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Abstract: Auxin plays crucial roles in multiple developmental processes, such as embryogenesis,
organogenesis, cell determination and division, as well as tropic responses. These processes are
finely coordinated by the auxin, which requires the polar distribution of auxin within tissues
and cells. The intercellular directionality of auxin flow is closely related to the asymmetric
subcellular location of PIN-FORMED (PIN) auxin efflux transporters. All PIN proteins have a
conserved structure with a central hydrophilic loop domain, which harbors several phosphosites
targeted by a set of protein kinases. The activities of PIN proteins are finely regulated by diverse
endogenous and exogenous stimuli at multiple layers—including transcriptional and epigenetic
levels, post-transcriptional modifications, subcellular trafficking, as well as PINs’ recycling and
turnover—to facilitate the developmental processes in an auxin gradient-dependent manner. Here,
the recent advances in the structure, evolution, regulation and functions of PIN proteins in plants
will be discussed. The information provided by this review will shed new light on the asymmetric
auxin-distribution-dependent development processes mediated by PIN transporters in plants.
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1. Introduction

Auxin is a universal hormone in plants, which participates in many aspects of plant developmental
and growth processes [1]. The actions of auxin were firstly described by Charles and Francis Darwin,
father and son [2]. Afterwards, auxin was isolated and discovered by Went in 1928 [3,4]. Since then,
much attention has been paid to understanding the pathways involved in its synthesis, translocation
and signaling [1,5,6]. This hormone is unique to plants, which requires polar transport. Auxin is
usually synthesized in the shoot apex, as well as the developing leaf primordia, and transported to
the targeted tissues by bulk flow via vascular tissues or direct polar transport [7,8]. Thus, to facilitate
polar auxin transport (PAT), several auxin transporters were identified, such as AUXIN1/LIKE-AUX1
(AUX/LAX), PIN-FORMED (PIN), ATP-binding cassette (ABC) transporters, nitrate transporter 1.1
(NRT1.1), PIN-Like transporters (PILS) and WALLS ARE THIN 1 (WAT1) [7,9–17]. These auxin
carriers can be generally divided into two groups based on the subcellular locations and functions.
One group (comprised of AUX/LAX, NRT1.1, ABC transporters and most PIN) is located on the
plasma membrane (PM) as import or export carriers to facilitate auxin distribution within cells.
The other group (comprised of several PIN with short hydrophilic loops, PILS and WAT1) is
distributed on the intracellular compartments to regulate the intracellular auxin homeostasis [6,12,14].
With the help of these auxin carriers, the auxin can be transported in a polar manner within
cells, where specific maxima and minima levels of auxin can be sensed by the downstream
regulation modules, such as the TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX
(TIR1/AFB)-Auxin/INDOLE-3-ACETIC ACID (Aux/IAA)-AUXIN RESPONSE FACTOR (ARF) signal
pathway, to transform endogenous and exogenous stimuli into gene reprogramming events [5,18,19].
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Among the mentioned auxin carriers above, the polar localizations of PIN proteins finely
correspond to the directionality of auxin movement, which highlights that PIN proteins are mainly
responsible for the asymmetric distributions of auxin in plants [7,8,20]. The polar localizations of PIN
are fine-tuned by a set of regulators that phosphorylate their different phosphosites on the central long
hydrophilic loop (HL) [6]. The phosphorylated PIN proteins dynamically localize on the PM, which is
involved in PIN’s subcellular trafficking, recycling, as well as turnover in a ubiquitination-dependent
manner [21]. In recent years, several excellent review papers nicely summarized the evolution,
polar localization and regulation of PIN proteins in plants [6,21–23]. In this review, we will briefly
summarize the recent advances on the identification, molecular structure, evolution, co-expression
and protein interactions, regulation and functions of PIN proteins in plants. The information provided
by this review will shed new light on the molecular mechanisms of the auxin maxima mediated by the
activities of PIN efflux carriers, as well as the roles of PIN proteins in regulating plant development
and growth.

2. The Identification and Molecular Structure of PIN Proteins in Plants

The PIN gene family encodes a subgroup of auxin efflux carriers, which costs energy from the
electrochemical gradient across the PM [24]. PIN1 in Arabidopsis was the first identified PIN gene,
afterwards, seven additional PIN genes were found in the genome of Arabidopsis [17,21,25]. To date,
PIN genes have been identified in 31 plant species by genome-wide approaches, including Brassica rapa,
Glycine max, Medicago truncatula, Oryza sativa, Populus trichocarpa and Zea mays (Table 1). The number
of PIN genes ranged from 4–23, and the lowest and highest numbers of PIN genes were found in
Marchantia polymorpha and Glycine max, respectively (Table 1) [26,27]. Although the number of PIN
genes does not significantly correlate with the number of predicted loci (Table 1), genome duplication
plays crucial roles in expanding the PIN gene family [26–30]. For instance, in Glycine max, the expanding
number of PIN genes was closely linked with the two whole-genome duplication events, which was
similar to the origins of other genes in this species, such as Aux/IAA genes [18,26]. Although the
genome information of several gymnosperm plants has been already released in Phytozome (available
online: https://phytozome.jgi.doe.gov/pz/portal.html) and other databases, the information about
PIN genes in these gymnosperm plants is still very limited at a genome-wide scale (Table 1). In addition
to the genome-wide analysis, many PIN members were partly identified in other plant species, such as
Malus domestica, peach, Cardamine hirsute and algae [31–36]. The identification of PIN genes in diverse
plant species accelerates the understanding of molecular structure and evolution history and also
provides the fundamental information to be used for a comparative functional study of these PIN
genes in plants.

Table 1. Summary of PIN genes in 31 plants found by genome-wide analysis.

Species No. of Predicted Loci a No. of PIN Genes References

Arabidopsis thaliana 27,416 8 [17]
Arabidopsis lyrata 32,670 8 [17,36]
Aquilegia caerulea - 6 [36]

Brachypodium distachyon 31,694 11 [17,36]
Brassica rapa 40,492 15 [37]
Carica papaya 24,782 6 [38]

Capsicum annuum 34,899 10 [39]
Citrullus lanatus 23,440 11 [40]

Glycine max 56,044 23 [26,27]
Gossypium arboreum 41,330 12 [41]
Gossypium hirsutum 66,577 17 [41,42]
Gossypium raimondii 37,505 10 [41]

Lotus japonicus 42,399 11 [27,43]
Marchantia polymorpha 19,287 4 [36]
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Table 1. Cont.

Species No. of Predicted Loci a No. of PIN Genes References

Medicago truncatula 50,894 11 [44,45]
Mimulus guttatus 28,140 10 [36]
Nicotiana tabacum - 20 [46]
Nicotiana sylvestris - 11 [46]

Nicotiana tomentosiformis - 12 [46]
Oryza sativa 39,049 12 [36,47,48]

Phaseolus vulgaris 27,082 16 [27]
Phyllostachys heterocycla 31,987 14 [49]

Physcomitrella patens 26,610 5 [36]
Populus trichocarpa 41,335 15 [28,50]

Selaginella moellendorffii 22,273 9 [29]
Setaria italica 34,584 12 [51]

Solanum lycopersicum 34,727 10 [52]
Sorghum bicolor 34,129 11 [53]

Solanum tuberosum 39,031 10 [54]
Vitis vinifera 26,346 8 [17,29]

Zea mays 63,480 15 [55,56]
a The data were from Phytozome (available online: https://phytozome.jgi.doe.gov/pz/portal.html/) and the Plant
Genome Duplication Database (PGDD, available online: http://chibba.agtec.uga.edu/duplication/) [57].

The PIN carriers in plants participate in auxin transport at both intercellular and intracellular
levels. The differences in function are dependent on the subcellular localizations of different
PIN proteins with distinct molecular structures [58]. All the PIN proteins harbor a typically
conserved HL with approximately 35 identifiable motifs located between amino- and carboxy-terminal
transmembrane domains (TD), likely forming an auxin-translocation pore [17,22,59]. Based on the size
of the central HL, the PIN proteins can be generally divided into two major subgroups, the “long” and
“short” PIN proteins (Figure 1) [17]. In Arabidopsis, PIN1–PIN4, PIN6 and PIN7 are long PIN proteins.
PIN5 and PIN8 are considered as short PIN proteins [17,29,59]. The long PIN proteins mainly localize
at the PM, which facilitate the auxin fluxes within cells as auxin export carriers [17]. Some long PIN
proteins with reduced “long HL”, such as PIN6 in Arabidopsis, are dual located at both the PM and
endoplasmic reticulum (ER) depending on the phosphorylation states [60–62]. These PIN proteins
have a distinct intracellular HL between amino- and carboxy-terminal ends with five TD spanning in
the PM on each side of HL and the C-terminal end positions on the apoplast [17,59,63]. The short PIN
proteins mainly localize at the ER with an inconspicuous central HL and contribute to the intercellular
auxin homeostasis [59]. The PIN proteins contain many more conserved sites on the TD regions than
on the HL, and the long PIN proteins in all plants can be further classified into seven subgroups
according to the variants on the HL [17]. The HL also contains three conserved domains (C1–C3) and
two variable domains (V1 and V2) [24]. Additionally, three conserved TPRXS sites containing T227/S1,
T248/S2 and T286/S3, respectively (Figure 1), were found in the HL of long PIN proteins as the targets
of the PINOID (PID) family kinases, D6 protein kinase (D6PK) and mitogen-activated protein kinase
(MAPK) for phosphorylation of the serine or threonine residues. Two other serine residues (i.e., S4 and
S5) also exist in this region (Figure 1A) [59,64–66]. These phosphorylation sites are essential for PIN’s
polar localization and absent in the same regions of short ones [59]. In addition to phosphorylation
sites, two evolutionarily-conserved cysteine residues (i.e., C39 and C560) on the TD were identified as
cis-acting regulators to regulate PIN2 polar localization [67].

https://phytozome.jgi.doe.gov/pz/portal.html/
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Figure 1. Molecular structures of (A) long PIN proteins (PIN1–4, 6 and 7) and (B) short PIN proteins 
(PIN 5 and 8). The PIN proteins harbor a typical central long hydrophilic loop (HL) between amino- 
and carboxy-terminal ends with five transmembrane domains (TD) spanning on the plasma 
membrane (PM). The phosphosites on the HL of long PINs are shown [6]. The conserved HC1–HC4 
regions in the central loop domain are also indicated according to Bennett et al. [36]. 

In addition to the terms “long” and “short” PIN proteins, another pair of more precise terms, 
“canonical” and “noncanonical” PIN proteins is proposed based on the existing highly-conserved 
HC1–HC4 regions in the central loop domain [36]. The PIN proteins with a long central loop usually 
harbor all four conserved motifs with high similarity; therefore, these PIN proteins are classified as 
canonical PIN proteins [36]. Accordingly, the remaining ones are noncanonical PIN proteins [36]. 

3. Genetic Evolution of PIN Proteins in Plants 

The PIN genes have been suggested to evolve from a single ancestral gene, since PIN genes from 
higher plants shared relatively high sequence similarities with each other compared to the 
homologues of the closest bacteria [30]. The PIN proteins are also considered to be unique in land 
plants originating in streptophyte algae, which is the ancestor of land plants in plant evolutionary 
history [29,68]. The ER-based PIN proteins are proposed to be ancestral PINs within land plants, and 
the PM ones are acquired to coordinate the directional PAT in multicellular plants co-appearing with 
long PIN proteins during the later evolution of land plants [29,60,69]. However, this point of view 
has been challenged by a wider and deeper evolution analysis with 473 PIN family members, which 
suggests PIN proteins gained sub- and neo-functionalization by modifying the protein structure 
during plant evolution [22,36]. The canonical PIN proteins with a modular central loop domain are 
suggested to be ancestral ones with a more conserved structure, and the noncanonical ones with a 
divergent protein structure evolved from within a canonical lineage with neofunctionalization [22,36]. 
The motifs in the central loop domain can be targets of diverse regulators. Thus, selective 
modifications of some motifs in the intracellular loop contribute to the subfunctionalization of 
canonical PIN proteins [36,70]. Further evidence from PIN proteins’ evolutionary history indicate 
that PIN-mediated auxin transport only contains a few innovations in the central loop domain and 
has not contributed to the evolution of plant development [22,36]. Thus, it is the previously-evolved 
new developmental processes that have selected the structurally-divergent PIN proteins arising from 
the canonical precursors, rather than the opposite scenario [22,36]. 

4. Co-Expression Network and Protein Interactions of PIN Proteins in Arabidopsis 

Genes involved in the same pathways are highly co-expressed compared to genes from different 
pathways [71]. Thus, the co-expression analysis of a sub-set of genes and finding their co-expressed 
neighbors could be a powerful tool to dissecting candidate genes that potentially participated in a 
specific pathway [71–73]. Based on this notion, a pathway-level co-expression (PLC)-based PIN co-
expression network was studied in Arabidopsis using an online database CressExpress (Version 4.0, 
available online: http://cressexpress.org/home.xhtml) with data from 8941 arrays [71]. In the PLC 

Figure 1. Molecular structures of (A) long PIN proteins (PIN1–4, 6 and 7) and (B) short PIN proteins
(PIN 5 and 8). The PIN proteins harbor a typical central long hydrophilic loop (HL) between amino-
and carboxy-terminal ends with five transmembrane domains (TD) spanning on the plasma membrane
(PM). The phosphosites on the HL of long PINs are shown [6]. The conserved HC1–HC4 regions in the
central loop domain are also indicated according to Bennett et al. [36].

In addition to the terms “long” and “short” PIN proteins, another pair of more precise terms,
“canonical” and “noncanonical” PIN proteins is proposed based on the existing highly-conserved
HC1–HC4 regions in the central loop domain [36]. The PIN proteins with a long central loop usually
harbor all four conserved motifs with high similarity; therefore, these PIN proteins are classified as
canonical PIN proteins [36]. Accordingly, the remaining ones are noncanonical PIN proteins [36].

3. Genetic Evolution of PIN Proteins in Plants

The PIN genes have been suggested to evolve from a single ancestral gene, since PIN genes
from higher plants shared relatively high sequence similarities with each other compared to the
homologues of the closest bacteria [30]. The PIN proteins are also considered to be unique in land
plants originating in streptophyte algae, which is the ancestor of land plants in plant evolutionary
history [29,68]. The ER-based PIN proteins are proposed to be ancestral PINs within land plants, and
the PM ones are acquired to coordinate the directional PAT in multicellular plants co-appearing with
long PIN proteins during the later evolution of land plants [29,60,69]. However, this point of view
has been challenged by a wider and deeper evolution analysis with 473 PIN family members, which
suggests PIN proteins gained sub- and neo-functionalization by modifying the protein structure during
plant evolution [22,36]. The canonical PIN proteins with a modular central loop domain are suggested
to be ancestral ones with a more conserved structure, and the noncanonical ones with a divergent
protein structure evolved from within a canonical lineage with neofunctionalization [22,36]. The motifs
in the central loop domain can be targets of diverse regulators. Thus, selective modifications of some
motifs in the intracellular loop contribute to the subfunctionalization of canonical PIN proteins [36,70].
Further evidence from PIN proteins’ evolutionary history indicate that PIN-mediated auxin transport
only contains a few innovations in the central loop domain and has not contributed to the evolution of
plant development [22,36]. Thus, it is the previously-evolved new developmental processes that have
selected the structurally-divergent PIN proteins arising from the canonical precursors, rather than the
opposite scenario [22,36].

4. Co-Expression Network and Protein Interactions of PIN Proteins in Arabidopsis

Genes involved in the same pathways are highly co-expressed compared to genes from different
pathways [71]. Thus, the co-expression analysis of a sub-set of genes and finding their co-expressed
neighbors could be a powerful tool to dissecting candidate genes that potentially participated in
a specific pathway [71–73]. Based on this notion, a pathway-level co-expression (PLC)-based PIN
co-expression network was studied in Arabidopsis using an online database CressExpress (Version 4.0,
available online: http://cressexpress.org/home.xhtml) with data from 8941 arrays [71]. In the PLC
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network, five of the eight PIN genes (e.g., PIN1, PIN2, PIN3, PIN4 and PIN7) were co-expressed with
another 141 genes via 303 correlations (Figure 2A). Interestingly, the PIN genes in the co-expressed
network all belonged to the canonical group with a long central loop. This was related to the fact
that the canonical proteins have a distinct cellular location and functions in auxin transport compared
to the noncanonical ones. The direct significant correlations of PIN genes were only found among
the PIN3, PIN4 and PIN7 genes. This confirmed that these three PIN genes share similar expression
profiles and have a close evolutionary relationship [30]. Additionally, nine early auxin-responsive
genes (six small auxin-up RNA (SAUR) and three IAA) identified in this network all belonged to the
PIN3-PIN4-PIN7 module, suggesting that the PIN3-PIN4-PIN7 co-expression module plays crucial
roles in auxin transport and signaling processes and that the two processes were finely co-regulated at
the transcriptional level. Additionally, two genes encoding the basic helix-loop-helix (bHLH) protein,
HOMOLOG OF BEE2 INTERACTING WITH IBH 1 (HBI1) and BR ENHANCED EXPRESSION 2 (BEE2),
were found in the core PIN3-PIN4-PIN7 module. These are known as regulators of cell elongation
via targeting their downstream auxin metabolism relative genes [74,75]. Given the fact that these
two genes were highly correlative with PIN3, PIN4 and PIN7, it is of interest to check the specific
roles of these two genes in PIN-mediated auxin efflux. Overall, the information obtained from the
co-expression network conforms to the current knowledge on the regulation of PIN genes and also
provides the possible routes to dissect the new candidates involved in PIN-mediated auxin efflux.

In addition to the co-expression network, by taking advantage of large-scale interactome analyses
with diverse experimental approaches in Arabidopsis, it has become possible to identify a large set of
physical interactors of PIN proteins (Figure 2B, Table S1). The comprehensive physical interaction
map consisted of seven PIN proteins and 104 other proteins with 183 interactions (Figure 2B, Table S1).
About 39% of the interactors shared interactions with at least two PIN proteins. Among the shared
interactors, 12 interactors were commonly shared by four PIN proteins: PIN4, PIN5, PIN6 and PIN7.
It is strange that no interactors were found for PIN8 in this interactome map, even after using some
predicted methods (Figure 2B, Table S1). Many known interactive proteins relative to the functions
of PIN proteins can be generally classified into three major categories in the PIN protein interaction
network. One was related to regulating polar PIN distribution by phosphorylating the central loop of
PIN proteins, including D6PK, Ca2+/calmodulin-dependent protein kinase-related kinase 5 (CRK5),
type-1 protein phosphatase 4 (TOPP4), phytochrome-associated serine/threonine-protein phosphatase
1 (FyPP1), FyPP3, ROOTS CURL IN NPA1 (RCN1) and SAPS-domain-LIKE like 1 (SAL1) [76–79].
The other category of interactors participated in proper dynamic polar distribution of PIN proteins.
This category included dynamin-related protein 1A (DRP1A), AP2A1 and UNHINGED (UNH) [80–82].
The last category contained four ABC transporters: ABCB1, ABCB19, ABCG10 and ABCG16. Evidence
confirmed that ABCB and PIN proteins function interactively with independent auxin transport
mechanisms, coordinating actions of the auxin export across PM depending on the plant tissues [13,83].
The remaining interactors in this network were basically identified by large-scale membrane protein
interactome approaches [84,85]. The specific roles of these interactors in PIN proteins’ regulation need
to be further validated. It is of interest that 14 transporters besides ABC transporters shared direct
interaction with PIN proteins. These transporters were involved in transporting a broad variety of
substrates, such as amino acids, calcium, water, metal, sugar, potassium, and so on (Figure 2B, Table S1).
This implies the possible role of auxin polar distribution in transporting these substrates. Due to
the limitation of this database, some well-known regulators, such as PID, were not included in this
PIN interactive network. However, the identified interactors and their interactions in the interactome
map could be a nice index to dissect the possible new mechanisms regulating the PIN proteins at the
protein level.
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In the PIN protein interaction network, the lines between nodes represent physical interactions 
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Figure 2. (A) The co-expression network of PIN genes and (B) the PIN protein interaction network in
Arabidopsis. The network was constructed using an online database, CressExpress (available online:
http://cressexpress.org/home.xhtml). This was done using pathway-level co-expression (PLC)
analysis as suggested by Wei et al. [71] and visualized in Cytoscape (3.5.0) [86]. In the co-expression
network, the lines between nodes represent significant correlations between two genes. The red
lines represent significant correlations between PIN genes. The protein-protein interaction network
was constructed using Cytoscape with data from the BioGRID database [87] (available online:
https://thebiogrid.org/). In the PIN protein interaction network, the lines between nodes represent
physical interactions verified by experimental approaches (for detail, see Table S1). The PIN
genes/PIN proteins are represented by diamonds, and other co-expressed genes/interactive proteins
are represented by circles. The different colors indicate different functional categories assigned by
Mapman software [88], as shown by color codes.
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Overall, these resources provided a range of candidates potentially involved in regulating PIN
proteins at both transcriptional and protein levels. These candidates participate in multiple processes
beyond plant development and growth. Thus, new roles of PIN proteins in these aspects may be
uncovered by digging this valuable mine of information.

5. Regulation of PIN Proteins at Multiple Levels

Auxin polar transport facilitated by PIN proteins plays a pivotal role in determining the auxin
maxima and minima within cells via stitching auxin metabolism together with signal transduction
processes. The activities of PIN proteins are turned in multiple dimensions to convert the internal
and external stimuli into down-stream gene reprogramming events in a rapid and precise manner.
Much attention has been paid to dissecting the regulation of PIN proteins. These processes are involved
in regulating PIN gene expression levels, post-transcriptional modifications of PIN proteins to facilitate
their cellular trafficking, PIN proteins recycling and turnover [6,21,23,65,89–93].

5.1. Regulating PIN Genes Expression at the Transcriptional Level

The expression of PIN genes is finely regulated by diverse hormonal and environmental
stimuli [17,21]. Most PIN genes are induced by auxin itself, except PIN5, the transcription of which
is downregulated by auxin [17,60]. Additionally, a set of transcription factors act as up-stream
factors targeting the promoter regions of PIN genes to regulate their expression levels in response
to changes in endogenous and exogenous signals [90,91]. XAANTAL2 (XAL2/AGL14), belonging to
the MADS-box gene family, was the first identified transcriptional factor [94]. It directly binds to the
promoters of PIN1 and PIN4 to upregulate their expression and is involved in auxin-mediated root
developmental processes in a PIN4-dependent manner [94]. Furthermore, PIN1 has been shown to
be one target of INDETERMINATE-DOMAIN 16 (IDD16) [95]. IDD14–IDD16 cooperatively regulate
the lateral organ patterning and gravitropism by enhancing the transcriptional levels of several genes
involved in auxin biosynthesis and transport, such as YUCCA5 (YUC5) and PIN1 [95]. A plant-specific
DNA binding protein with an unknown function, PIN2 PROMOTER BINDING PROTEIN 1 (PPP1),
was identified as a PIN2 regulator by the yeast one-hybrid methodology. In silico analysis revealed
that parts of PPP1 DNA-binding sites commonly exist in the promoter regions of most PIN genes [96].
Recently, an Apetala2 (AP2) transcription factor, WRINKLED1 (WRI1), which is involved in fatty acid
biosynthesis, has been show to directly target the promoters of PIN4 and PIN5 and cause reduced
expression levels of some PIN genes (e.g., PIN1, PIN3 and PIN5-6) in the wri1-1 mutant background
compared to wildtype specimens [97]. This study shed new light on the possible link between PIN
gene expression and fatty acid synthesis.

The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP, MYB124), in cooperation with
MYB88, targets the promoters of PIN3 and PIN7 genes to complementarily establish gravitropic
set-point angles of lateral roots [98]. Further study showed that both FLP and PIN3 are targets of
auxin response factor 7 (ARF7) and that lateral root development is mediated by PIN3, in cooperation
with both ARF7 and FLP [99]. Another ARF protein, MONOPTEROS (MP/ARF5), has also been
shown to activate the expression of three PIN genes (namely PIN1, PIN3 and PIN7) by targeting the
auxin response elements (AuxRE) in the promoter regions of these genes to accomplish the patterning
processes in both shoots and roots in an auxin-dependent way [91]. Interestingly, PIN1/3/7 were also
shown to be the direct targets of another ARF transcriptional factor ARF3/ETTIN [100]. These results
collectively shed new light on integrating the auxin signaling and transport to the transcriptional
regulation of PIN proteins to finely tune the developmental outcomes in plants [91]. In addition
to being regulated by ARF, a group of cytokinin response factors (CRFs) (i.e., CRF2 and 6) acts as
downstream cytokinin signaling, to activate the expression of both PIN1 and PIN7 via the specific
PIN cytokinin response element (PCRE) located on the promoter regions of these two PIN genes [101].
Interestingly, CRF2 itself is the target of MP/ARF5, which also binds to the promoters of CRF2′s
targets, PIN1 and PIN7 [91,102]. Additionally, another bHLH transcription factor, SPATULA (SPT),
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which enables cytokinin signaling, activates the expression of PIN3 to regulate young gynoecium
growth [103]. Taken together, these results suggest the role of integrating cytokinin and auxin signaling
on regulating auxin polar transport.

In addition, the SWI/SNF chromatin remodeling ATPase BRAHMA (BRM) acts as the upstream of
the PLETHORA (PLT) pathway by directly targeting the chromatin of several PIN loci (i.e., PIN1–4 and
7), to facilitate the formation of the root stem cell niche [104]. The recruitment of BRM by MP/ARF5
to the MP/ARF5 target loci is essential to activating the chromatin state for auxin-response gene
expression [5,105], together with the fact that several PIN genes (i.e., PIN1, PIN3 and PIN7) are targeted
by MP/ARF5 [91]. Thus, this could be another possible alternatively route for regulating PIN gene
expression by BRM. These data indicate that chromatin remodeling of PIN genes plays a crucial role in
regulating PIN expression levels.

5.2. Post-Transcriptional Modifications of PIN Proteins

In recent years, much progress has been made in understanding the activation and regulation of
PIN proteins by phosphorylation, as well as the possible mechanisms of phosphorylation-mediated
PIN subcellular trafficking [6,21,89,92,106–109]. Phosphorylation is essential for PIN polar distribution
in the PM, which is coordinated by a set of protein kinases [6,21,106]. These kinases are generally
from three protein kinase families, i.e., AGCIII kinases, CRKs and mitogen-activated protein (MAP)
kinases (MPKs) [6]. In the AGCVIII kinases, PID and its paralogs WAVY ROOT GROWTH 1 (WAG1)
and WAG2 are distributed on the PM without polarity and directly phosphorylate PIN proteins at
three conserved sites, i.e., S1–S3, to facilitate the polar PIN trafficking [64,110]. While FyPP1/3,
SAL1 and protein phosphatase 2A (PP2A/RCN1) form a PP6-type phosphatase holoenzyme,
which antagonizes the phosphorylation status made by PID [79,111,112]. In cotton, an NF-YB subfamily
gene, GhL1L1, specifically targeted and activated GhPP2AA2 to regulate the activity of GhPIN1 during
embryonic development [113]. In tomato, PP2C might phosphorylate SlPIN1 to regulate pedicel
abscission [114]. Another protein, TOPP4, also acts antagonistically against PID to regulate pavement
cell morphogenesis by changing the phosphorylation status of PIN1 [78]. D6PK and its three paralogs
D6PK-like (D6PKL) 1–3 from AGCVIII kinases also phosphorylate PIN proteins at S1–S3 together
with two additional serine residues, S4 and S5 [115]. PIDs and D6PKs have different phosphosite
preferences; PIDs prefer S1–S3; while D6PKs more like the non-conserved phosphosite S4–S5 [115].
D6PK has a polar distribution on the PM in a phospholipid-dependent manner, with the help of
phosphatidylinositol 4-phosphate 5-kinases PIP5K1 and PIP5K2 [116]. It localizes on the basal PM,
together with the polarly-localized PIN1, PIN2 or PIN4 [76,92]. However, D6PK and PIN2 have
different polar localizations in root epidermis cells, suggesting that PIN is not responsible for the polar
localization of D6PK [76]. Recently, another AGC-family kinase, PROTEIN KINASE ASSOCIATED
WITH BRX (PAX), has been shown to co-localize with PIN proteins and activate PIN-mediated auxin
polar transport by timing the development of protophloem sieve element differentiation; meanwhile,
BREVIS RADIX (BRX) has strong inhibitory effects on this stimulation [117]. CRK5, which is a
PM-localized receptor-like protein kinase, especially phosphorylated the HL of PIN2 to facilitate a
gravitropic response in Arabidopsis [77]. In Solanum tuberosum, calcium-dependent protein kinase 1
(CDPK1), which is regulated by miRNA 390 at the post-transcriptional level, phosphorylates StPIN4 to
regulate potato development [118]. The MAP kinase kinase 7 (MKK7)-MPK6 cascade phosphorylates
PIN1 at serine 337 (S337) to control shoot branching; this phosphorylation affects the basal localization
of PIN1 in xylem parenchyma cells [119]. Besides, phosphorylation of PIN1 at S337/T340 is essential
for PIN1 polarity and auxin distribution, and S337/T340 is not directly targeted by PID [120]. Recently,
MPK4 and MPK6 have been found to phosphorylate three threonine residues of PIN1, i.e., T227,
T248 and T286, these three threonine residues are part of the three TPRXS motifs, which also comprise
three highly-conserved serine sites (S1–S3) targeted by PID [66].

For a long time, it was proposed that the phosphorylation of PIN proteins at phosphosites S1–S3
controls the PIN polarity, and the unphosphorylated PIN proteins localize at the basal PM of root cells
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in the model of PID/WAG-dependent PIN polarity [89,120,121]. However, a recent study showed that
both D6PKs and PID/WAGs can activate PIN1 by phosphorylating at the same four serines S1–S4,
but PIN1 phosphorylated by D6PKs localizes at the basal PM with Brefeldin A (BFA) sensitive [106].
Thus, the differential effects of D6PKs and PID/WAGs on PIN1 polarity cannot be fully explained
by phosphosite preferences [106]. Taking all of this together, three possible mechanisms underlying
the effects of PID/WAGs on the PIN polarity have been proposed: Ca2+ and the Ca2+-dependent
proteins TOUCH3 (TCH3), PID-binding protein 1 (PBP1) and the CRK5 pathway; ENP/NPY/MAB4;
and peptidyl-prolyl cis/trans isomerases (Pin1At) together with the MKK/MPK cascade [6].

5.3. PIN Protein Subcellular Trafficking and Degradation

The polar distribution of PINs is maintained by continuously, dynamically cycling PIN proteins
between the PM and endosomal compartments [21]. ADP-ribosylation factor guanine-nucleotide
exchange factors (ARF-GEFs) GNOM, which act at the Golgi apparatus, coordinate the polar
distribution of PIN1 [21,122,123]. An ARF family member, ARF1A1C, and a small GTPase RAS
GENES FROM RAT BRAINA1b (RabA1b) were shown to recycle PIN proteins to the PM [124,125].
The hydroxylated C24- and C26-acyl-chain sphingolipids are enriched at the trans-Golgi network
(TGN) subdomains mediating PIN2 polar sorting to the apical membrane of root epithelial cells in
Arabidopsis [126]. Phospholipase A2 (PLA2), which produces lysophosphatidylethanolamine, has been
demonstrated as essential for PIN protein subcellular trafficking to the PM [127]. Further studies have
found that choline transporter-like 1 (CTL1) acts at both the secretory and clathrin-coated vesicles
of the TGN to regulate trafficking of PIN1 and PIN3 from the TGN to PM through mediating the
homeostasis of several membrane lipids, including sphingolipids [128]. In addition to sphingolipid,
the balanced sterol composition mediated by sterol methyltransferase 1 (SMT1) also contributes to
the polarity of PINs [129]. A recent report pointed out that 14-3-3 epsilon members regulated the
polar trafficking of PIN proteins and the recycling processes via endocytosis [130]. More recently,
FORKED 1 (FKD1) together with FORKED LIKE 2 (FL2) and FL3 function redundantly to regulate
PIN1 asymmetric localization by affecting its secretory pathway in developing veins [131].

The clathrin-mediated endocytosis (CME) plays a crucial role in the internalization of
PIN proteins from the PM [132]. Two PI4P 5-kinases, PIP5K1 and PIP5K2, control the minor
phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) together to regulate CME for
PIN internalization [133]. DRP1A and AP2A1 target PIN1 and PIN2, respectively, to participate
in CME for PIN protein recycling, which is essential for the proper distribution of PIN proteins
coordinating internal and external developmental signaling [80,81]. The auxin receptor, auxin-binding
protein 1 (ABP1), was shown to promote the CME by recruiting clathrin to the PM and mediating the
inhibitory effects of auxin on CME [134]. Further study identified Rho-like GTPase 6 (ROP6) and its
downstream effector, ROP-interactive CRIB motif-containing protein 1 (RIC1), as the intermediate
signaling components between ABP1 and clathrin [135]. However, a recent report confirmed that ABP1
was not a key component in auxin signaling during the developmental processes in Arabidopsis [136],
suggesting that this model should be carefully re-examined. CATHERIN HEAVY CHAIN 1 (CHC1)
and CHC2 are functionally required for PIN proteins’ polarity by internalizing PINs via CME [137],
and the CLATHRIN LIGHT CHAIN 2 (CLC2) and CLC3 affect the CHC membrane association,
as well as auxin-mediated internalization of PM proteins, including PINs [138]. In addition to clathrin,
some other proteins also participate in internalizing PINs through endocytosis, such as ARF-GEF
GNOM; ARF-GTPase-activating protein, vascular network defective 3 (VAN3); GNOM-LIKE1
(GNL1); early endosomal components ARF GEF BEN1 (BFA-visualized endocytic trafficking
defective1); the Sec1/Munc18 family protein BEN2; and the BIG family ARF GEF BEN3 [139–144].
The endocytosis-dependent internalization of PIN2 was reduced in the S-nitrosoglutathione reductase
1–3 (gsnor1–3) mutant, suggesting that NO signaling has negative effects on the internalization of
PIN2 [145]. More recently, endogenous NO has been demonstrated to regulate the re-localization
of PIN2 in epidermal cells, which is essential for an early gravitropic response in roots [146].
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Another negative factor of PIN endocytosis was identified as ALTERED DEVELOPMENT PROGRAM
1 (ADP1); overexpression of ADP1 inhibited the PIN1 internalization processes [108]. In addition to
endocytosis, SEC6/8 and EXO70A1 mediated the exocyst complex involved in auxin polar transport
through the recycling of PIN proteins [147,148].

Aside from polar recycling and internalization via CME, the regulation of PIN proteins’ turnover
in a ubiquitination-dependent manner in the vacuole also contributes to the PIN polarity at the
PM [149]. AUXIN RESISTANT 1 (AXR1), MODULATOR OF PIN 2 (MOP2) and MOP3 were identified
as regulators of the stability of PIN proteins [150,151]. Two retromer proteins, sorting nexin 2 (AtSNX2)
and vacuolar protein sorting 29 (VPS29), have been shown to regulate the PIN protein turnover by
rescuing PIN proteins from degradation and returning them back to their recycling pathways [152,153].
The adaptor protein 3 (AP-3) and the endosomal sorting complex required for transport (ESCRT)
participate in the sorting of vacuolar PIN proteins for degradation [154–156]. The leaf vein pattern
established by PIN1 is regulated by vesicular transport UNH (a VPS51 homolog), which targets PIN1
to a possible destination lytic vacuole for degradation [82]. Interestingly, the application of histone
deacetylase inhibitors (HDIs) abolished PIN1 protein without reduced transcripts, suggesting that
epigenetic regulation may have a role in controlling the degradation of PIN1 [157]. Additionally, several
other regulators have been identified as auxin-regulated genes, participating in auxin-mediated PIN
polarity rearrangements in an auxin feedback manner, including a WRKY gene member, WRKY23 and
a phosphatidylinositol transfer PATELLINS (PATL) [158,159]. However, their downstream components
in the auxin signaling pathways are yet to be explored.

6. Functions of PIN Proteins in Plants

In Arabidopsis, the eight PIN genes have diverse spatiotemporal dynamic gene expression profiles,
differential posttranscriptional regulation manners, as well as invariant protein structures with
different subcellular localizations, which result in distinguished functions in development and growth
processes mediated by auxin signaling [107,160–163]. For instance, PIN1 is involved in the auxin
basipetal movement, organ initiation, floral bud formation, leaf shape formation, vein patterning,
shoot gravitropic responses, as well as shoot vascular development [25,82,160,163,164]. PIN2, which is
mainly expressed in cortical and epidermal cells of root-tip elongation zones and embryogenesis,
has been demonstrated to be involved in basipetal transport and gravitropism [77,162,164–167].
PIN3 participates in the formation of the lateral root at the early steps, apical hook formation
and maintenance, as well as gravitropic and phototropic responses [99,108,168,169]. Furthermore,
PIN3 has been demonstrated to play a role in the ratio of red light- and far red light-induced
shade avoidance and the reduction of lateral root density, which closely links to fitness under the
competition for light [170,171]. Similarly to PIN3, PIN4 also has a role in phototropic response and
apical hook development [108,172]. PIN4, which expresses in the meristems of developing and
mature roots, facilitates the sink-driven auxin gradients below the quiescent center to regulate root
patterning [161]. PIN5, which localizes at the ER, participates in a series of auxin-related developmental
processes, including lateral root initiation, cotyledon expansion, early embryogenesis, root and
hypocotyl growth, by mediating the subcellular compartmentalization of auxin [60]. PIN6 has a
dual localization at the PM and ER to regulate both auxin transport across the PM and intracellular
auxin homeostasis [62]. Further study has shown that the dual localization of PIN6 is determined
by phosphorylation, and the subcellular location of PIN6 fine tunes the bolting [61]. PIN6 also has a
broad role in auxin-signaling-mediated developmental processes, such as the lateral/adventitious root
organogenesis, root waving, primary/lateral root development and growth, root hair outgrowth
and shoot apical dominance [62,173,174]. PIN7 is also a mediator of the gravitropic response,
which negatively controls the radial growth of root systems [175]. PIN8 is an ER-localized protein
that regulates subcellular auxin homoeostasis, which controls the development processes of pollen,
male gametophyte and the sporophyte [176,177].
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In addition to Arabidopsis, some progress addressing the important roles of these auxin efflux
carriers in auxin-mediated processes of development and growth has been made in some other plant
species. In a plant close to Arabidopsis, Cardamine hirsuta, PIN1 was involved in promoting leaflet
initiation [32]. In maize, ZmPIN1 proteins were required for cell and tissue differentiation during maize
embryogenesis and endosperm development, as well as post-embryonic vegetative and reproductive
development [178]. In Solanum lycopersicum, SlPIN1 negatively controlled follower abscission by
regulating auxin accumulation at the ovary and abscission zone [114]. The co-silencing of SlPIN 4
and 5 changes the shoot architecture to have a large angle between the base and the shoot apical
meristem, but did not affect fruit development [52]. In Nicotiana tabacum, NtPIN4 was induced by auxin
and involved in auxin-dependent branching by negatively regulating the growth of axillary bud [46].
In Medicago truncatula, PINs have a role in forming the root nodules in an auxin-dependent manner by
silencing MtPIN2/3/4, which reduced the number of nodules [44,45,179]. In cotton, PIN proteins have
a role in regulating fiber growth, and the heterologous overexpression of GhPIN1a_Dt, GhPIN6_At
and GhPIN8_At in Arabidopsis changed the number and size of leaf trichomes [41]. In rice, OsPIN2 was
expressed in epidermal and cortex cells of roots, and it regulated the gravitropic responses and root
system architecture [180]. Overexpression of OsPIN2 led to increased aluminum internalization by
enhancing the endocytic vesicular trafficking capacity in root apex [181].

In woody plants, overexpression of PtPIN9 from Populus tremula × Populus alba promoted
lateral root formation [182]. Meanwhile, overexpression of PtoPIN3a led to the observation of a
shrunken leaf phenotype, suggesting that this gene is involved in Populus leaf morphogenesis [28].
In apple, the reduced activities of natural allelic MdPIN1b were proposed to be responsible for the
dwarfing tree architecture phenotype in Malling 9 rootstock [35]. In Malus × domestic Royal Gala,
heterologous overexpression of MdPIN1 in Arabidopsis led to changes in root architecture with enhanced
phototropic and geotropic responses [34].

7. Conclusions and Perspectives

To date, much progress has been made in understanding the roles of PIN proteins on
developmental and growth processes. The activities of PIN proteins are fine-tuned at multiple layers,
including transcriptional regulations, post-transcriptional modifications for subcellular trafficking,
recycling, endocytosis and vacuolar trafficking for degradation. The identification of PIN proteins in
diverse plant species led us to update our understanding of the evolutionary history of PIN proteins in
the plant kingdom. However, the evolutionary history of PIN proteins is still in debate. Extensive work
has been done to draw a comprehensive regulatory network of PIN proteins, and posttranslational
modifications beyond phosphorylation that regulate PIN proteins and their distribution might be
brought under the spotlight soon, since information regarding these aspects has barely been reported
so far. Although three possible mechanisms interpreting the different effects of PID/WAGs on
the PIN polarity have been proposed, the exact mechanisms still remain unclear. To achieve this
goal, genetic methods combined with the computational analysis of large-scale datasets, such as
transcriptome, proteomics and metabolome, may contribute to identifying new regulatory layers and
the associated candidates. The successful identification of WRKY23 and PATL as the regulators of PIN
polarity rearrangements from transcriptome datasets has shown the power of this approach [158,159].
Thus, the co-expression network and the protein interacting network of PIN proteins presented
here might provide a range of potential candidates regulating PIN actions, which await discovery.
These advanced techniques have allowed for the more precise dissection of the dynamic localization
of PIN proteins in the PM. This leads to the renewal of our understanding of the mechanisms of
phosphorylation underlying PIN protein polar localizations. Moreover, the methods established
regarding the PIN proteins could be valuable toolkits to dissect the regulatory machinery that
controls the polarity of other PM proteins and find the potential key regulators involved in these
processes. Although our understanding of PIN proteins has been based on the model plant Arabidopsis,
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the knowledge gained from this could facilitate the discovery of these processes in other plants with
new features.
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165. Vieten, A.; Vanneste, S.; Wiśniewska, J.; Benková, E.; Benjamins, R.; Beeckman, T.; Luschnig, C.; Friml, J.
Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN
expression. Development 2005, 132, 4521–4531. [CrossRef] [PubMed]

166. Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P.H. The Arabidopsis thaliana AGRAVITROPIC
1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl. Acad. Sci. USA 1998,
95, 15112–15117. [CrossRef] [PubMed]

167. Rahman, A.; Takahashi, M.; Shibasaki, K.; Wu, S.; Inaba, T.; Tsurumi, S.; Baskin, T.I. Gravitropism of
Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells.
Plant Cell 2010, 22, 1762–1776. [CrossRef] [PubMed]

168. Haga, K.; Sakai, T. PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced
phototropism in Arabidopsis. Plant Physiol. 2012, 160, 763–776. [CrossRef] [PubMed]

169. Rakusová, H.; Abbas, M.; Han, H.; Song, S.; Robert, H.S.; Friml, J. Termination of shoot gravitropic responses
by auxin feedback on PIN3 polarity. Curr. Biol. 2016, 26, 3026–3032. [CrossRef] [PubMed]

170. Keuskamp, D.H.; Pollmann, S.; Voesenek, L.A.; Peeters, A.J.; Pierik, R. Auxin transport through
PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc. Natl. Acad. Sci. USA
2010, 107, 22740–22744. [CrossRef] [PubMed]

171. van Gelderen, K.; Kang, C.; Paalman, R.; Keuskamp, D.H.; Hayes, S.; Pierik, R. Far-red light detection in the
shoot regulates lateral root development through the HY5 transcription factor. Plant Cell 2018, 30, 101–116.
[CrossRef] [PubMed]

172. Zadnikova, P.; Petrasek, J.; Marhavy, P.; Raz, V.; Vandenbussche, F.; Ding, Z.; Schwarzerova, K.; Morita, M.T.;
Tasaka, M.; Hejatko, J.; et al. Role of PIN-mediated auxin efflux in apical hook development of
Arabidopsis thaliana. Development 2010, 137, 607–617. [CrossRef] [PubMed]

http://dx.doi.org/10.1105/tpc.110.075424
http://www.ncbi.nlm.nih.gov/pubmed/20729380
http://dx.doi.org/10.1038/cr.2011.99
http://www.ncbi.nlm.nih.gov/pubmed/21670741
http://dx.doi.org/10.1016/j.cub.2014.09.014
http://www.ncbi.nlm.nih.gov/pubmed/25438943
http://dx.doi.org/10.1007/s00299-013-1474-6
http://www.ncbi.nlm.nih.gov/pubmed/23820978
http://dx.doi.org/10.1371/journal.pgen.1007177
http://www.ncbi.nlm.nih.gov/pubmed/29377885
http://dx.doi.org/10.1242/jcs.204198
http://www.ncbi.nlm.nih.gov/pubmed/28687624
http://dx.doi.org/10.1016/S1369526602000031
http://www.ncbi.nlm.nih.gov/pubmed/12495745
http://dx.doi.org/10.1016/S0092-8674(02)00656-6
http://dx.doi.org/10.1093/emboj/17.23.6903
http://www.ncbi.nlm.nih.gov/pubmed/9843496
http://dx.doi.org/10.1126/science.282.5397.2226
http://www.ncbi.nlm.nih.gov/pubmed/9856939
http://dx.doi.org/10.1038/nature03184
http://www.ncbi.nlm.nih.gov/pubmed/15635403
http://dx.doi.org/10.1242/dev.02027
http://www.ncbi.nlm.nih.gov/pubmed/16192309
http://dx.doi.org/10.1073/pnas.95.25.15112
http://www.ncbi.nlm.nih.gov/pubmed/9844024
http://dx.doi.org/10.1105/tpc.110.075317
http://www.ncbi.nlm.nih.gov/pubmed/20562236
http://dx.doi.org/10.1104/pp.112.202432
http://www.ncbi.nlm.nih.gov/pubmed/22843667
http://dx.doi.org/10.1016/j.cub.2016.08.067
http://www.ncbi.nlm.nih.gov/pubmed/27773568
http://dx.doi.org/10.1073/pnas.1013457108
http://www.ncbi.nlm.nih.gov/pubmed/21149713
http://dx.doi.org/10.1105/tpc.17.00771
http://www.ncbi.nlm.nih.gov/pubmed/29321188
http://dx.doi.org/10.1242/dev.041277
http://www.ncbi.nlm.nih.gov/pubmed/20110326


Int. J. Mol. Sci. 2018, 19, 2759 21 of 21

173. Cazzonelli, C.I.; Vanstraelen, M.; Simon, S.; Yin, K.; Carron-Arthur, A.; Nisar, N.; Tarle, G.; Cuttriss, A.J.;
Searle, I.R.; Benkova, E.; et al. Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and
auxin-mediated development. PLoS ONE 2013, 8, e70069. [CrossRef] [PubMed]

174. Nisar, N.; Cuttriss, A.J.; Pogson, B.J.; Cazzonelli, C.I. The promoter of the Arabidopsis PIN6 auxin
transporter enabled strong expression in the vasculature of roots, leaves, floral stems and reproductive
organs. Plant Signal. Behav. 2014, 9, e27898. [CrossRef] [PubMed]

175. Rosquete, M.R.; Waidmann, S.; Kleine-Vehn, J. PIN7 auxin carrier has a preferential role in terminating radial
root expansion in Arabidopsis thaliana. Int. J. Mol. Sci. 2018, 19, 1238. [CrossRef] [PubMed]

176. Dal Bosco, C.; Dovzhenko, A.; Liu, X.; Woerner, N.; Rensch, T.; Eismann, M.; Eimer, S.; Hegermann, J.;
Paponov, I.A.; Ruperti, B.; et al. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier
involved in intracellular auxin homeostasis. Plant J. 2012, 71, 860–870. [CrossRef] [PubMed]

177. Ding, Z.; Wang, B.; Moreno, I.; DupláKová, N.; Simon, S.; Carraro, N.; Reemmer, J.; PěNčíK, A.; Chen, X.;
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