present work describes a radically improved version of our previous model [10] for the

long-term development of Type 2 Diabetes Mellitus and its validation against observations on

three patient groups from the Diabetes Prevention Program study [20, 21].

The consideration of a new model was prompted by the need to forecast multiple realistic,

testable endpoints (fasting and post-prandial glycemia and insulinemia) rather than restrain-

ing oneself to discussing fasting,“representative” or “prevailing” glycemia and insulinemia.

This need was met by abandoning the quasi-steady state assumption and by introducing

hepatic as well as peripheral insulin sensitivity.

In the previous version of the DPM [10] a classical mathematical approach (singularly

perturbed ordinary differential equations by means of small �-parameter [69–71]) was

employed to harmonize the slow progression of the disease (portrayed by β-cell mass or

insulin sensitivity) with fast glycemia compensation mechanisms. The classical method

considers that, over the few hours of fast dynamics, slow variables are essentially constant,

and that, seen from the perspective of decades, whatever fast dynamics occur within a given

day can be considered as having converged to equilibrium. Transients are however impor-

tant in their own right, and, due to meals, the subject is never at equilibrium: the necessary

mathematical paradigm shift consisted in discarding the near-equilibrium approach and

Fig 8. HOMA-IR. Time course of the HOMA-IR index as computed from current fasting glycemia and insulinemia

values. The curves refer to no intervention (black), Placebo (blue), Metformin (red), Intensive LifeStyle (green).

https://doi.org/10.1371/journal.pone.0222833.g008
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computing instead, at each slow time step, a complete fast dynamics. This approach not

only allows us to separately assess quantities (like glycemia at given times of the day or

relative to given meal perturbations), which were lumped together with the previous

approach; it also offers us the opportunity of simulating diverse perturbation maneuvers at

each slow time and follow over the years some of the most commonly used clinical indices

of disease.

It should be noticed that “hepatic insulin sensitivity”, as is commonly understood, refers to

the effects of insulin on both liver glucose production and liver glucose uptake. In the context

of the present discussion, however, this term only refers to insulin-mediated suppression of

Hepatic Glucose Output (HGO): the action of insulin in promoting Peripheral Glucose Dis-

posal (PGD) has been termed “peripheral insulin sensitivity” and refers to muscle, adipose tis-

sue and the liver itself. The second major change with respect to the previous version of the

model was then the explicit separation of the action of insulin in suppressing HGO from the

action of insulin in promoting PGD.

These two major changes are logically related to each other: in order to express the effects

of therapeutic regimens, potentially affecting to different degrees the action of insulin on dif-

ferent target tissues, we need the separate representation of hepatic and peripheral insulin

sensitivities, as well as the computation of both fasting levels and post-prandial profiles. Daily

oscillations of glycemia and insulinemia were felt to carry important information, which is lost

when neglecting transient behavior and considering only equilibrium values. Other recent lit-

erature points in the same direction [72].

Fig 9. HOMA-B. Time course of the HOMA-IR index as computed from current fasting glycemia and insulinemia

values. The curves refer to no intervention (black), Placebo (blue), Metformin (red), Intensive LifeStyle (green).

https://doi.org/10.1371/journal.pone.0222833.g009
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Aging and body changes

Once the physiologic part of the model was finalized, we coupled it with equations that

describe naturally varying insulin sensitivity and secretion, as well as the time course of the

effect of some typical treatment regimens. Peripheral and hepatic insulin sensitivity, as well

as functional insulin secretion (maximal insulin secretory ability per Million β-cells) are here

assumed to decrease gradually over time, with rates depending on genetic and lifestyle factors

[41, 73]. At the same time, insulin clearance may slightly decrease in the elderly [41], and the

natural restoration or healing capacity of the β-cell population (which opposes toxicity to the

β-cells from whatever cause) may also decline with age [38, 40]. Toxicity to β-cells is repre-

sented in the current model as depending on (hyper-)glycemic values: while toxicity may well

be attributed to lipid products [74], we simplified model structure using glycemia as an indica-

tor of possibly several causes of metabolic β-cell impairment.

Therapy mechanisms

In the present work, all DPP treatments were assumed to affect hepatic and/or peripheral

insulin sensitivity (λGI or kXGI, respectively). No treatment effect was hypothesized on insulin

secretion ability (kIB) for any of the treatment arms: in fact, it might be postulated that no such

direct effect would have been attributed to any of these treatments, unless it was secondary and

due to improvement in glucose toxicity.

An initial assumption of identical rates of onset and rates of decay for all effects caused by a

given therapy could not be sustained: simulated results based on this assumption could not

Fig 10. Insulinogenic index (indicated as Igenicx). Time course of the insulinogenic index as computed from current

fasting and 30-min glycemia and insulinemia values. The curves refer to no intervention (black), Placebo (blue),

Metformin (red), Intensive LifeStyle (green).

https://doi.org/10.1371/journal.pone.0222833.g010
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match the observed data. Conversely, good fits could be obtained by assuming different

dynamics for the several effects, which is plausible based on biological and pharmacodynami-

cal principles. In particular, the action of metformin on hepatic insulin sensitivity appeared to

be fast and relatively quickly disappearing (whether due to diminished compliance or actual

pharmacological loss of effect); instead, metformin appeared to have a slowly appearing and

longer lasting action on peripheral insulin sensitivity (in this case indistinguishable from

Placebo). This behavior would be plausible if the pharmacologic action of Metformin only

affected HGO, while its effect on PGD were due to generic lifestyle changes due to entry into

the study).

Conversely, it proved to be reasonable to assume similar rates of onset and decay of effect

for both placebo and for the more substantial intensive lifestyle changes: there may be some

accumulation of effect over several months as the lifestyle modifications (great or small)

produce results, but the positive changes eventually tend to wane as subjects become less

compliant.

Some specific conclusions can be drawn by observing what effects should be postulated

for each treatment option in order for the corresponding predicted curves to simultaneously

approximate all endpoints observed in the DPP study.

The magnitude and time course of the effect on insulin sensitivity produced by the Inten-

sive LifeStyle (ILS) intervention (magnitude that it was necessary to assume in order to adapt

model predictions to the observed data) is consistent with the literature: an approximately 20%

increase in peripheral insulin sensitivity with ILS is in the range of what has been observed

Fig 11. ClampM1. Time course of the first-phase Euglycemic Hyperinsulinemic Clamp M-index, as derived from a

simulated clamp study at each time during the life history of the virtual subject. The curves refer to no intervention

(black), Placebo (blue), Metformin (red), Intensive LifeStyle (green).

https://doi.org/10.1371/journal.pone.0222833.g011
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Fig 12. ClampM2. Time course of the second-phase Euglycemic Hyperinsulinemic Clamp M-index, as derived from a

simulated clamp study at each time during the life history of the virtual subject. The curves refer to no intervention

(black), Placebo (blue), Metformin (red), Intensive LifeStyle (green).

https://doi.org/10.1371/journal.pone.0222833.g012

Fig 13. Long-term changes. Long-term (lifetime) model-predicted changes in DPP-measured variables and in HbA1c

for the three DPP treatment arms. The curves refer to no intervention (black), Placebo (blue), Metformin (red),

Intensive LifeStyle (green). Top panels refer to glycemia (from left to right fasting glycemia, glycemia at 30 minutes

during OGTT and glycemia at 2 hours during OGTT). Bottom panels are, from left to right, fasting insulinemia,

insulinemia at 30 minutes during OGTT, glycated hemoglobin.

https://doi.org/10.1371/journal.pone.0222833.g013
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with similar interventions [75–77]. We would expect both hepatic and peripheral insulin sensi-

tivity to improve with weight loss or exercise, with peripheral insulin sensitivity being espe-

cially sensitive to exercise and perhaps hepatic sensitivity being at least as responsive to diet.

Van der Heijden et al. [78] reported 59% and 23% improvement in peripheral and hepatic

insulin sensitivity, respectively, in obese adolescents after initiating exercise. Winnick et al.
[79] assessed changes in peripheral and hepatic insulin sensitivity with exercise: they reported

a 63% increase in peripheral insulin sensitivity and no significant change in hepatic insulin

sensitivity. Malin et al. [80] support the same findings as Winnick. We further note that Ross

et al. [75], in a group with diet-induced weight loss of approximately 8% (similar to peak mean

weight loss in the DPP ILS group), report a 43% increase in clamp M value. The exercise-

induced weight loss group in the same study had a 64% increase in M (with approximately

6% weight loss). Malin et al. [80] also reported a 53% increase in M after an exercise regimen

(without weight loss). Interestingly, exercise did not impact hepatic insulin sensitivity in the

Malin study (even though this study may have been underpowered because small). Based on

this information from the literature, the increase in peripheral insulin sensitivity, which our

model would predict as necessary to reproduce the DPP ILS observations, seems to be very

realistic.

The calibrated effects of the considered treatments could reproduce simultaneously the

time course of the several observed DPP variables (Figs 2 through 6). From these and the cor-

responding time courses of common derived clinical indices (Figs 8 through 12) a few inter-

esting considerations emerge. First of all, the effect of metformin on HOMA-IR, HOMA-B

and insulinogenic index appears very similar to that of Intensive LifeStyle: this is not surpris-

ing since these three indices all reflect either only fasting, or fasting and (rather variable) 30

min glycemias and insulinemias. The role of peripheral insulin sensitivity in attenuating

post-prandial glycemic excursions is not fully captured by these indices and is evident only

when considering 2 hr OGTT values. Another interesting observation concerns the fact that

the model predicts a substantial improvement due to metformin (over and above placebo

effect) only in low-insulinization, but not in high-insulinization EHC results: this agrees

with the interpretation that the low-insulinization clamp does reflect HGO variability /

hepatic insulin sensitivity, while at high serum insulin concentrations HGO is effectively

suppressed in any case, and the high-insulinization clamp only reflects the current state of

peripheral insulin sensitivity.

The trend of all modelled variables points to a continuing progression of the disease. This is

plausible and could be explained by any combination of processes: continued loss of β-cells;

waning compliance (after initial losses, weight increased over time in the Lifestyle group and

medication compliance decreased in both placebo and metformin DPP groups); possible

loss of pharmacologic efficacy of metformin over time (consistent with reports by Kahn [66],

Brown et al. [68], or Ekstrom et al. [81]).

The predicted rate of change of the β-cell population is relatively small. A thorough analysis

of the likely values in-vivo of replication and apoptosis rates, hence of the rapidity of β-cell

mass variation, was conducted previously [10]. Given the assessed parameters, the model pre-

dicts both a relatively slow increase in β-cell mass following hyperglycemic needs and a rela-

tively slow decline of β-cell mass due to toxicity. While otherwise plausible, this behavior

might seem inconsistent with the very rapid expansion of β-cell mass in pregnancy [82], and

with its fast decline after delivery: different mechanisms than those here considered may be at

play during pregnancy.

We note that the current model can be used to represent the effects of different therapeu-

tic approaches: not only oral hypoglycemic agents of different kinds (metformin, sulfonyl-

ureas, SGLT2 inhibitors, thiazolidinediones) and insulin administration, but also bariatric
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surgery [83–87] or β-cell anti-inflammatory protectors such as Interleukin-1-receptor antag-

onists [15].

Parameter calibration

Model parameters were calibrated in order for the forecasts to adapt to DPP data: no statistical

parameter estimation was conducted. In the present work the goal was not to fit as closely as

possible endpoint averages from a given patient sample, obtaining statistical identification of the

model for that specific population, but rather to show how reasonable assumptions on mecha-

nisms of action translate into plausible effect parameters, which in turn translate into realistic

matches to observed average behavior. While it can be readily seen that the model structure is

consistent with available observations (because there exist parameter values that allow the model

to capture observed behavior), no diagnostics of goodness-of-fit are therefore calculated.

It is theoretically possible that apparent physiologic insights from the modeling could be

highly specific to the current calibration rather than represent generalizable outcomes. It can-

not be claimed that the mechanisms underlying the different responses of DPP subjects to the

interventions have been identified. What can be said is that the model structure and the chosen

parameter values, consistent with reasonable hypotheses on the underlying physiology, pro-

duce outputs with are consistent with the actual observations.

It should be appreciated that, in spite of the large number of free parameters, the tight rela-

tionship among the state variables, produced by the mechanistic structure of the model, makes

it impossible to obtain whatever behavior is desired for each one of several variables simulta-

neously, particularly when constraining parameters to physiologically acceptable ranges.

Indeed, the very fact that the model is actually able to reproduce observed average behavior of

several variables simultaneously on the basis of plausible parameter values is indicative of the

robustness of the hypotheses made.

It should also be appreciated that some observations have intrinsically large variability: for

example, different patients may have widely varying values of insulinemia at 30’ during OGTT

since both the absolute peak values as well as the timing of the insulin peaks vary, and the vari-

ability of both is reflected in the large variability of the single observation recorded at 30 min-

utes. It would be pointless to require that the model agrees with observations more closely

than the observations agree among themselves.

Model features

The model here proposed is rather complex, and choices had to be made for a reasonably

parsimonious representation of the many mechanisms involved. These choices attempted to

balance adherence to known physiology and mathematical simplicity. For example, gastroin-

testinal absorption of glucose was represented with a two-compartment, first-order determin-

istic process (Eqs 17, 18 and 19). Gastric emptying is in fact irregularly intermittent and

pulsatile rather than linear and continuous [88]. The traditional simpler single linear elimina-

tion (see the exhaustive discussion in Yokrattanasak et al. [88]) was deemed sufficient and was

adopted here as it speeds up simulations considerably. A constant rate of gastric emptying,

such as is posited in Eq 16, represents only a crude first approximation to the likely dynamics

of the entry of glucose-rich nutrients into the absorbing bowel. As early as Lehmann and

Deutsch [89], the rate of gastric emptying was described as trapezoidal for sufficiently large

(> 10 g) carbohydrate intake, with ascending, plateau and descending emptying rate phases.

More recently, Li et al. [90] investigated functional forms similar respectively to a lognormal

distribution or to the right-half of a normal distribution to describe the rate of appearance of

glucose (or FFAs) from a mixed meal. On the other hand, Goel et al. [91] suggested that while
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the linear approach used in Eq 16 is appropriate for liquid meals, it may also be used for mixed

meals, albeit with a different (slower) dynamics compared to liquid meals. This issue is worth

addressing here because, in general, a poor description of the rate of glucose appearance may

confound the effects of other glucose transport, secretion or production mechanisms. In the

present case, however, precise identification of the glucose absorption dynamics was not the

objective, and a simple, qualitatively plausible dynamics manages to produce intra-day or

post-OGTT glycemic variations consistent with the observed trends of 30’ and 120’ post-pran-

dial glycemias over several years. In particular, the simple gastric emptying model should be

adequate to simulate delivery of nutrients to the small intestine after the OGTT (small volume,

liquid, free of fat and protein), hence to reproduce the indices (post-OGTT glycemias at 30’

and 120’, insulinemia at 30’) tracked over slow time by the overall model.

It is of methodological interest to underscore that our model does not prescribe any explicit

set-point, either of glycemia (such as is contemplated for instance in the so-called “minimal

model” for the IVGTT) or in the fasting glycemia that beta-cells population dynamics may be

assumed to target (as in Ribbing et al. [11]). Instead, what equilibria exist in the system are

determined by the free interplay of the dynamics of the different determinants involved. The

apparent set-points are mere emergent features of the complex underlying dynamics, and are

apt to change, possibly dramatically so, when this dynamics evolves. The parameter values of

the model’s underlying dynamics determine the actual observed values of the apparent set-

points, such as the equilibrium level of fasting glycemia in the healthy young adult, as well as

the values of other observed features, such as the age of development of diabetes in relation

with the degree of insulin resistance.

The interplay between progressively developing insulin resistance and eventually failing

compensatory pancreatic insulin hypersecretion is widely considered the hallmark of T2DM,

but there are different interpretations (possibly corresponding to actual differences in patho-

physiologic mechanisms between patient sub-populations) as to the causal chain leading to

the eventual decompensation. It has been hypothesized [92] that some acute event (such as a

surgical procedure, or a severe infectious episode), determining a sudden increase in insulin

resistance, is responsible for the shift from compensation to decompensation, and some math-

ematical models of the development of T2DM indeed incorporate such an explicit shift [11,

13, 92]. However, over the clinical course of most T2DM patients it is not possible to identify

such a triggering event. The present model makes no recourse to external triggering events

and does not need the introduction of an explicit regime shift (a sudden change in parameter

values, the introduction of a new external forcing function) in order to reproduce a rapid

worsening of the clinical conditions at some point in the life of the subject. Instead, our model

formalizes the concept that a persistent hyperglycemic insult, determined by long-standing,

possibly progressive degrees of insulin resistance, brings about a progressive decline of insulin

sensitivity, and that the even mild glucose toxicity connected with persistent insulin resistance

eventually damages pancreatic replication reserve, determines an eventual decline of β-cell

mass and an eventual failure of compensating insulin hypersecretion, resulting finally in rapid

acceleration of hyperglycemia and in the overt clinical picture of frank T2DM.

The DPM15 model does not appear to support the hypothesis that primary insulin hyperse-

cretion might be the causal factor of the development of T2DM. This hypothesis was discussed

by Corkey [93] in hypothetical pathophysiological terms and by Goel [94] in mathematical

terms, through an adaptation of the original Topp model to include a direct effect of insulin

on β-cell dynamics. Simulations (not shown) have been conducted with our model assuming

no primary insulin resistance (neither peripheral nor hepatic) and assuming conversely

that the long-time behavior of glucose-driven insulin secretion by β-cells, instead of mildly

decreasing with age, actually doubles. In this way the model expresses a progressive insulin
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hypersecretion, given the same prevailing glucose concentrations. All such simulations fail to

reproduce a progressively increasing glycemia up to diabetic levels. The present model has not

been modified to include a direct effect of insulin on β-cells, also because we agree with the

statement [94] that the required causal signal linking insulin resistance and insulin hypersecre-

tion may well be glycemia itself. In the present model the apparent Corkey paradox is repli-

cated (glycemia not immediately rising upon worsening of insulin resistance), due to the

controlling effects of increased insulin secretion up to the point where relative endocrine pan-

creatic insufficiency develops. Insulin hypersecretion could in fact be the mechanism by which

glucose toxicity exerts its detrimental effects on β-cell turnover. Under this hypothesis, while

hyperinsulinemia would not by itself be directly toxic, the glucose-induced, prolonged hyper-

secretory state would be damaging to the β-cell. This interpretation is consistent with the role

of ‘ER stress’ that has been proposed for β-cell death: the overly taxed secretory apparatus of

the cell results in accumulation of misfolded proteins which, in turn, trigger inflammatory and

apoptotic mechanisms. In all these cases, from a modelling point of view we may take hyper-

glycemia as a fair indicator of the toxic situation for the β-cell population.

Limitations of the current work

One potential limitation is that the current model does not take into account the possible effect

of glucose toxicity on insulin secretory function by existing β-cells. The effect of sustained,

moderate hyperglycemia is here exerted exclusively on β-cell replication, hence on the mainte-

nance of β-cell mass: should there be reasons to assume that a toxic effect is also exerted on

insulin secretory mechanisms, this ought to be incorporated in the model. This is a moot point

however, because current literature reports both increased and decreased insulin secretion

with acute hyperglycemia [95].

Another limitation consists in not taking into account lipid metabolism, variations in fat

mass, body size etc. as measurable indicators of peripheral insulin resistance and as possible

contributing factor to low-key, systemic, continuous inflammation adding its toxic effect on β-

cell replication.

A third limitation of the current model is its simplistic depiction of (mono-exponential)

gastric emptying. Even so, the whole aggregated model captures relevant glycemic oscillations

throughout the day, but future work will consider the introduction of a stochastic gastric emp-

tying sub-model as well as the use of stochastically variable meal composition and size.

Finally, model validation against independent sets of observations is clearly desirable and

will need to be addressed in the future, similarly to what was done for the previous version of

the model in comparing its output with the CANOE study results. [18, 96]

Conclusion

A new mathematical model of the long-term development of Type 2 Diabetes Mellitus is con-

sistent with available literature, is able to reproduce experimentally observed effects of thera-

peutic interventions on several endpoints, including fasting and post-prandial glycemias and

insulinemias, and can simulate the evolution of common clinical and experimental indices

in cohorts of virtual patients. Such an elaborate model will need to be further validated: as it

stands now, it incorporates plausible physiology, agrees with available observations, and allows

the investigator to formulate quantitative, testable questions for relevant patient populations.
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