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A B S T R A C T   

Finding the 3D structure of large, multi-subunit complexes is difficult, despite recent advances in cryo-EM 
technology, due to remaining challenges to expressing and purifying subunits. Computational approaches that 
predict protein-protein interactions, including Direct Coupling Analysis (DCA), represent an attractive alterna
tive for dissecting interactions within protein complexes. However, they are readily applicable only to small 
proteins due to high computational complexity and a high number of false positives. To solve this problem, we 
proposed a modified DCA approach, a powerful tool to predict the most likely interfaces of protein complexes. 
Since our modified approach cannot provide structural and mechanistic details of interacting peptides, we 
combine it with Molecular Dynamics (MD) simulations. To illustrate this novel approach, we predict interacting 
domains and structural details of interactions of two Integrator complex subunits, INTS9 and INTS11. Our 
predictions of interacting residues of INTS9/INTS11 are highly consistent with crystallographic structure. We 
then expand our procedure to two complexes whose structures are not well-studied: 1) The heterodimer formed 
by the Cleavage and Polyadenylation Specificity Factor 100-kD (CPSF100) and 73-kD (CPSF73); 2) The heter
otrimer formed by INTS4/INTS9/INTS11. Experimental data supports our predictions of interactions within 
these two complexes, demonstrating that combining DCA and MD simulations is a powerful approach to 
revealing structural insights of large protein complexes.   

1. Introduction 

Traditional methods of studying protein association, including the 
yeast two-hybrid and co-immunoprecipitation analyses, are reliable in 
characterizing protein complexes, but they remain laborious and time- 
consuming. Therefore, computational methods to predict protein- 
protein interactions are an attractive alternative to experimental 
methods. One such method is evolutionary coupling analysis. The un
derlying idea of evolutionary coupling is that to preserve function, a 

mutation in one of the interacting residues is likely to be compensated 
by a complementary mutation in the other. The key advantage of this 
approach is that interactions between residues are detected not only 
based on their physical proximity (as in co-crystallization studies) but on 
evolutionary pressure and, therefore, are more likely functional. For 
decades, the coevolution of residues in protein sequences has been used 
to predict residue-residue interactions (contacts) in small bacterial 
proteins [1–3]. As observed by us and others [4–8], with the rapid in
crease in sequenced animal genomes, these methods also became 
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feasible for protein interactions in metazoans, including humans, and 
larger proteins and even protein complexes [4,5,8–19]. 

Specific interactions between proteins impose evolutionary con
straints on the interacting partners. For instance, mutation of a contact 
residue in one partner generally impairs binding but may be compen
sated by a complementary mutation in the other partner. Such coevo
lution of interaction partners results in correlations between their amino 
acid sequences that can be observed by analyzing Multiple Sequence 
Alignment (MSA) of the interacting proteins across multiple species and 
can be used to predict residue–residue contacts [2,20–22]. Recently, 
statistical physics methods were used to disentangle signals related to 
actual residue interactions (direct coupling) from non-meaningful cor
relations between MSA columns. This has resulted in a new class of 
methods, including the Direct Coupling Analysis (DCA), that can reliably 
predict protein structures using only sequence information provided 
enough homologous sequences are available. The threshold of 0.7 for 
the ratio of homologous sequences divided by combined protein length 
expressed in amino acids has been proposed for reliable DCA application 
[23]. However, this condition is usually unmet for large proteins (like 
>500 aa proteins discussed in this paper). Therefore, the applications of 
DCA methods to large proteins are limited by the high number of false 
positives generated. To reduce the number of false positives, we recently 
proposed using a local convolution of evolutionary coupling (EC) scores 
with a Gaussian kernel [6,7,24]. Although the modified DCA method 
can accurately predict the binding interfaces, it cannot provide struc
tural details of interacting residues. As previously shown, such infor
mation could be obtained using biased Molecular Dynamics (MD) 
simulations [7,8]. Here, we will adapt the two-step procedure (unbiased 
prediction of binding interface and biased MD) to study interactions 
within two cellular complexes critical to transcription termination: the 
Integrator complex (INT) and the Cleavage and polyadenylation ma
chinery (CPA). Both complexes have been investigated structurally in 
various capacities [25–33], but not all aspects have been elucidated due 
to dynamic or disordered regions. Thus, DCA is a potential alternative to 
generating new insight into protein interactions that can bridge the gap 
of cryo-EM or AlphaFold predictions. 

The Integrator complex (INT) is a critical transcriptional component 
in regulating the 3′-end processing of non-coding RNA (reviewed in 
[34]). INT has been shown to broadly participate in transcription pro
cesses at protein-coding genes by associating with paused RNA poly
merase II [35–37]. Several INT subunits have been found to play 
essential roles in human brain development [38], cancer [39], lung 
function [40], embryogenesis [41], and adipose differentiation [42]. 
Among at least the 17 subunits of Integrator, subunits 9 and 11 
(INTS9-INTS11) constitute a catalytic core of INT and are paralogs of 
two 100 kDa and 73 kDa subunits of the Cleavage and Polyadenylation 
Specificity Factor (CPSF) [25,26]. INTS11 forms a stable complex with 
INTS9 through their C-terminal domains (CTDs) that also exist in 
CPSF73 and CPSF100 but with poor sequence conservation. [26,43] The 
crystal structure of the INTS9/INTS11 CTD complex has been reported 
at 2.1 Å resolution, which explains the high binding affinity for the two 
proteins [25]. Moreover, the binding of INTS9/INTS11 is a prerequisite 
to recruiting INTS4, which forms the INTS4/INTS9/INTS11 Integrator 
Cleavage Module (ICM) [26,29,33]. Like their INT counterparts, CPSF73 
and CPSF100 are in a stable complex and are also required for 3′-end 
processing of all metazoan pre-mRNAs [44]. Although the crystal 
structures of human CPSF73 and yeast CPSF100 individually [45] have 
been reported, not all aspects of their interaction have been elucidated 
using cryo-EM [27]. 

Here, we use the modified DCA approach to accurately predict the 
binding residues of the INTS9/INTS11 heterodimer and MD simulations 
to determine the mechanistic and structural details of the interactions. 
We also study the interaction between INTS9 and INTS11 paralogs, 
CPSF73 and CPSF100, and identify their most likely binding interfaces 
as the C-terminal domains of both proteins. Although multiple structures 
of the Integrator Cleavage Module have been solved [26,29,33], not all 

regions of the subunit interfaces have been defined. Thus, we used our 
two-step procedure to show that such heterotrimerization involves the 
N- and C-terminal domains of INTS4. As a utility, the DCA approach will 
aid in de novo protein-protein interface predictions and help guide 
experimental validations, thus speeding up the complete structure 
description. 

2. Results 

To reduce running time, we built our method around a variant of 
DCA, the pseudo-likelihood maximization Direct-Coupling Analysis 
(plmDCA) [46], which has a lower computational cost than traditional 
DCA. Therefore, the plmDCA was used to compute the evolutionary 
coupling score (ECs) and to build the corresponding coupling matrix 
between proteins. 

2.1. Modified Direct Coupling Analysis (DCA) approach 

DCA algorithms have been shown to produce a large number of false 
positives, but we recently suggested [6] that post-processing of DCA 
map data, based on the local convolution with Gaussian kernel, may lead 
to reducing noise in the prediction of most likely interacting residues 
[6]. A schematic description of the method is presented in Fig. 1. 

The strength of this approach is that to improve our prediction and 
avoid false positives in DCA analysis, we use local convolution of ECs. 
Gaussian convolution is applied to local structural elements (here 
defined by secondary structure, such as α helix, β sheet, and coil, as 
predicted by PSIPRED [47]) to count the contribution of neighboring 
residues with an assumption that contacts between proteins occur 
locally and drive residues evolving within the same structural elements. 
In our experience, an isolated strong EC peak surrounded by low EC 
values for residues belonging to different secondary structure elements 
is more likely to be a false positive than a cluster of less high EC values 
for residues in the same secondary structure element. Therefore, a 
convolution of EC scores with a kernel based on secondary structure 
information can predict the more likely interacting residues. 

The convolution algorithm depends on several parameters, including 
the number of interacting residues on each side, l, the variances of the 
Gaussian, and the predicted structures. The convolved EC score for a pair 
of residues (i,j) is Ql

i,j, 

Ql
i,j =

∑i+l

∝=i− l

∑j+l

β− j− l
Pi,jKa,b(∝, β)

where Pi,j are the EC scores computed using the evolutionary 
coupling algorithm and. 

Ka,b(∝, β) = exp
(
−
{
a∝2 +bβ2} )is the Gaussian kernel function with 

parameters a and b related to the variances. The critical innovation over 
the previous variant of the DCA method we proposed in Fongang et al. 
[6] is to derive the optimal values of the parameters a b, based on the 
interaction details as characterized by a previous crystallographic study. 
Second, based on previous experience and the argument that an inter
action interface is expected to affect both proteins in a statistically 
similar manner, we decided only to consider convolution models 
assuming a = b. The parameters were optimized using the 
INTS9/INTS11 complex for which structural information of their inter
acting C-terminal domains was available. We started the optimization 
from Evolutionary Coupling (EC) scores of INTS9/INTS11, which were 
generated based on multiple sequence alignments of both proteins over 
204 species. Next, we converted EC scores into DCA maps representing 
interactions between residues of the two proteins (Fig. 2a). Finally, the 
optimal values of a, b, and l were selected to maximize the overlap be
tween the prediction and the experimental distances for INTS9/INTS11 
interaction and also used for other cases for which crystal structures are 
unknown. The optimized parameters for the Gaussian convolution are 
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shown in Table 1. 

2.2. Modified DCA correctly predicts the interacting residues of INTS9/ 
INTS11 heterodimer 

To validate our method, we used it to predict interactions of the 

INTS9 and INTS11 heterodimer, whose interface has been solved by 
crystallography. However, the raw DCA method applied to predicting 
INTS9/INTS11 interactions generated a very high level of statistical 
background noise in the EC map, leading to false positives, thereby 
making the identification of binding residues very challenging (Fig. 2a). 
Therefore, we applied our local convolution algorithm to the EC map of 

Fig. 1. Prediction of protein-protein interactions based on coevolutionary analysis. (a) The principle of coevolution analysis. Coevolution between residues of 
interacting proteins can be used to predict the binding interfaces as described by Hopf et al. [23]. (b) Optimizing the coevolution maps. For large proteins, the 
predictions are hindered by false positives resulting from statistical background noise. Genuine interactions between proteins generally involve stretches of residues 
rather than individual amino acids. Therefore, local convolution of evolutionary scores and structural properties can reduce the noise and filter out the false positives, 
thus allowing the correct identification of the interacting regions, as described by Fongang et al. [6]. 

Fig. 2. Convolved ECs of INTS9/INTS11 reveal most likely interacting residues. The local convolution method was applied to the top 1% of raw ECs (A) using 
different parameters representing the length of the interacting residues l, and the variances of the Gaussian kernels a and b. (B): l = 18 AA, a = b = 0.1; (C): l = 21AA, 
a = b = 0.05; (D): l = 21AA, a = b = 0.01. The green rectangle on (D) delimits the most likely interacting region. 
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INTS9/INTS11 with variable parameters describing the variances of the 
Gaussian kernel and the lengths of stretches of interacting residues 
(Figs. 2b-2d). Indeed, as we changed the convolution parameters, 
stretches of residues starting at residue 553 of INTS9 and 422 of INTS11 
yielded highly optimized coevolutionary scores compared to the entire 
DCA map. The optimized parameters corresponding to the final 
convolved DCA map (Fig. 2d) are l = 21 AA, a = b = 0.01, where l 
corresponds to the number of interacting residues, and a and b are pa
rameters of the Gaussian kernel function with equal variances. Applying 
this algorithm indicated that the C-terminal domains of INTS9 and 
INTS11 contain the most likely interacting residues of the INTS9/ 
INTS11 heterodimer. 

Experimental evidence demonstrates that INTS9 and INTS11 interact 
through their C-terminal domains (CTD). Indeed, the report by Wu et al. 
[25] explains the molecular basis and the functionality of the 
INTS9/INTS11 heterodimer as well as the crystal structure of the CTD at 
2.1 Å. To assess the accuracy of our predictions, we compared the pairs 
of residues (one from INTS9, one from INTS11) at distances less than 
6.0 Å to the pairs of interacting residues we predicted. Using this cri
terion for comparison, we observed excellent agreement between our 
modified DCA predictions and the INTS9/INTS11 CTD crystal structure. 
We found that 73% of the pairs with the top 5% highest convolved 
signals are within the CTD of both proteins, and 81% of the experi
mentally determined contacts were predicted by our method. Also, 
convolved ECs are correlated with structural information, including 
solvent accessibility, secondary structure, and physical-chemical prop
erties. This test shows that our method has the potential to accurately 
predict residues involved in protein-protein interactions. It also confirms 
that the previously observed contact between the CTDs of INTS9 and 
INTS11 is a physiologically significant interaction subject to positive 
evolutionary pressure (see Fig. 3a). Finally, we need to note that we used 
the INTS9/INTS11 structure to validate the method, while we also used 
the same interaction to optimize the convolution procedure parameters. 
Nonetheless, the amount of information recycled here is minimal. The 
INTS9/INTS11 structure was only used to optimize the values of the 
three parameters (a, b, and l), while the validation is based on a very 
large number (>105) of EC scores. 

2.3. Predicting Interacting interfaces of the CPSF100/CPSF73 
heterodimer 

The validation of the predicted INTS9/INST11 interfaces allowed us 
to expand our study to the Cleavage and Polyadenylation Specificity 
Factor (CPSF) complex, which is involved in the 3′-end cleavage of pre- 
mRNA prior to polyadenylation. Within the CPSF complex, CPSF73 has 
been shown to form a stable and functional heterodimer with CPSF100. 
Moreover, CPSF100 and CPSF73 are structurally very similar to INTS9 
and INTS11 and are annotated as their paralogs. INTS11 contains its 
highest degree of conservation with CPSF73 over much of the N-termi
nal MBL domains, and the β-CASP domains are highly divergent at the C- 
terminal regions [43]. CPSF100 and INTS9 are inactivated through 
changes in key catalytic residues, but INTS9, with a molecular mass of 
74 kDa, is much smaller than CPSF100. Studies have shown that, like the 
INTS9/INTS11 heterodimer, CPSF100 and CPSF73 rely on their C-ter
minal domains to form a dimer, crucial to their function in UsnRNA 
biogenesis. [48,49] However, not all information is available on the 
structural basis of the CPSF100/CPSF73 heterodimer, and computa
tional methods can provide further insights. 

As with INTS9/INTS11, we used 138 pairs of CPSF100 and CPSF73 
orthologous sequences from metazoans to compute DCA maps of both 
proteins (Fig. 4a). Then, we applied the local convolution of ECs scores 
with optimized parameters obtained from the previous case to highlight 
the most likely interacting residues (Fig. 4b-d). This analysis predicts 
that the most likely interacting residues of CPSF100/CPSF73 involve 
their respective C-terminal domains (Fig. 4d and Fig. 3b). Indeed, 88% 
of the top 5% highest convolved EC scores are within the region 
comprising the last 115 and 164 amino acids of CPSF100 and CPSF73, 
respectively. The second most likely interacting residues comprised the 
region from 367 to 533 on CPSF100 and the CTD of CPSF73 (Fig. 4d). 
These predicted interactions are similar to those of INTS9/INTS11, 
highlighting the striking similarity between these complexes. Moreover, 
the findings obtained using our modified DCA method are consistent 
with those obtained biochemically by Michalski et al. [50] in that both 
the C-terminal domains of CPSF100 and CPSF73 are required for the 
core cleavage complex formation and structurally with the cryo-EM 
based models of the histone pre-mRNA processing complex [27]. 

2.4. Predicting interacting residues of the INTS4/INTS9/INTS11 
heterotrimer 

Encouraged by the results of our modified DCA approach for the 
above two heterodimers, we applied our method to a heterotrimeric 
complex. Predicting the structure of heterotrimers presents an addi
tional challenge to current DCA analyses because, in heterotrimers, in
direct interactions may be viewed as couplings between residues, thus 
significantly increasing the number of possible indirect links between 

Table 1 
Optimized values of the Gaussian convolution. Parameters a and b are the 
optimized variances of the Gaussian Kernel, l is the average length of the interval 
with interacting residues and γ = 1 if the residues belong to the same secondary 
structure, if not γ = 2.   

a b l (AA) 

γ ¼ 1 0.01 – 0.05 0.01 – 0.05 17–24 
γ ¼ 2 0.001–0.008 0.001 – 0.008 17–24  

Fig. 3. (A) Example of quality of contact inference. After EC averaging and secondary structure information refinement, our contact predictions are highly 
consistent with crystallographic contacts from the INTS9/INTS11 dimer structure. Green: predicted contacts that were confirmed experimentally, gray: experimental 
contacts that were not predicted, empty blue circles: predicted contacts that were not experimentally verified. X- and Y-axes: positions in INTS9 and INTS11 (only the 
interacting C-terminal region is shown). (B) Optimized coevolution map of the C-Terminal Domains from the CPSF100/CPSF73 heterodimer. The figure shows 
the predicted and optimized EC scores (l = 21AA, a = b 0.01, top 1%). Grey indicates the predicted interactions and blue- most likely interactions. 
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the residues. For example, the interaction between residue Ai in subunit 
A with any of the hundreds of residues in subunit B, combined with the 
interaction between the residues in B and residue Cj in subunit C, may be 
interpreted as an interaction between Ai and Cj. This effect may increase 
the number of false positives and decrease the sensitivity and specificity 
of our results. Therefore, reducing the number of artifacts through post- 
processing the EC maps is even more critical in the case of heterotrimeric 
complexes. INTS4 has been reported to associate with INTS9 and INTS11 
to form the INTS4/INTS9/INTS11 heterotrimer. Notably, at the time we 
ran our analysis, there had been no reported structures. Using the 
plmDCA algorithm coupled to the convolution of resulting ECs as pre
viously described, we predicted that the N- and C-terminal domains of 
INTS4 interact with INTS9/INTS11 (see Fig. 4e-f). Our results also 
suggest that INTS4 can bind both INTS9 and INTS11 at the same time. 
This prediction ended up being validated by recently released structures 
of the ICM as INTS4 indeed contacts INTS9 and INTS11 while they are 
associated with each other [29,33]. However, our coevolutionary 
analysis could not distinguish which N- or C-terminal was associated 
with INTS9 (or INTS11), as shown in Fig. 4e-f. The recent structures of 
the ICM demonstrate that the N-terminus of INTS4 indeed contacts 
INTS9/11, but the C-terminus of INTS4 was able to be resolved [33,37]. 

Thus, the meaning of these other predicted interactions remains to be 
seen. Interestingly, our model is strikingly similar to the hetero
trimerization of CPSF100/CPSF73/Symplekin proposed by Michalski 
et al. [50] and is consistent with independently published biochemical 
experiments analyzing binding domains involved in the INTS4/INT
S9/INTS11 heterotrimer. 

2.5. INTS9/INTS11, INTS9/INTS4, and CPSF73/CPSF100 interactions 
are driven by the physicochemical properties at the interfaces 

We sought to determine the physicochemical properties of the Inte
grator subunits driving the formation of the complex. We computed the 
properties of INTS9 driving the formation of the INTS9/INTS11 complex 
by averaging known physicochemical properties’ metrics on the 
sequence length. [51,52] As shown in Fig. 4g, the heterodimerization of 
INTS9 and INTS11 is driven by higher hydrophilicity, higher polarity, 
and a higher electrostatic charge of INTS9 residues at the predicted 
host-spots. Similarly, the physicochemical properties of CPSF100 drive 
its association with CPSF73 (Fig. 4h), including high hydrophilicity and 
polarity. Finally, the binding of INTS4 to INTS9 (Fig. 4i) is mainly driven 
by high hydrophobicity, electrostatic charges, and secondary structure 

Fig. 4. (A) - (D) Convolved ECs of CPSF100/CPSF73 reveal most likely interacting residues. The local convolution method was applied to the top 1% of raw ECs 
(A) using different parameters representing the length of the interacting residues l, and the variances of the Gaussian kernels a and b. (B): l = 18 AA, a = b = 0.1; (C): l 
= 21AA, a = b = 0.05; (D): l = 21AA, a = b = 0.01. The green and orange rectangles on (D) delimit the most likely (green rectangle) and the second likely (orange 
rectangle) interacting regions of the CPSF100/CPSF73 heterodimer, respectively. (E) and (F) The predicted contacts between INTS4/INTS9 and INTS4/INTS11 
involve the C- and N-terminal domains of INTS4. The figure shows the convolved ECs (l = 21AA, a = b = 0.01, top 1%) of the INTS4/INTS9 (E) and INTS4/INTS11 
(F). (G) - (I) INTS9/INTS11, INTS9/INTS4, and CPSF73/CPSF100 interactions are driven by the physicochemical properties at the interfaces. (G) INTS9/ 
INTS11 dimerization is driven on average by the hydrophilicity (solid black line in the bottom plot) and polarity (dotted blue line) of the INTS9 amino acids and their 
electrostatic charges (dashed green line), which are higher at the predicted hot spots. (H) Similarly, the CPSF100/CPSF73 dimerization is driven by hydrophilicity 
(solid black line), polarity (dotted blue line), and electrostatic (dashed green line). (I) INTS4/INTS9 dimerization is favored by hydrophobicity (solid red line), 
electrostatic (dashed green line), and secondary structure similarity (dotted orange line) of INTS4. 
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similarity scores of INTS4 amino acids. 

2.6. Molecular dynamics simulations highlight the structural details of 
interacting peptides 

The modified DCA is a powerful tool to predict the most likely in
terfaces of protein complexes. However, this approach cannot provide 
structural and mechanistic details of interacting peptides. On the other 
hand, all-atom MD simulations, a technique generally used to compute 
such information, remain a challenge for large proteins. [53–55] 
Therefore, to estimate the structural and mechanistic details of the 
Integrator complex’s interfaces, we used a biased MD approach with 
simulation boxes limited to the most likely interacting peptides as pre
dicted by the DCA (Table 2). [8] We performed MD simulations of the 
most likely interacting peptides of INTS9/INTS11, CPSF100/CPSF73, 
INTS4/INTS9, and INTS4/INTS11, as described in the Methods section. 
Despite fluctuations observed along the MD process, the dynamic evo
lution of the average of the total energy in the different interacting re
gions of each complex recorded along the simulation over three 
replicates shows that these regions have reached thermal equilibrium 
after around 400,000-time steps (Fig. 5 and Fig. SF2), suggesting the 
stability of the hotspots. The mean radius of gyration, which is generally 
used to detect the compactness of the binding regions of the complex, 
displayed stable contact formed for INTS9/INTS11, INTS4/INTS9, and 
INTS4/INTS11 starting at around 1000,000-time steps. However, for the 
interacting regions of CPSF100/CPSF73, we also observed stable contact 
formed after around 1000,000-time steps. Additionally, the slight de
viations in the first hotspot of CPSF100/CPSF73 at around 3000, 
000-time steps might indicate that transient contacts are broken, 
allowing the most stable contact to be formed. The distribution of the 
radius of gyration along the simulations for each binding interface is 
depicted in Fig. SF3. It is often used to define a collapsed or extended 
conformation. These results indicate the compactness and stability of 
binding domains predicted by the modified DCA approach. Then, we 
used the Critical Assessment of Prediction of Interactions (CAPRI) cri
terion [56] to decide if contacts exist between residues. 

We found that INTS9 and INTS11 interact mainly through their 
β-sheet conformations at the interface, with Y499/L523, I535/E507, and 
F509/E560 as the closest residues on both proteins (Fig. 6). 

Similarly, MD simulations using the most likely and the second most 
likely interacting peptides of the CPSF100/CPSF73 heterodimer showed 
that the interactions involve β-sheet conformations for both interfaces, 
as shown in Fig. 7. Although we were limited by the lack of a crystal 
structure of the C-terminal domain of CPSF73, we found the closest 
residues for the CPSF100/CPSF73 complex are I631/P497, P698/V481, 
and S352/F490. 

Finally, we used MD simulations to investigate the structural con
formations of INTS9 and INTS11 when they bind to INTS4 to form the 
INTS4/INTS9/INTS11 heterotrimer (Fig. 8). Like previous complexes, 
INTS4 and INTS11/INTS9 interaction involves the proteins’ β-sheet 

conformations and helical conformation. After MD convergence, we 
observed that the closest residues at the interface of INTS4/INTS9 are 
W903/E517, A906/G534, V126/H545, L130/A542, L171/D524, and 
D153/V504. For the INTS4/INTS11 heterodimer, the closest residues 
were found to be H164/K425, R520/R912, V896/S463, E905/L515, 
L151/P453, and M149/C441.Fig. 9. 

3. Discussion 

In this study, we applied coevolutionary methods and molecular 
dynamics simulations to identify the most likely binding residues of the 
INTS9/INTS11, CPSF100/CPSF73, and INTS4/INTS9/INTS11 com
plexes. We used the Direct Coupling Analysis (DCA) algorithm with 
several changes we introduced to allow more accurate inference of in
teractions. Specifically, we used local Gaussian convolution and pre
dicted secondary structure to reduce the number of false positives and 
thus increase the accuracy of predicted interactions. As discussed above, 
coevolution between residues of interacting proteins can be used to 
predict the binding interfaces. However, for large proteins, the pre
dictions are hindered by statistical background noise and the many false 
positives generated. Because interactions between proteins generally 
involve stretches of residues rather than individual amino acids, in our 
experience, local convolution of evolutionary scores and structural 
properties tend to predict more accurately the most likely interacting 
residues [6]. 

We inferred the binding interface of INTS9/INST11 heterodimer as a 
proof-of-concept using our local convolution algorithm [6]. Our results 
show that the most likely interacting residues of the INTS9/INTS11 
heterodimer are located on the C-terminal domains of both INTS9 and 
INTS11. This prediction aligns with the results from Wu et al. [25], who 
used a U7-GFP reporter to show that mutations at the C-terminal domain 
specifically disrupt the formation of the INTS9/INTS11 heterodimer. 
Encouraged by the fact that our method accurately predicted large 
protein binding residues, we then applied it to another two important 
proteins in pre-mRNA cleavage: CPSF100 and CPSF73, paralogs of 
INTS9 and INTS11, respectively, whose interactions are not as 
well-defined. Our prediction confirmed that both the C-terminal do
mains of CPSF100 and CPSF73 are required for the core cleavage com
plex formation in vivo and the binding with Symplekin, as reported by 
Michalski et al. [50]. Further, we found that the N- and C-terminal do
mains of INTS4 could interact with INTS9 and INTS11, as shown in 
Fig. 5, suggesting INTS4 can bind both INTS9 and INTS11. This finding is 
consistent with previous biochemical studies [49] and recent structural 
studies [29,33]. 

Using the coevolution of residues, we have characterized several 
interactions between proteins related to the Integrator complex. The 
results are shown in Table 3. Our analysis confirms the physiological 
nature of several interactions indicated by previous studies and predicts 
new interactions that can help to explain the nature of the Integrator, a 
complex molecular machine. Finally, the predicted characteristics of the 
interactions between pairs of proteins and identified domains and resi
dues potentially crucial for the respective dimerization and trimeriza
tion can inform future experimental studies, such as targeted mutations 
that may disrupt complex formation. 

The modified DCA algorithm is an efficient strategy for predicting 
the binding interfaces of protein complexes. Still, additional efforts are 
needed to estimate the interfaces’ local conformation and structural 
details. Thus, we conducted MD simulations using the most likely 
interacting peptides of the predicted hot spots highlighted in the 
modified DCA contact map for the INTS9/INTS11, CPSF100/CPSF73, 
and INTS4/INTS9/INTS11 complexes. We found that in each of these 
complexes, the interactions at the interfaces involved the β-sheet con
formations of the proteins. Although several contacts were observed 
using VMD [57], we just listed the closest residues suggesting the strong 
interactions for each studied complex. Our findings align with experi
mental results reporting interactions between CPSF100 and CPSF73 as 

Table 2 
Peptides selected for molecular dynamic simulations. MD simulations assess 
the stable conformations of interacting residues.  

Protein A Protein B Main observation 

INTS9 
I490 – P556 

INTS11 
S500 – L601 

β-sheet conformation 

INTS4 
Q125 – I200 
P885 – P936 

INTS9 
M486 – P556 
M486 – P556 

β-sheet conformation 

INTS4 
Q125 – I200 
P885 – P936 

INTS11 
K425 – H524 
K425 – H524 

Helical conformation and β-sheet conformation 

CPSF100 
V325 – K386 
W630 - P702 

CPSF73 
R480 – K512 
R480 – K512 

β-sheet conformation  

B. Fongang et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 21 (2023) 5686–5697

5692

well as the trimerization of INTS4, INTS9, and INTS11. [26,33,37,44, 
45]. 

4. Materials and methods 

4.1. Protein sequence collection and alignment 

We first constructed a concatenated Multiple Sequences Alignment 
(cMSA) by aligning the orthologs of studied proteins and joining the 
alignments from different proteins by species. INTS4, INTS9, INTS11, 
CPSF73, and CPSF100 have all been well conserved across metazoans, 
with sequences comprising the β-Lactamase, β-CASP, and C-terminal 

domains. Their sequences were extracted by querying GENBANK [58] 
and running genome-wide tblastn [59] against genomes absent in 
GENBANK. The sequences were aligned to the human reference 
sequence, and those with 60–90% similarity were used. 223, 239, 202, 
179, and 161 orthologs of INTS9, INTS11, INTS4, CPSF100, and CPSF73 
were obtained. Common orthologs for a pair of proteins were aligned 
using Clustal-Ω [60] (see Table 3). 

4.2. Prediction of protein heterodimers and heterotrimers 

Evolutionary couplings between INTS9/INTS11, INTS4/INTS9, 
INTS4/INTS11, and CPSF100/CPSF73 were analyzed using Direct 

Fig. 5. MD simulations convergence. Variations of the average total (in kcal/mol) energy and the average radius of gyration (in Å) over three trajectories as a 
function of time steps for the different hotspots inform on the convergence of the simulation. The average radius of gyration (Rg ± sd) of each binding interface along 
the simulations are, black: (19.29 ± 3.04) Å; blue: (15.58 ± 2.33) Å; red: (14.36 ± 0.71) Å; green: (17.51 ± 0.77) Å; purple: (21.34 ± 1.37) Å; orange: 
(17.36 ± 2.61) Å; pink: (23.24 ± 2.04) Å. 
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Coupling Analysis (DCA) algorithm [2], which can distinguish direct 
functional residue interactions from correlations resulting from indirect 
interactions and assign higher scores to direct correlations rather than to 
indirect ones. To reduce running time, we used a variant of DCA, the 
pseudo-likelihood maximization Direct-Coupling Analysis (plmDCA) 
[46], which has a lower computational cost than traditional DCA. 
Evolutionary coupling scores (ECs) were calculated and used to build the 
corresponding coupling matrix. To improve our prediction and avoid 
false positives in DCA analysis, we used local convolution of ECs, as 
described above. Briefly, Gaussian convolution is applied to local 
structural elements (in this study, defined by protein secondary struc
ture, such as α-helix and β-sheet, predicted by PSIPRED [47]) to count 

the contribution of neighboring residues with an assumption that con
tacts between proteins occur locally and drive residues evolving within 
the same structural elements. In our experience, an isolated strong EC 
peak surrounded with weak ECs for residues belonging to different 
secondary structure elements is more likely to be a false positive than a 
cluster of less strong ECs for residues in the same secondary structure 
element. Therefore, a convolution of ECs with a kernel based on the 
secondary structure can predict the more likely interacting residues. The 
convolution algorithm depends on several parameters: the number of 
interacting residues and the variances of the Gaussian and the predicted 
secondary structures. The convolved ECs for a pair of residues (i,j) is 

Fig. 6. Structural details of INTS9/INTS11 interacting peptides. The most likely interacting peptides of INTS9 (blue) and INTS11 (red) are used as input for MD 
simulations. [57] After MD convergence, a snapshot of the stable configuration shows the details of interactions. INTS9 and INTS11 interact mainly through their 
β-sheet conformations at the interface, with Y499/L523, I535/E507, and F509/E560 as the closest residues on both proteins. The average radius of gyration (Rg ± sd) 
of INTS9/INTS11 along the simulations, is (19.29 ± 3.04) Å. 

Fig. 7. Structural details of CPSF100/CPSF73 interacting peptides. The most (green rectangle) and the second most (orange rectangle) likely interacting peptides 
of CPSF100 (blue) and CPSF73 (red) are used as input for MD simulations. Due to the lack of 3D structure of the whole C-terminal domain of CPSF73, our MD 
simulations did not include the full predicted interacting sites. We found the closest residues for the CPSF100/CPSF73 complex are I631/P497, P698/V481, and 
S352/F490. The average radius of gyration (Rg ± sd) of the first binding region of CPSF100/CPSF73 along the simulations is (15.58 ± 2.33) ̊A, and is (14.36 ± 0.71) ̊A 
for the second one. 
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Ql
i,j =

∑i+l
∝=i− l

∑j+l
β=j− lPi,jKa,b(∝, β) where Ka,b(∝, β) = exp( −

{
a∝2 +bβ2}). 

is the kernel function fitted on the structural elements and Pi,j the ECs 
computed using any evolutionary coupling algorithm. The optimized 
values of the Gaussian convolution are provided in Table 1. These pa
rameters were optimized using the INTS9/INTS11 complex for which 

structural information of the CTDs were available. Briefly, we picked the 
values of a,b, and l for which there is a maximum overlap between the 
prediction and the experimental distances. 

Fig. 8. Structural details of INTS4/INTS9/INTS11 heterotrimer based on interacting peptides predicted by the DCA. The most likely interacting peptides of 
INTS4 (green), INTS9 (blue), and INTS11 (red) are used as input for MD simulations. (A) N-terminal of INTS4 and C-terminal of INTS9; (B) C-terminal of INTS4 and C- 
terminal of INTS9; (D) N-terminal of INTS4 and C-terminal of INTS11; and (D) C-terminal of INTS4 and C-terminal of INTS11. After MD convergence, the closest 
residues for each sub-complex are reported (see text). 

Fig. 9. Schematic view of the predicted structure of INTS4/9/11 trimer. The N- and C-terminal domains of INTS4 interact with the C-terminal domains of INTS9 
and INTS11. 
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4.3. Molecular dynamic simulations 

Molecular dynamics simulations were restricted to the most likely 
interacting peptides (see Table 4) of INTS9/INTS11, CPSF100/CPSF73, 
and INTS4/INTS9/INTS11. The following 3D structures, which were 
retrieved from the protein data bank, were used to perform the simu
lations: INTS4 (ID: 7CUN, Chain D) [61] INTS9 (7CUN, Chain I) [61], 
INTS11 (7CUN, Chain K) [61], CPSF100 (6V4X, Chain I) [62], and 
CPSF73 (6V4X, Chain H) [62]. The forces in the simulations were 
calculated using AWSEM (Associative Memory, Water-mediated, 
Structure, and Energy Model), a coarse-grained protein force field in 
which only the positions of Cα, Cβ, and O atoms of each residue are 
explicitly represented. The coordinates of these and other heavy atoms 
are calculated following the total Hamiltonian of AWSEM as previously 
described. [24] Briefly, the Hamiltonian is a summation of the 1) 
physics-based term, involving bonds and angles through the terms such 
as backbone, contact, burial, and hydrogen bond, and 2) bioinformatics 
term which represents the fragment memory potential used to aid 
local-in-sequence structure formation [24,54,63,64]. 

We performed all MD simulations using the open-source software 
LAMMPS [53], in which AWSEM codes were implemented [63]. For 
each complex, we built a LAMMPS-AWSEM simulation box. We ran 
three simulations at T = 300K with an integration time step of2fs after 
setting the parameters, such as the initial conditions, the periodic 
boundary conditions, and the ensemble. The initial conditions consisted 
of placing the two monomers (interacting peptides) in a simulation box 
at a distance of 30Å apart from each other and choosing initial velocities 
randomly from the Boltzmann distribution with the average squared 
velocity equal to 3KBT/m. Next, we used the periodic boundary condi
tions on the cubic box of 400Å on each side, the canonical ensemble, and 
the Nose-Hoover thermostat. The coordinates were recorded every 
1000-time steps over a set of 5000000-time steps simulations were 
carried out for each binding domain. Finally, we used the Visual Mo
lecular Dynamics (VMD) software [57] to visualize the structures and 
identify contacts based on the CAPRI criterion [56], which suggests that 
a contact exists between each pair of residues if at least two heavy atoms 
are separated by a distance < 5Å. 

5. Conclusion 

Computational approaches have become an excellent complement to 
experimental techniques in investigating the interactions between pro
tein complexes. In this study, as proof-of-the-concept, we applied our 
modified DCA approach to predict the binding domains of the INTS9/ 
INTS11, CPSF100/CPSF73, and INTS4/INTS9/INTS11 complexes. Since 
binding interfaces predicted by DCA align with experimental results, we 
built upon this success using Molecular Dynamics simulations to 

compute local conformations and closest residues to generate precise 
hypotheses for follow-up studies. Using this two-step strategy, which 
combines unbiased identification of binding interfaces and biased MD 
simulations, we have characterized several interactions between pro
teins related to the Integrator complex. Our analysis confirms the 
physiological nature of several interactions indicated by previous 
studies and predicts new interactions that can help to explain the nature 
of the Integrator, a complex molecular machine. Finally, the predicted 
characteristics of the interactions between pairs of proteins and identi
fied domains and residues potentially crucial for the respective dimer
ization and trimerization can inform future experimental studies, such 
as targeted mutations that may disrupt complex formation. The same 
method can be used for multi-scale prediction of interactions, as 
described above, in other difficult-to-characterize complexes such as G- 
protein coupled receptors. Therefore, we expect our method to become 
part of a toolbox for characterizing interactions within complex mo
lecular machines and to advance our understanding of how such ma
chines function. 
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Table 3 
Properties of the protein heterodimers studied. The significant length (number 
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Protein 
size (AA) 

Number of 
individual 
sequences 

Number of 
sequences 
in cMSA 

Sig. 
length 

Sequence 
coverage 
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INTS11  600  239 
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Table 4 
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computed using the simulated phylogeny described by Fongang et al. [6]. 
Briefly, we randomized the sequence distribution of one protein while keeping 
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