
sensors

Article

Pocketable Labs for Everyone: Synchronized Multi-Sensor Data
Streaming and Recording on Smartphones with the Lab
Streaming Layer

Sarah Blum 1,2,*, Daniel Hölle 3 , Martin Georg Bleichner 3 and Stefan Debener 1,2

����������
�������

Citation: Blum, S.; Hölle, D.;

Bleichner, M.G.; Debener, S.

Pocketable Labs for Everyone:

Synchronized Multi-Sensor Data

Streaming and Recording on

Smartphones with the Lab Streaming

Layer. Sensors 2021, 21, 8135. https://

doi.org/10.3390/s21238135

Academic Editor: Paweł Pławiak

Received: 15 October 2021

Accepted: 1 December 2021

Published: 5 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Neuropsychology Lab, Department of Psychology, University of Oldenburg, 26111 Oldenburg, Germany;
stefan.debener@uol.de

2 Cluster of Excellence Hearing4all, 26111 Oldenburg, Germany
3 Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg,

26111 Oldenburg, Germany; daniel.hoelle@uol.de (D.H.); martin.georg.bleichner@uol.de (M.G.B.)
* Correspondence: sarah.blum@uol.de

Abstract: The streaming and recording of smartphone sensor signals is desirable for mHealth,
telemedicine, environmental monitoring and other applications. Time series data gathered in these
fields typically benefit from the time-synchronized integration of different sensor signals. However,
solutions required for this synchronization are mostly available for stationary setups. We hope to
contribute to the important emerging field of portable data acquisition by presenting open-source An-
droid applications both for the synchronized streaming (Send-a) and recording (Record-a) of multiple
sensor data streams. We validate the applications in terms of functionality, flexibility and precision in
fully mobile setups and in hybrid setups combining mobile and desktop hardware. Our results show
that the fully mobile solution is equivalent to well-established desktop versions. With the streaming
application Send-a and the recording application Record-a, purely smartphone-based setups for
mobile research and personal health settings can be realized on off-the-shelf Android devices.

Keywords: mobile computing; sensor integration; mobile health; smartphone sensor integration;
time series analysis

1. Introduction

Smartphones have become relevant in various research disciplines and mobile health
applications, and due to their portability, they enable the investigation of previously
uncharted questions [1–4]. They can be used for capturing brain activity in ambulatory
settings [5–11], sleep patterns outside of sleep laboratories [12,13], subjective experience in
various contexts [14–16] and body activity while moving freely [17–23]. While less powerful
than full PC desktop systems, smartphones offer sufficient computational power and a
multitude of sensors to serve as standalone research instruments [6,21,24–26]. Often, these
built-in sensors are combined with body-worn sensors to capture whole-body movements
as well as human–environment interactions in great detail, thereby opening the door to
various mHealth applications [27–31]. To mention a few examples, the accurate recording
of muscle (measuring electromyogram, EMG), heart (electrocardiogram, EKG) and brain
activity patterns (electroencephalogram, EEG) in mobile setups merge portable systems
such as smartphone sensors with complementary, body-worn sensors [8,12,32–35].

Independent of the application or hardware used, all combined sensor data from
different devices require precise temporal synchronization for relating information captured
in different modalities to each other correctly [30,32,33,36–41].

This is not easily achieved and remains a challenge in many applications. Each sensor
device typically time stamps data based on its respective internal clock. The relation to
timestamps from other devices or additional sensors is inherently unknown, and over time,

Sensors 2021, 21, 8135. https://doi.org/10.3390/s21238135 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6056-7872
https://orcid.org/0000-0003-4265-5542
https://doi.org/10.3390/s21238135
https://doi.org/10.3390/s21238135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21238135
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21238135?type=check_update&version=1


Sensors 2021, 21, 8135 2 of 13

the clocks of different devices will likely diverge. As a consequence, the resulting data
streams cannot be related to each other directly, and an interpretation becomes impossible.
For stationary systems and smartphones alike, the initial synchronization of clocks can
be realized in two ways [42,43]. In a network-based environment, a master clock can be
defined and can be used to determine the initial differences between the master and every
other clock. Assuming these differences remain stable over time, the matching timestamps
of all clocks can then be determined. In non-network setups, the timestamps of every
device can be related to each other by recording a sharp impulse (i.e., synchronization
reference event) on all devices at the same time, effectively serving as a reference point for
all clocks (as outlined in [36,44,45]). This typically requires wiring up the different devices.

However, initial synchronization alone is typically not sufficient as clocks are likely
to diverge over time due to distinct paces between them [36]. Instead, the initial synchro-
nization procedure needs to be repeated at least once to determine the drift of clocks over
time. Synchronization intervals can be large in some cases, but in the case of strongly
diverging clocks, more frequent synchronization events are necessary. The implementation
of repeated synchronization events can be achieved with a software agent running on each
device or as a cloud service [46], without the use of wires and connectors.

For this purpose, the Lab Streaming Layer (LSL) has gained popularity in the field
of multi-modal data recording in recent years [31,47,48]. LSL (RRID:SCR 017631, https:
//github.com/sccn/labstreaminglayer (accessed on 16 November 2021)) is an open frame-
work consisting of a core library and interfaces for many common programming languages,
thus enabling the usage of LSL on a wide range of devices. It uses standard network
protocols to send and receive data streams over the local network. All LSL data streams
are available with initial synchronized clocks and known drift behavior between devices
over time. By default, clock synchronization is performed every 5 s and data from different
sensor streams are stored along with all information needed for time synchronization,
using a well-defined, standardized file format (extensible data format, xdf, https://github.
com/sccn/xdf, accessed on 1 October 2021). For recording LSL data on desktop systems,
the LabRecorder software (https://github.com/labstreaminglayer/App-LabRecorder, ac-
cessed on 1 October 2021) was developed a few years back, but no versatile, open-source
LSL recording application for mobile devices has been published yet. This necessity to use
stationary desktop devices has hindered mobile and ambulatory research.

Therefore, we set out to fill this gap. The functionality of the LSL LabRecorder is
now available on Android in an application we call Record-a. In order to present the
flexibility of this new solution, we present three Android applications. One application
turns smartphone sensor data into LSL data streams: Send-a. A second application streams
artificial signals on multiple channels: Sine-Wave app. All apps can be used independently
and finally extend the LSL streaming and recording framework to mobile application
scenarios. We describe, evaluate and discuss Send-a, Sine-Wave app and Record-a in
scenarios that are relevant for, but not limited to, mobile multi-sensor setups, mhealth and
clinical research.

1.1. The Smartphone Apps: Record-a, Send-a and Sine-Wave App

The Record-a, Send-a and Sine-Wave apps are Android applications written in Java
using the Java Native Interface to call functions from the LSL core library, written in C++
(https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html, accessed
on 3 August 2021). Both the LSL library functions, and our apps, are open-source projects
(all scripts, apks and source code available here: https://github.com/s4rify/Pocketable-Labs
(accessed on 16 November 2021), https://github.com/sccn/labstreaminglayer (accessed on
16 November 2021). All apps call the LSL library functions so that data and stream handling,
as well as storage in standardized file formats, was directly realized using the LSL methods,
matching the desktop equivalents as closely as possible.

Both Send-a and Record-a were developed to run as foreground services (https://
developer.android.com/guide/components/foreground-services, accessed on 24 Septem-

https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/xdf
https://github.com/sccn/xdf
https://github.com/labstreaminglayer/App-LabRecorder
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://github.com/s4rify/Pocketable-Labs
https://github.com/sccn/labstreaminglayer
https://developer.android.com/guide/components/foreground-services
https://developer.android.com/guide/components/foreground-services


Sensors 2021, 21, 8135 3 of 13

ber 2021). This prevents the operating system from shutting them down or limiting their
processing power, even if they are currently not in the foreground (that is, visible to the
user and in full screen).

Our apps can be used in a variety of setups, either on a single device or in combination
with other devices. They can run on the same or different Android smartphones and
tablets without the need to alter the operating system or change the device itself. For all
evaluations described in this report, we used the apps on physical smartphones available
to us, these were:

• Huawei Honor View 10 (Android 10, round corners in all figures)
• Samsung A51 (Android 11, square corners in all figures)

1.2. Record-a

Record-a uses the LSL library to find all streams visible in the network and record
them into xdf files. The implementation of Record-a follows the recommendations of
the LSL developer community (https://labstreaminglayer.readthedocs.io/dev/app_dev.
html, accessed on 1 July 2021; https://github.com/labstreaminglayer/liblsl-Android/
tree/master/AndroidStudio accessed on 14 July 2021). Record-a is ignorant of the type,
sampling rate or origin of streams.

Record-a will scan the network on startup and initially select all detected streams
for recording. This list of streams is presented to the user in the GUI who can choose the
streams to be recorded. Additionally, users can specify the name of the recording, which is
always appended with the current time and date information from the device to ensure
a unique file name to prevent the accidental overriding of an existing file. After the final
selection of streams and initiation of the recording, Record-a will inform the user about
the beginning of the recording and whether it is able to safely run in the background on
this device. Next, Record-a will write the header information from every stream that is
selected in the file following the xdf specifications. During recording, Record-a stores data
from all streams for 500 ms in internal buffers and then writes these segments to the file
iteratively. Every sample written to file is safe and preserved even if the app is stopped
unexpectedly, e.g., due to a dying battery. Iterative recording from internal buffers to the
file ensures that a maximum of 500 ms of data can be lost. In addition to the data, Record-a
will store information for the synchronization of all data streams in the form of clock offsets
computed relative to a master clock, in this case, the clock of the device on which Record-a
is running. These clock offset values are recorded every 5 s and are additionally stored
in the file footer, thereby matching the clock handling of LabRecorder on a desktop. The
footer also contains information about the absolute sample count that was received for
each data stream to compute the effective sampling rate and the first and last timestamp of
the recording. Access to the xdf file is shared among different stream recordings so that the
absolute number of streams to record from is not limited by the file handling routine. Error
handling and stability are described in more detail for different scenarios in Section 3.5.

1.3. Send-a

The second LSL mobile app Send-a is also written in Java and calls the LSL functions
using the Java Native Interface. Send-a pulls values directly from the device sensors us-
ing Android’s sensor manager class (https://developer.android.com/reference/android/
hardware/SensorManager, accessed on 24 September 2021). Sensor values are stored in
small internal buffers of one sample per sensor and then streamed as LSL streams. Avail-
able sensors depend on the smartphone model. From a software perspective, Android
generally supports three categories of sensors: motion sensors (accelerometer, gyroscope),
environmental sensors (temperature, light, gravity, proximity) and position sensors (GPS).
Broadly speaking, the microphone can also be seen as a sensor and is generally supported
by Android and Send-a (https://developer.android.com/guide/topics/sensors/sensors_
overview, accessed on 28 September 2021). In some devices, the camera can be accessed in
a similar way. In its current state, Send-a does not stream video or GPS data.

https://labstreaminglayer.readthedocs.io/dev/app_dev.html
https://labstreaminglayer.readthedocs.io/dev/app_dev.html
https://github.com/labstreaminglayer/liblsl-Android/tree/master/AndroidStudio
https://github.com/labstreaminglayer/liblsl-Android/tree/master/AndroidStudio
https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview


Sensors 2021, 21, 8135 4 of 13

Some sensors are realized as hardware sensors. They are physical components that
measure environmental influences such as acceleration, rotation or light intensity directly.
These sensors show the same behavior on all devices that have them. Some sensors are
realized as software sensors that derive data from hardware sensors and provide these as
interpreted values. Software sensors, therefore, mimic hardware sensors, but they operate
in deducing their measurements more indirectly, for instance, by providing a step count de-
duced from a combination of several sensor values. The interpretation, as well as the precise
computation to deduce these interpreted measurements, can vary between manufactur-
ers or devices (https://developer.android.com/guide/topics/sensors/sensors_overview,
accessed on 28 September 2021).

Send-a detects sensors of the device and creates LSL data streams for every sensor
the user selected in a list of available sensors. Send-a registers a listener for every sensor,
which is notified by the operating system whenever the sensor manager registers a change
in sensor readings. This event is also triggered when the operating system changes the
sampling rate of the sensor. Importantly, the rate at which the sensor manager pulls new
values from the sensors is variable and Android does not offer to define a constant sam-
pling rate. This behavior is independent of the usage of LSL; it is a property of Android’s
sensor management. Every sampling interval specified by an application is treated only
as a suggestion to the operating system, which can result in unexpected behaviur from
a user’s perspective. This behaviur is documented both for hardware and software sen-
sors (https://developer.android.com/guide/topics/sensors/sensors_overview, accessed
on 28 September 2021).

Therefore, Send-a does not allow the user to specify the sampling rate manually.
Instead, it implements a thread handling routine which asks the sensors for new values
with a constant, albeit rather long, delay. In its current version, this delay results in an
effective sampling rate of about 100 Hz, but a large processing load will lead to a reduced
sampling rate for all streams. Notably, the sampling rates are then decreased for all sensors
alike, resulting in the same effective sampling rate for all sensors except the microphone.
The effective (resulting) sampling rate is stored in the xdf file together with the intended
sampling rate so that the data can be imported with correct sampling information. It was
previously mentioned that the microphone is treated differently from other sensors by the
OS; this also applies to the sampling rate stability. The sampling rate of the microphone
can either be set to 44 kHz or 48 kHz. The OS will make sure that this rate is kept constant.
It will never reduce or elevate this sampling rate.

1.4. Sine-Wave App

Sine-Wave app is a simple data generation app that streams sine wave signals on ten
channels with a sampling rate of 250 Hz. Each channel contains a sine wave signal with a
different frequency. As such, the signal generated by the Sine-Wave app is similar in data
size and form to neural signals provided by commercially available setups. This app was
mainly developed to simulate a scenario in which the system load is lower than Send-a
since the Sine-Wave app does not access any system resources.

2. Methods

We evaluated our apps in three scenarios and a timing test. Our scenarios were chosen
with the aim to show that a combination of Record-a and stream sources can be used either
on a single smartphone alone, on a combination of multiple smartphones, and in a network
of mobile and stationary devices.

2.1. Scenario 1: Data Streamed from Android Devices Recorded on a PC

In many data collection setups, different sensor readings originating from various
devices are combined and centrally recorded on a stationary PC. In this scenario, we show
how our apps can be an integral part of such a setup. In these setups, the combination of
integrated smartphone sensors with stationary systems might be a powerful addition to

https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview


Sensors 2021, 21, 8135 5 of 13

the investigation of diverse research questions. In this scenario, data were sent out from
two physical smartphones to a PC. On the phones, either the Sine-Wave app (Scenario 1A)
or Send-a (Scenario 1B) was running.

2.2. Scenario 1A: Sine Wave Data Streamed from Android Devices, Recorded on a PC

Sine-Wave app was running on two phones (Huawei Honor View 10 and Samsung
Galaxy A51), streaming sine waves with different frequencies on ten channels with a
nominal sampling rate of 250 Hz. On a PC, LabRecorder (version 1.13.0-b13, https://
github.com/labstreaminglayer/App-LabRecorder, accessed on 1 October 2021) recorded
the data from both phones. All devices were connected to the same WiFi network.

2.3. Scenario 1B: Sensor Data Streamed from Android Devices, Recorded on a PC

In this variant of the same scenario, Send-a was running on the two phones. Send-
a streamed sensor values of rotation, gravity and accelerometer sensors. On a PC, the
LabRecorder recorded all streams into one file. Both phones were moved together while
being held display-up on top of each other. The movements were exaggerated movements
of the devices in space, walking and jumping while holding the phones in both hands.

2.4. Scenario 2: Data Streamed from PC, Recorded on an Android Device

In this scenario, a laptop sent out a stream in the form of neural data (8 channels,
250 Hz sampling rate) generated in MATLAB with a custom script (version 2020a, part of
the repository for this paper: https://github.com/s4rify/Pocketable-Labs/blob/master/
Shared_Functions/send_eeg_and_markers.m, accessed on 16 November 2021). These data
were then recorded with Record-a on a smartphone and LabRecorder on Windows (same
PC that sent out the stream) simultaneously. All devices were connected to the same
WiFi network.

2.5. Scenario 3: Sensor Data Streamed from Android Device, Recorded on the Same
Android Device

In this scenario, both Send-a and Record-a were running on the same physical Android
device. In a long recording (30 min), the phone was kept lying on the desk while all sensors
except the microphone were recorded. All data were captured from the internal sensors
in the phone, data streams were sent out by Send-a and recorded by Record-a running on
the same device. For validation purposes, the same data streams were also recorded by
LabRecorder running on a PC connected to the same local network as the phone.

3. Results

Both data source apps, Send-a and Sine-Wave app, as well as Record-a, ran stable,
without crashing once. We observed no data loss in the streaming setups. Sensor readings
correlated highly between reference recordings using LabRecorder and Record-a. Addition-
ally, Record-a successfully recorded data both from apps on the same device, a different
mobile device and desktop devices in the same network.

3.1. Scenario 1A: Sine Wave Data Streamed from Android Devices, Recorded on a PC

The nominal sampling rate of the Sine-Wave app was set to 250 Hz, but since there
is always additional load on the phone and the implementation was not focused on
performance, we did not expect the sampling rate of 250 Hz to be reached. Accordingly, the
effective sampling rates on our two phones were 203 Hz (Samsung) and 213 Hz (Huawei).
We found the correlation of all channels between phones to be very high (>0.9).

Figure 1 show the setup on the left side of the figure. The right side shows two
exemplary channels from the sine data. For the plot, data were imported without jitter
handling and sampling rates between phones varied by 10 Hz. This deviation is shown
here as diverging alignment between streams from phone one (blue line) and phone two
(orange line). The streams briefly align and then diverge due to sampling rate differences.

https://github.com/labstreaminglayer/App-LabRecorder
https://github.com/labstreaminglayer/App-LabRecorder
https://github.com/s4rify/Pocketable-Labs/blob/master/Shared_Functions/send_eeg_and_markers.m
https://github.com/s4rify/Pocketable-Labs/blob/master/Shared_Functions/send_eeg_and_markers.m


Sensors 2021, 21, 8135 6 of 13

In the lower plot, both data streams were effectively resampled to a common sampling rate
by plotting them on the same time scale.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 13 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

effective sampling rates on our two phones were 203 Hz (Samsung) and 213 Hz (Huawei). 

We found the correlation of all channels between phones to be very high (> 0.9). 

Figure 1 show the setup on the left side of the figure. The right side shows two exem-

plary channels from the sine data. For the plot, data were imported without jitter handling 

and sampling rates between phones varied by 10 Hz. This deviation is shown here as di-

verging alignment between streams from phone one (blue line) and phone two (orange 

line). The streams briefly align and then diverge due to sampling rate differences. In the 

lower plot, both data streams were effectively resampled to a common sampling rate by 

plotting them on the same time scale. 

 

Figure 1. (A) Illustration of the setup of scenario 1A. Two phones were running the Sine-Wave 

app, while LabRecorder on PC recorded all data streams. Data were streamed with different sam-

pling rates. (B) Illustration of a misalignment over time. Shown are 4 seconds of data. The upper 

plot shows data on their respective time scales diverging over time. The lower plot shows tempo-

rally aligned (resampled) data. 

3.2. Scenario 1B: Sensor Data Streamed from Android Devices, Recorded on a PC 

The nominal sampling rate for all sensors streamed by Send-a was set to 125 Hz in 

this evaluation. We observed different effective sampling rates due to the varying pro-

cessing load of the system when evaluating a different number of sensors. When stream-

ing one sensor only, the effective sampling rates were 114 Hz (Samsung) and 118 Hz 

(Huawei). When streaming three sensors, the effective sampling rates were 106 Hz (Sam-

sung) and 116 Hz (Huawei). When streaming all sensors except the microphone, the ef-

fective sampling rates were 95 Hz (Samsung) and 111 Hz (Huawei). Figure 2 show the 

setup on the left side and data recordings of one software sensor (rotation) and two hard-

ware sensors (gravity, accelerometer) on the right side. While the hardware sensor record-

ings correlated highly (0.95 and 0.98) despite measuring data on two different hardware 

devices, the software sensor showed more deviation in measured signals as indicated by 

a lower correlation between recordings (0.54). 

Figure 1. (A) Illustration of the setup of scenario 1A. Two phones were running the Sine-Wave app, while LabRecorder on
PC recorded all data streams. Data were streamed with different sampling rates. (B) Illustration of a misalignment over
time. Shown are 4 s of data. The upper plot shows data on their respective time scales diverging over time. The lower plot
shows temporally aligned (resampled) data.

3.2. Scenario 1B: Sensor Data Sreamed from Android Devices, Recorded on a PC

The nominal sampling rate for all sensors streamed by Send-a was set to 125 Hz in this
evaluation. We observed different effective sampling rates due to the varying processing
load of the system when evaluating a different number of sensors. When streaming one
sensor only, the effective sampling rates were 114 Hz (Samsung) and 118 Hz (Huawei).
When streaming three sensors, the effective sampling rates were 106 Hz (Samsung) and
116 Hz (Huawei). When streaming all sensors except the microphone, the effective sampling
rates were 95 Hz (Samsung) and 111 Hz (Huawei). Figure 2 show the setup on the left side
and data recordings of one software sensor (rotation) and two hardware sensors (gravity,
accelerometer) on the right side. While the hardware sensor recordings correlated highly
(0.95 and 0.98) despite measuring data on two different hardware devices, the software
sensor showed more deviation in measured signals as indicated by a lower correlation
between recordings (0.54).



Sensors 2021, 21, 8135 7 of 13

Sensors 2021, 21, x FOR PEER REVIEW 7 of 13 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

 

Figure 2. (A) Illustration of scenario 1B setup using sensor data as a data source. Two phones were 

moved together while Send-a was streaming sensor values. On PC, LabRecorder was recording all 

data streams to file. (B) Nine minutes of data recorded from three different sensors. Displayed is 

one channel for every sensor from phone 1 (blue) and phone 2 (orange). 

3.3. Scenario 2: Data Streamed from PC, Recorded on an Android Device 

The nominal sampling rate set in the MATLAB script was 100 Hz, the effective sam-

pling rates recorded by the phone and the PC were both 94 Hz. This deviation of the sam-

pling rate can be explained by MATLAB’s handling of the pause function, which usually 

pauses a bit longer than indicated. This is due to overhead of calling the function and 

scheduling resolution of the operating system (https://de.math-

works.com/help/matlab/ref/pause.html, accessed on 3 July 2021), thus explaining a lower 

effective sampling rate from the sender but displaying no difference in sampling rates on 

the receiving sides. Data from laptops and smartphones correlated with 0.96. An evalua-

tion of the time difference between all samples indicated no data loss. Figure 3 show the 

setup on the left side and some exemplary data on the right side. Since the same data were 

recorded in both files, the blue plot showing data recorded by the PC and the orange plot 

showing data recorded on the phone overlap almost exactly. 

3.4. Scenario 3: Sensor Data Streamed from an Android Device, Recorded on the Same Android 

Device 

Effective sampling rates were recorded to be 76.5 Hz for all sensors on both devices. 

All sensors correlated highly (> 0.9) between recordings indicating that data were rec-

orded correctly by Record-a. Figure 4 show the setup on the left side of the plot and some 

recorded data on the right side. Since Record-a and LabRecorder recorded the same sam-

ples, data on all channels at every point in time was virtually the same. 

Figure 2. (A) Illustration of scenario 1B setup using sensor data as a data source. Two phones were moved together while
Send-a was streaming sensor values. On PC, LabRecorder was recording all data streams to file. (B) Nine minutes of data
recorded from three different sensors. Displayed is one channel for every sensor from phone 1 (blue) and phone 2 (orange).

3.3. Scenario 2: Data Streamed from PC, Recorded on an Android Device

The nominal sampling rate set in the MATLAB script was 100 Hz, the effective
sampling rates recorded by the phone and the PC were both 94 Hz. This deviation of the
sampling rate can be explained by MATLAB’s handling of the pause function, which usually
pauses a bit longer than indicated. This is due to overhead of calling the function and
scheduling resolution of the operating system (https://de.mathworks.com/help/matlab/
ref/pause.html, accessed on 3 July 2021), thus explaining a lower effective sampling rate
from the sender but displaying no difference in sampling rates on the receiving sides. Data
from laptops and smartphones correlated with 0.96. An evaluation of the time difference
between all samples indicated no data loss. Figure 3 show the setup on the left side and
some exemplary data on the right side. Since the same data were recorded in both files, the
blue plot showing data recorded by the PC and the orange plot showing data recorded on
the phone overlap almost exactly.

3.4. Scenario 3: Sensor Data Streamed from an Android Device, Recorded on the Same
Android Device

Effective sampling rates were recorded to be 76.5 Hz for all sensors on both devices.
All sensors correlated highly (>0.9) between recordings indicating that data were recorded
correctly by Record-a. Figure 4 show the setup on the left side of the plot and some recorded
data on the right side. Since Record-a and LabRecorder recorded the same samples, data
on all channels at every point in time was virtually the same.

https://de.mathworks.com/help/matlab/ref/pause.html
https://de.mathworks.com/help/matlab/ref/pause.html


Sensors 2021, 21, 8135 8 of 13

Sensors 2021, 21, x FOR PEER REVIEW 8 of 13 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

 

Figure 3. (A) Illustration of scenario 2. A PC streamed data which was recorded by Record-a on 

phone and LabRecorder on PC simultaneously. (B) 9.5 minutes of data from the same channel 

recorded on the PC and on the phone. 

 

Figure 4. (A) Illustration of scenario 3. Both apps, Send-a and Record-a, were running on one 

phone, streaming and recording sensor data. On PC, LabRecorder was recording all data for vali-

dation purposes. (B) Selection of sensor data recorded on the PC and on the phone. Shown are 22 

minutes of data from one channel per sensor. 

3.5. Fault Tolerance and Stability: Record-a 

In any regular recording case, the recording is stopped by the user. Record-a will 

write the footer information and then close the file. In the following section, we describe 

Figure 3. (A) Illustration of scenario 2. A PC streamed data which was recorded by Record-a on
phone and LabRecorder on PC simultaneously. (B) 9.5 min of data from the same channel recorded
on the PC and on the phone.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 13 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

 

Figure 3. (A) Illustration of scenario 2. A PC streamed data which was recorded by Record-a on 

phone and LabRecorder on PC simultaneously. (B) 9.5 minutes of data from the same channel 

recorded on the PC and on the phone. 

 

Figure 4. (A) Illustration of scenario 3. Both apps, Send-a and Record-a, were running on one 

phone, streaming and recording sensor data. On PC, LabRecorder was recording all data for vali-

dation purposes. (B) Selection of sensor data recorded on the PC and on the phone. Shown are 22 

minutes of data from one channel per sensor. 

3.5. Fault Tolerance and Stability: Record-a 

In any regular recording case, the recording is stopped by the user. Record-a will 

write the footer information and then close the file. In the following section, we describe 

Figure 4. (A) Illustration of scenario 3. Both apps, Send-a and Record-a, were running on one phone, streaming and
recording sensor data. On PC, LabRecorder was recording all data for validation purposes. (B) Selection of sensor data
recorded on the PC and on the phone. Shown are 22 min of data from one channel per sensor.



Sensors 2021, 21, 8135 9 of 13

3.5. Fault Tolerance and Stability: Record-a

In any regular recording case, the recording is stopped by the user. Record-a will write
the footer information and then close the file. In the following section, we describe some
potential error scenarios that demand different behavior from LSL recording software such
as Record-a.

3.5.1. Error Scenario: The Stream Outlet Pauses or Stops to Send New Samples

Record-a handles this situation the same way as LabRecorder for Windows and stops
writing values into the file while waiting for the stream(s) to continue to send values.
Once new samples are received, Record-a will continue writing the new values with their
respective timestamps in the file. Both Record-a and LabRecorder resume recording, and
the file will be closed in a regular way at the end of the recording. In case the stream does
not resume, the recording continues without new values being received. The user can end
the recording at any point, and the file will be closed regularly.

3.5.2. Error Scenario: Record-a Is Terminated Unexpectedly

A different scenario could be that Record-a is killed during a recording, either because
the device battery dies, or the user kills the app during recording. In both cases, the file will
be closed and written to the disc. It will contain all samples recorded up to this point. Due
to the interval with which Record-a writes values to file, a maximum of 500 ms of data can
be lost. The footer will not be written; therefore, the clock-offsets for later synchronization
of the recorded streams will be missing, but the file can be imported, and the data can be
loaded. This behavior is the same as is implemented in LabRecorder for Windows.

4. Discussion

We present an open-source solution for completely mobile, Android-based, multi-
sensor streaming and recording. We used the LSL framework in three mobile apps to send
and record sensor signals. In three validation scenarios and a timing test (see Appendix
A), we have shown results that suggest high reliability of our mobile LSL recording app,
which is comparable to the desktop alternative LabRecorder. We argue that this report and
the development of Record-a and Send-a can contribute to smartphone usage in health as
well as research contexts [4] by providing a way to record, synchronize and stream sensor
data between smartphones.

The King’s Fund report on digital health [4,40] identifies smartphones as being the
most important contribution to personal health developments, even more important than
areas such as genome sequencing or artificial intelligence [49]. In the context of smartphone
usage, the authors explicitly identify sensor data collection on smartphones as being one of
the most promising technologies for personal health monitoring applications - potentially
replacing singular measurements at doctor’s appointments or during medical procedures
(see also [50]). In both research contexts, as well as in personal health contexts, the collection
of continuous, synchronized data can generate context to data that might otherwise be
difficult to interpret.

Smartphones are ubiquitous and allow people to manage their personal health data
(see, for example, [51–53]). A simple connection to cloud-based services to store and share
data enables treatment over distance, which we facilitated by using the standardized LSL
data handling framework. Data recorded and streamed within this open-source framework
can be shared with remote healthcare workers, or alternatively, data can be processed
directly on the device, providing the opportunity to detect patterns of interest quickly and
to alert users. LSL can be added to most sensor hardware easily, highlighting the potential
of our work.

Our results confirmed reliable and valid recordings in all validation scenarios. We did
not observe data loss or technical issues. We evaluated our setup against the LabRecorder
desktop version on Windows, to which we compared the resulting xdf files. In all scenarios,
we found the xdf files contained almost identical content and therefore concluded that



Sensors 2021, 21, 8135 10 of 13

Record-a can reliably serve as an LSL recorder for Android devices. Taken together, we
present a solution to synchronize sensor readings on off-the-shelf smartphones. Closing
this gap contributes to establishing pocketable labs for everyone.

Author Contributions: Conceptualization, S.D. and S.B.; methodology, S.B.; software, S.B.; validation,
S.B., S.D., D.H. and M.G.B.; formal analysis, S.B., S.D., D.H. and M.G.B.; investigation, S.B., S.D.,
D.H. and M.G.B.; resources, S.B., S.D., D.H. and M.G.B.; data curation, S.B.; writing—original draft
preparation, S.B.; writing—review and editing, S.B., S.D., D.H. and M.G.B.; visualization, S.B., S.D.,
D.H. and M.G.B.; supervision, S.D.; project administration, S.D.; funding acquisition, S.D. and M.G.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under the Emmy Noether program—BL 1591/1-1—Project ID 411333557 and
by Germany’s Hearing4All Cluster of Excellence Strategy—EXC 2177/1—Project ID 390895286.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available in this public repository: https://github.com/s4
rify/Pocketable-Labs, accessed on 16 November 2021.

Acknowledgments: We thank Sören Jeserich and Ali Ayub Khan for programming support, and
Tristan Stenner for suggestions regarding network issues using LSL.

Conflicts of Interest: The authors declare no conflict of interest.

Methods and Correspondence: All inquiries regarding data availability, scripts and source codes of
the applications should be addressed to Sarah Blum (sarah.blum@uol.de).

Code Availability: All analysis scripts and source codes of the applications presented here are
available in this public repository: https://github.com/s4rify/Pocketable-Labs, accessed on 16
November 2021.

Appendix A

Appendix A.1. Timing Test: Method

In this scenario, we created a setup to investigate the latency of data handling in our
Send-a app. For this purpose, two streams were recorded together into one xdf file on
the PC: the first stream contained markers for keyboard events from PC (streamed using
this tool: https://github.com/labstreaminglayer/App-Input, accessed 5 October 2021),
the second stream contained accelerometer sensor values from a smartphone streamed by
Send-a. In our test, the phone was used to hit the space bar repeatedly. Each hit created a
marker which was recorded together with the sharp response in the accelerometer data
resulting from a sudden movement by the phone.

In a perfectly well synchronized setup, both events from the PC (pressing space bar)
and phone (accelerometer response) should be recorded with the same timestamp since
they occurred at the same time. To evaluate this presumed simultaneity, the markers
generated by the keyboard were used to define the time point of the event, and the closest
peak to this marker was assumed to be the accompanying accelerometer response. The
difference between the marker and the peak in the sensor data was defined as the lag in
the system, while any variation in this lag was defined as jitter in the system.

Appendix A.2. Timing Test: Results

Mean latency between keystrokes and peak in accelerometer data was 1.3 ms with a
standard deviation of 1.04 ms. It is worth noting that the precision of the results was not
limited by the sampling rate of the continuous signal (~100 Hz sampling rate would result
in 10 ms resolution) but is instead much higher since the marker stream has no specified
sampling rate. Therefore, the placement of the marker in the data can be as precise as the
sampling rate of the keyboard connected to the PC allows, and the difference between the
peak in the sensor data stream and the marker can therefore be smaller than the smallest
possible sample difference with 100 Hz would be. Figure A1 show the timing test setup

https://github.com/s4rify/Pocketable-Labs
https://github.com/s4rify/Pocketable-Labs
https://github.com/s4rify/Pocketable-Labs
https://github.com/labstreaminglayer/App-Input


Sensors 2021, 21, 8135 11 of 13

on the left side and all recorded trials on the right side. The image in panel B shows the
stability of the timing in our setup. Every sensor response followed the marker event with
a similar lag. A lot of variation would be visible in both the image as well as the time
domain response in the lower plot by smeared-out signals.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 13 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

A Appendix 

A.1 Timing Test: Method 

In this scenario, we created a setup to investigate the latency of data handling in our 

Send-a app. For this purpose, two streams were recorded together into one xdf file on the 

PC: the first stream contained markers for keyboard events from PC (streamed using this 

tool: https://github.com/labstreaminglayer/App-Input, accessed 5 October 2021), the sec-

ond stream contained accelerometer sensor values from a smartphone streamed by Send-

a. In our test, the phone was used to hit the space bar repeatedly. Each hit created a marker 

which was recorded together with the sharp response in the accelerometer data resulting 

from a sudden movement by the phone. 

In a perfectly well synchronized setup, both events from the PC (pressing space bar) 

and phone (accelerometer response) should be recorded with the same timestamp since 

they occurred at the same time. To evaluate this presumed simultaneity, the markers gen-

erated by the keyboard were used to define the time point of the event, and the closest 

peak to this marker was assumed to be the accompanying accelerometer response. The 

difference between the marker and the peak in the sensor data was defined as the lag in 

the system, while any variation in this lag was defined as jitter in the system. 

A.2 Timing Test: Results 

Mean latency between keystrokes and peak in accelerometer data was 1.3 ms with a 

standard deviation of 1.04 ms. It is worth noting that the precision of the results was not 

limited by the sampling rate of the continuous signal (∼100 Hz sampling rate would result 

in 10 ms resolution) but is instead much higher since the marker stream has no specified 

sampling rate. Therefore, the placement of the marker in the data can be as precise as the 

sampling rate of the keyboard connected to the PC allows, and the difference between the 

peak in the sensor data stream and the marker can therefore be smaller than the smallest 

possible sample difference with 100 Hz would be. Figure A1 show the timing test setup 

on the left side and all recorded trials on the right side. The image in panel B shows the 

stability of the timing in our setup. Every sensor response followed the marker event with 

a similar lag. A lot of variation would be visible in both the image as well as the time 

domain response in the lower plot by smeared-out signals. 

 

Figure A1. (A) Illustration of the timing test. A smartphone running Send-a was used to stream
accelerometer data. On PC, two programs were running: a keyboard-capture tool creating markers
for every key-press event and LabRecorder to record sensor data together with markers from PC. In
the timing test, the phone was used to hit the space bar, which created a marker and an accompanying
sensor response in the phone. (B) The upper plot shows all timing test responses vertically stacked.
Each line shows the response of one trial, 20 ms of data around the marker indicating a key-press.
The lower plot shows the average (bold black line) as well as every single sensor response (grey lines)
in the time domain. The vertical dashed line indicates the position of the keyboard event marker.

References
1. Bateson, A.D.; Baseler, H.A.; Paulson, K.S.; Ahmed, F.; Asghar, A.U.R. Categorisation of Mobile EEG: A Researcher’s Perspective.

BioMed Res. Int. 2017, 2017, 5496196. [CrossRef] [PubMed]
2. UAB Oberlo. How Many People Have Smartphones in 2020—Oberlo. 2021. Available online: https://www.oberlo.com/

statistics/how-many-people-have-smartphones (accessed on 23 March 2021).
3. World Health Organzation. World Health Statistics 2020: Monitoring Health for the Sdgs, Sustainable Development Goals; WHO:

Geneva, Switzerland, 2020.
4. The Digital Revolution. November 2020. Available online: https://www.kingsfund.org.uk/publications/digital-revolution

(accessed on 23 July 2021).
5. Stopczynski, A.; Stahlhut, C.; Larsen, J.E.; Petersen, M.K.; Hansen, L.K. The smartphone brain scanner: A portable real-time

neuroimaging system. PLoS ONE 2014, 9, e86733. [CrossRef] [PubMed]
6. Stopczynski, A.; Stahlhut, C.; Petersen, M.K.; Larsen, J.E.; Jensen, C.F.; Ivanova, M.G.; Andersen, T.S.; Hansen, L.K. Smartphones

as pocketable labs: Visions for mobile brain imaging and neurofeedback. Int. J. Psychophysiol. 2014, 91, 54–66. [CrossRef]
7. Williams, J.; Cisse, F.A.; Schaekermann, M.; Sakadi, F.; Tassiou, N.R.; Aissatou Kenda, B.A.H.; Hamani, A.B.D.; Lim, A.; Leung,

E.C.W.; Fantaneau, T.A.; et al. Utilizing a wearable smartphone-based EEG for pediatric epilepsy patients in the resource poor
environment of Guinea: A prospective study. (N5.001). Neurology 2019, 92 (Suppl. 15), N5.001.

8. Mckenzie, E.D.; Lim, A.S.P.; Leung, E.C.W.; Cole, A.J.; Lam, A.D.; Eloyan, A.; Nirola, D.K.; Tshering, L.; Thibert, R.; Garcia,
R.Z.; et al. Validation of a smartphone-based EEG among people with epilepsy: A prospective study. Sci. Rep. 2017, 7, 1–8.
[CrossRef]

http://doi.org/10.1155/2017/5496196
http://www.ncbi.nlm.nih.gov/pubmed/29349078
https://www.oberlo.com/statistics/how-many-people-have-smartphones
https://www.oberlo.com/statistics/how-many-people-have-smartphones
https://www.kingsfund.org.uk/publications/digital-revolution
http://doi.org/10.1371/journal.pone.0086733
http://www.ncbi.nlm.nih.gov/pubmed/24505263
http://doi.org/10.1016/j.ijpsycho.2013.08.007
http://doi.org/10.1038/srep45567


Sensors 2021, 21, 8135 12 of 13

9. Sokolov, E.; Hamani, A.B.D.; Sakadi, F.; Williams, J.; Vogel, A.; Schaekermann, M.; Tassiou, N.; Bah, A.K.; Khatri, V.; Hotan,
G.; et al. Smartphone EEG Utility and Quality for Epilepsy Patients in the West African Republic of Guinea (196). Neurology 2020,
94 (Suppl. 15), 196.

10. Feyissa, A.M. Hold the Smartphone! Tele-Epilepsy in a Post–COVID-19 World. Mayo Clin. Proc. 2021, 96, 4–6. [CrossRef]
11. Poveda, J.; O’Sullivan, M.; Popovici, E.; Temko, A. Portable neonatal EEG monitoring and sonification on an Android device. In

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Jeju, Korea,
11–15 July 2017; Korea Institute of Electrical and Electronics Engineers Inc.: Seoul, Korea, 2017; pp. 2018–2021.

12. Koushik, A.; Amores, J.; Maes, P. Real-time sleep staging using deep learning on a smartphone for a wearable EEG. arXiv 2018,
arXiv:1811.10111.

13. Bleichner, M.G.; Debener, S. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG. Front. Hum.
Neurosci. 2017, 11, 163. [CrossRef]

14. Reichert, M.; Giurgiu, M.; Koch, E.D.; Wieland, L.M.; Lautenbach, S.; Neubauer, A.B.; von Haaren-Mack, B.; Schilling, R.; Timm, I.;
Notthoff, N.; et al. Ambulatory assessment for physical activity research: State of the science, best practices and future directions.
Psychol. Sport Exerc. 2020, 50, 101742. [CrossRef]

15. Mühlbauer, E.; Bauer, M.; Ebner-Priemer, U.; Ritter, P.; Hill, H.; Beier, F.; Kleindienst, N.; Severus, E. Effectiveness of smartphone-
based ambulatory assessment (SBAA-BD) including a predicting system for upcoming episodes in the long-term treatment of
patients with bipolar disorders: Study protocol for a randomized controlled single-blind trial 11 Medical and Health Sciences
1103 Clinical Sciences 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Psychiatry 2018, 18, 1–9.

16. Barthelmäs, M.; Killinger, M.; Keller, J. Using a Telegram chatbot as cost-effective software infrastructure for ambulatory
assessment studies with iOS and Android devices. Behav. Res. Methods 2020, 53, 1–8. [CrossRef] [PubMed]

17. Langan, J.; Bhattacharjya, S.; Subryan, H.; Xu, W.; Chen, B.; Li, Z.; Cavuoto, L. In-home rehabilitation using a smartphone app
coupled with 3D printed functional objects: Single-subject design study. JMIR mHealth uHealth 2020, 8, e19582. [CrossRef]

18. Ferreira, C.; Guimarães, V.; Santos, A.; Sousa, I. Gamification of stroke rehabilitation exercises using a smartphone. In Proceedings
of the PervasiveHealth 14: 8th International Conference on Pervasive Computing Technologies for Healthcare, Oldenburg,
Germany, 20–23 May 2014; pp. 282–285.

19. Spina, G.; Huang, G.; Vaes, A.; Spruit, M.; Amft, O. COPDTrainer: A smartphone-based motion rehabilitation training system
with real-time acoustic feedback. In Proceedings of the UbiComp 2013, 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, New York, NY, USA, 8 September 2013; pp. 597–606.

20. Worringham, C.; Rojek, A.; Stewart, I. Development and Feasibility of a Smartphone, ECG and GPS Based System for Remotely
Monitoring Exercise in Cardiac Rehabilitation. PLoS ONE 2011, 6, e14669. [CrossRef] [PubMed]

21. Moral-Munoz, J.A.; Zhang, W.; Cobo, M.J.; Herrera-Viedma, E.; Kaber, D.B. Smartphone-based systems for physical rehabilitation
applications: A systematic review. Assist. Technol. 2021, 33, 223–236. [CrossRef] [PubMed]

22. Varnfield, M.; Karunanithi, M.; Lee, C.K.; Honeyman, E.; Arnold, D.; Ding, H.; Smith, C.; Walters, D.L. Smartphone-based home
care model improved use of cardiac rehabilitation in postmyocardial infarction patients: Results from a randomised controlled
trial. Heart 2014, 100, 1770–1779. [CrossRef] [PubMed]

23. Milani, P.; Coccetta, C.A.; Rabini, A.; Sciarra, T.; Massazza, G.; Ferriero, G. Mobile smartphone applications for body position
measurement in rehabilitation: A review of goniometric tools. PM R 2014, 6, 1038–1043. [CrossRef] [PubMed]

24. Chu, S.; Wang, H.; Du, Y.; Yang, F.; Yang, L.; Jiang, C. Portable Smartphone Platform Integrated with a Nanoprobe-Based
Fluorescent Paper Strip: Visual Monitoring of Glutathione in Human Serum for Health Prognosis. ACS Sustain. Chem. Eng. 2020,
8, 8175–8183. [CrossRef]

25. Jin, R.; Wang, F.; Li, Q.; Yan, X.; Liu, M.; Chen, Y.; Zhou, W.; Gao, H.; Sun, P.; Lu, G. Construction of multienzyme-hydrogel
sensor with smartphone detector for on-site monitoring of organophosphorus pesticide. Sens. Actuators B Chem. 2021, 327, 128922.
[CrossRef]

26. Zhang, Y.; Luo, Q.; Ding, K.; Liu, S.G.; Shi, X. A smartphone-integrated colorimetric sensor of total volatile basic nitrogen (TVB-N)
based on Au@MnO2 core-shell nanocomposites incorporated into hydrogel and its application in fish spoilage monitoring. Sens.
Actuators B Chem. 2021, 335, 129708. [CrossRef]

27. Tittle, S.; Thibodeau, L.; Panahi, I.M.; Chengappa, P.C. Benefits of a smartphone as a remote microphone system. J. Acoust. Soc.
Am. 2019, 146, 3047. [CrossRef]

28. Amlani, A.M.; Smaldino, J.; Hayes, D.; Taylor, B.; Gessling, E. Feasibility of using a smartphone-based hearing aid application to
improve attitudes toward amplification and hearing impairment. Am. J. Audiol. 2019, 28, 125–136. [CrossRef]

29. Slaney, M.; Lyon, R.F.; Garcia, R.; Kemler, B.; Gnegy, C.; Wilson, K.; Kanevsky, D.; Savla, S.; Cerf, V.G. Auditory Measures for the
Next Billion Users. Ear Hear. 2020, 41 (Suppl. 1), 131S–139S. [CrossRef]

30. Low, C.A. Harnessing consumer smartphone and wearable sensors for clinical cancer research. NPJ Digit. Med. 2020, 3, 1–7.
[CrossRef]

31. Dehais, F.; Karwowski, W.; Ayaz, H. Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for
Neuroergonomics. Front. Neuroergonomics 2020, 1, 1. [CrossRef]

32. Debener, S.; Emkes, R.; de Vos, M.; Bleichner, M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes
around the ear. Sci. Rep. 2015, 5, 16743. [CrossRef]

http://doi.org/10.1016/j.mayocp.2020.11.010
http://doi.org/10.3389/fnhum.2017.00163
http://doi.org/10.1016/j.psychsport.2020.101742
http://doi.org/10.3758/s13428-020-01475-4
http://www.ncbi.nlm.nih.gov/pubmed/32989722
http://doi.org/10.2196/19582
http://doi.org/10.1371/journal.pone.0014669
http://www.ncbi.nlm.nih.gov/pubmed/21347403
http://doi.org/10.1080/10400435.2019.1611676
http://www.ncbi.nlm.nih.gov/pubmed/31112461
http://doi.org/10.1136/heartjnl-2014-305783
http://www.ncbi.nlm.nih.gov/pubmed/24973083
http://doi.org/10.1016/j.pmrj.2014.05.003
http://www.ncbi.nlm.nih.gov/pubmed/24844445
http://doi.org/10.1021/acssuschemeng.0c00690
http://doi.org/10.1016/j.snb.2020.128922
http://doi.org/10.1016/j.snb.2021.129708
http://doi.org/10.1121/1.5137562
http://doi.org/10.1044/2018_AJA-17-0068
http://doi.org/10.1097/AUD.0000000000000955
http://doi.org/10.1038/s41746-020-00351-x
http://doi.org/10.3389/fnrgo.2020.583733
http://doi.org/10.1038/srep16743


Sensors 2021, 21, 8135 13 of 13

33. Hölle, D.; Meekes, J.; Bleichner, M.G. Mobile ear-EEG to study auditory attention in everyday life. Behav. Res. Methods 2021, 53,
2025–2036. [CrossRef]

34. Kumar, P.; Saini, R.; Sahu, P.K.; Roy, P.P.; Dogra, D.P.; Balasubramanian, R. Neuro-Phone: An assistive framework to operate
smartphone using EEG signals. In Proceedings of the TENSYMP 2017-IEEE International Symposium on Technologies for Smart
Cities, Cochin, India, 14–16 July; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017.

35. Salvidegoitia, M.P.; Jacobsen, N.; Bauer, A.R.; Griffiths, B.; Hanslmayr, S.; Debener, S. Out and about: Subsequent memory effect
captured in a natural outdoor environment with smartphone EEG. Psychophysiology 2019, 56, e13331. [CrossRef] [PubMed]

36. Artoni, F.; Barsotti, A.; Guanziroli, E.; Micera, S.; Landi, A.; Molteni, F. Effective Synchronization of EEG and EMG for Mobile
Brain/Body Imaging in Clinical Settings. Front. Hum. Neurosci. 2018, 11, 652. [CrossRef] [PubMed]

37. Jacobsen, N.S.J.; Blum, S.; Witt, K.; Debener, S. A walk in the park? Characterizing gait-related artifacts in mobile EEG recordings.
Eur. J. Neurosci. 2020, ejn.14965. [CrossRef]

38. Scanlon, J.E.M.; Jacobsen, N.S.J.; Maack, M.C.; Debener, S. Does the electrode amplification style matter? A comparison of active
and passive EEG system configurations during standing and walking. Eur. J. Neurosci. 2020. [CrossRef] [PubMed]

39. Barkhuus, L.; Polichar, V.E. Empowerment through seamfulness: Smart phones in everyday life. Pers. Ubiquitous Comput. 2011,
15, 629–639. [CrossRef]

40. Gretton, C.; Honeyman, M. The Digital Revolution: Eight Technologies that will Change Health and Care—The King’s Fund.
2016. Available online: https://www.kingsfund.org.uk/publications/articles/eight-technologies-will-change-health-and-care
(accessed on 26 April 2017).

41. Zamm, A.; Palmer, C.; Bauer, A.R.; Bleichner, M.G.; Demos, A.P.; Debener, S. Synchronizing MIDI and wireless EEG measurements
during natural piano performance. Brain Res. 2019, 1716, 27–38. [CrossRef] [PubMed]

42. Kopetz, H.; Ochsenreiter, W. Clock Synchronization in Distributed Real-Time Systems. IEEE Trans. Comput. 1987, 100, 933–940.
[CrossRef]

43. Flammini, A.; Ferrari, P. Clock Synchronization of Distributed, Real-Time, Industrial Data Acquisition Systems; IntechOpen: London,
UK, 2010.

44. Elson, J.; Estrin, D. Time synchronization for wireless sensor networks. In Parallel and Distributed Processing Symposium, Interna-
tional; IEEE Computer Society: San Francisco, CA, USA, 2001; p. 30186b.

45. Dolmans, T.C.; Poel, M.; Klooster, J.W.J.R.V.; Veldkamp, B.P. Data synchronisation and processing in multimodal research. Meas.
Behav. 2020-21 2020, 1, 1–30.

46. Arico, P.; Borghini, G.; di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the lab: Current trends and future directions.
Physiol. Meas. 2018, 39, 08TR02. [CrossRef]

47. Wascher, E.; Reiser, J.; Rinkenauer, G.; Larra´, M.; Dreger, F.A.; Schneider, D.; Karthaus, M.; Getzmann, S.; Gutberlet, M.; Arnau, S.
Neuroergonomics on the Go: An Evaluation of the Potential of Mobile EEG for Workplace Assessment and Design. Hum. Factors
2021. [CrossRef]

48. Wang, Y.; Markham, C.; Deegan, C. Assessing the time synchronisation of EEG systems. In Proceedings of the 30th Irish Signals
and Systems Conference (ISSC), Maynooth, Ireland, 17–18 June 2019; pp. 1–6.

49. Istepanian, R.S.; Kulhandjian, M.; Chaltikyan, G. Mobile Health (mHealth) in the Developing World: Two Decades of Progress or
Retrogression. J. Int. Soc. Telemed. Ehealth 2020, 8, e24. [CrossRef]

50. Kernebeck, S.; Busse, T.S.; Böttcher, M.D.; Weitz, J.; Ehlers, J.; Bork, U. Impact of mobile health and medical applications on
clinical practice in gastroenterology. World J. Gastroenterol. 2020, 26, 4182–4197. [CrossRef]

51. Zmora, N.; Elinav, E. Harnessing SmartPhones to Personalize Nutrition in a Time of Global Pandemic. Nutrients 2021, 13, 422.
[CrossRef]

52. Meegahapola, L.; Gatica-Perez, D. Smartphone Sensing for the Well-Being of Young Adults: A Review. IEEE Access 2021, 9,
3374–3399. [CrossRef]

53. Krichen, M. Anomalies Detection Through Smartphone Sensors: A Review. IEEE Sens. J. 2021, 21, 7207–7217. [CrossRef]

http://doi.org/10.3758/s13428-021-01538-0
http://doi.org/10.1111/psyp.13331
http://www.ncbi.nlm.nih.gov/pubmed/30657185
http://doi.org/10.3389/fnhum.2017.00652
http://www.ncbi.nlm.nih.gov/pubmed/29379427
http://doi.org/10.1111/ejn.14965
http://doi.org/10.1111/ejn.15037
http://www.ncbi.nlm.nih.gov/pubmed/33185920
http://doi.org/10.1007/s00779-010-0342-4
https://www.kingsfund.org.uk/publications/articles/eight-technologies-will-change-health-and-care
http://doi.org/10.1016/j.brainres.2017.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28693821
http://doi.org/10.1109/TC.1987.5009516
http://doi.org/10.1088/1361-6579/aad57e
http://doi.org/10.1177/00187208211007707
http://doi.org/10.29086/JISfTeH.8.e24
http://doi.org/10.3748/wjg.v26.i29.4182
http://doi.org/10.3390/nu13020422
http://doi.org/10.1109/ACCESS.2020.3045935
http://doi.org/10.1109/JSEN.2021.3051931

	Introduction 
	The Smartphone Apps: Record-a, Send-a and Sine-Wave App 
	Record-a 
	Send-a 
	Sine-Wave App 

	Methods 
	Scenario 1: Data Streamed from Android Devices Recorded on a PC 
	Scenario 1A: Sine Wave Data Streamed from Android Devices, Recorded on a PC 
	Scenario 1B: Sensor Data Streamed from Android Devices, Recorded on a PC 
	Scenario 2: Data Streamed from PC, Recorded on an Android Device 
	Scenario 3: Sensor Data Streamed from Android Device, Recorded on the Same Android Device 

	Results 
	Scenario 1A: Sine Wave Data Streamed from Android Devices, Recorded on a PC 
	Scenario 1B: Sensor Data Sreamed from Android Devices, Recorded on a PC 
	Scenario 2: Data Streamed from PC, Recorded on an Android Device 
	Scenario 3: Sensor Data Streamed from an Android Device, Recorded on the Same Android Device 
	Fault Tolerance and Stability: Record-a 
	Error Scenario: The Stream Outlet Pauses or Stops to Send New Samples 
	Error Scenario: Record-a Is Terminated Unexpectedly 


	Discussion 
	
	Timing Test: Method 
	Timing Test: Results 

	References

