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From 2003 to 2017, highly pathogenic avian influenza (HPAI) epidemics, particularly

H5N1, H5N8, and H5N6 infections in poultry farms, increased in South Korea. More

recently, these subtypes of HPAI virus resurged and spread nationwide, heavily impacting

the entire poultry production and supply system. Most outbreaks in poultry holdings were

concentrated in the southwestern part of the country, accounting for 58.3% of the total

occurrences. This geographically persistent occurrence demanded the investigation of

spatial risk factors related to the HPAI outbreak and the prediction of the risk of emerging

HPAI outbreaks. Therefore, we investigated 12 spatial variables for the three subtypes

of HPAI virus-infected premises [(IPs), 88 H5N1, 339 H5N8, and 335 H5N6 IPs]. Then,

two prediction models using statistical and machine learning algorithm approaches were

built from a case-control study on HPAI H5N8 epidemic, the most prolonged outbreak,

in 339 IPs and 626 non-IPs. Finally, we predicted the risk of HPAI H5N1 and H5N6

occurrence at poultry farms using a Bayesian logistic regression and machine learning

algorithm model [extreme gradient boosting (XGBoost) model] built on the case-control

study. Several spatial variables showed similar distribution between two subtypes of IPs,

although there were distinct heterogeneous distributions of spatial variables among the

three IP subtypes. The case-control study indicated that the density of domestic duck

farms and the minimum distance to live bird markets were leading risk factors for HPAI

outbreaks. The two predictionmodels showed high predictive performance for H5N1 and

H5N6 occurrences [an area under the curve (AUC) of receiver operating characteristic of

Bayesian model> 0.82 and XGBoost model> 0.97]. This finding emphasizes that spatial

characteristics of the poultry farm play a vital role in the occurrence and forecast of HPAI

outbreaks. Therefore, this finding is expected to contributing to developing prevention

and control strategies.
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INTRODUCTION

The avian influenza virus, a member of the Orthomyxoviridae
family, is primarily classified as highly pathogenic avian influenza
virus (HPAIv) and low pathogenic avian influenza virus (LPAIv)
based on the degree of pathogenicity in chickens according to the
World Animal Health Organization (OIE). Chickens or turkeys
exposed to HPAI develop acute systemic symptoms that lead to
death (1). The virus has been considered a zoonotic pathogen
with a high potential to develop into a pandemic disease for
humans, resulting in numerous casualties and massive economic
instability. According to the World Health Organization, the
number of confirmed H5N1 and H7N9 cases in humans is
861, with 455 deaths, and 1,568, with 616 deaths, respectively,
as of April 3, 2020. In addition to the overall fatality rates of
avian influenza, the human case fatality rate of HPAIv has been
reported to be significantly higher than LPAIv (2).

The main route of transmission of HPAIv to humans is
direct or indirect contact with live or dead poultry infected with
the virus in live bird markets (LBMs), backyard poultry flocks,
or direct contact with fluids that contain the virus (1, 3, 4).
A recent epidemiological study suggested that the proximity
of a domestic poultry cage or nesting area to the house and
domestic poultry transportation to markets are significant risk
factors for H5N1 infection in humans, Cambodia (5). Thus,
the fundamental approach to mitigating human infections and
preventing this disease from mutating into a novel type of
pathogen that becomes a pandemic is to control viral circulation
at poultry production sites.

Since the first case was reported at a domestic chicken farm
on December 10, 2003, South Korea has experienced multiple
HPAI epidemics that resulted in more than 1,100 cases with the
three different subtypes of HPAIv: H5N1, H5N8, and H5N6.
From 2008 to 2011, a single subtype (H5N1) of < 100 cases
were confirmed in poultry holdings across the nation within 140
days of each epidemic (6). However, since 2014, HPAI epidemics
have tended to be prolonged and have heavily affected poultry
operations across the country. An economic report maintained
that direct and indirect financial losses were estimated to account
for approximately 295 million US dollars during the 2014-15
HPAI epidemic (7). In particular, HPAIv H5N6 from November
2016 to March 2017 with the worst epidemic producing 343 cases
and causing 36% of layer farms across the country to depopulate
(8). Furthermore, during the 2016-17 HPAI H5N6 epidemic, the
total incidence reached 343 cases within 106 days, leading to
severe economic losses of about 238 million US dollars in direct
compensation for poultry depopulation. Approximately 36.0%
of chicken layer farms and 51.5% of layer breeding farms were
depopulated because of the unprecedented massive outbreaks
during the 2016-17 HPAI H5N6 epidemic, resulting in price
instability and a loss of food security (8).

Interestingly, the spatial distribution of HPAI outbreaks in

Korea appears to be concentrated in the small southwestern

region, Naju, and its central region, Eumseong, where the

majority of domestic ducks in Korea are produced irrespective
of the subtype of the virus (6, 9, 10). Moreover, phylogenetic
studies on HPAIv have indicated that domestic duck farms

are highly susceptible to the first infection by HPAIv and
amplify the virus for lateral transmission among all poultry
species farms in South Korea (9, 10). In this context, it is
arguable that geographical factors, including domestic duck farm
density, are strongly linked to the HPAI epidemics in Korea.
Numerous studies have found that spatial factors significantly
increase the risk of HPAI infections during poultry operations
in Asian regions. For example, in China, the density of domestic
waterfowl, proportion of land occupied by water, and density
of the human population are significant risk factors for HPAIv
H5N1 infection (11). Additionally, one study reported that LBMs
in rural areas are associated with increased H7 subtypes in
Zhejiang province (12). Similarly, in Vietnam, larger rice paddy
fields around a poultry farm, closer distance between wetlands
and poultry farms, and greater density of free-grazing duck farms
had a positive association with HPAI infections in poultry farms
(13–16). In addition to the argo-environmental characteristics
around poultry farms, a decreasing distance to the closest major
road increased avian influenza virus prevalence (17).

The poultry production environment in Korea has similar
and distinctive characteristics to those of Asian countries, where
identical or different spatial factors contribute to the risk of
HPAI. For example, a large proportion of land is covered by rice
fields (8.44% of the total territory) around poultry farms, and
a relatively large proportion of domestic duck farms (16.0% of
the total poultry farms). On the other hand, domestic ducks are
commonly raised indoor, thus they hardly have direct contact
with wild birds. Furthermore, most poultry farms have large
and medium-scale production capacities. For example, 97.6% of
domestic duck farms and 92.3% of chicken farms produced more
than 5,000 and 10,000 birds, respectively for the first quarter of
the year 2020, according to livestock survey of the Korea Institute
for Animal products quality Evaluation (18).

Additionally, the different subtypes of HPAIv presented
heterogeneous pathogenicity to poultry and shedding levels,
which is assumed to differently influence the time to report the
detection of infection period and, consequently, the magnitude
of the epidemic. For example, the H5N8 subtype occurring in
2014–2016 caused relatively mild clinical symptoms in duck
species, compared with the H5N6 subtype in the 2016–2017
epidemic (19). In contrast, the H5N1 subtype that affected
poultry holdings during the 2010–2011 epidemic was lethal
to domestic ducks (20). Furthermore, the basic reproduction
number, which estimates the average number of infectees by a
single infector, was the highest in H5N1 compared to subtype
H5N8 and H5N6 (21).

Hence, at the expected emergence of the new HPAI (22),
it is crucial to identify common spatial risk factors associated
with different HPAI occurrences and build a risk prediction
model for prevention and response strategies specific to Korea.
However, none of the studies have investigated the association
between spatial characteristics and diverse subtypes of HPAI
infections at poultry farms at the national level or conducted
risk assessment from a geographical standpoint to provide a
scientific basis for prevention strategies. In this regard, there are
two objectives for this study: to improve the understanding of
HPAI risk factors and provide a scientific basis for implementing
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FIGURE 1 | Study frame for the risk prediction of three subtypes of highly pathogenic avian influenza outbreaks in poultry farms.

a risk-based surveillance system for poultry farm production
and ultimately preventing human infection. The first one is to
investigate the spatial characteristics of the 2014–2016 H5N8
epidemic, the longest outbreaks affecting the largest number of
poultry farms, such as the distance to habitats of migratory birds,
size of farmland, the density of poultry farms, and human. Risk
prediction models were built based on the significant spatial
factors associated with HPAI infections using a case-control
study of 339 H5N8-infected and 626 non-infected poultry farms.
Lastly, we predicted the risk values in 88 HPAI H5N1 and 335
H5N6 infections using the model built based on spatial risk
factors relevant to H5N8 and compared the observed data with
the prediction to validate the accuracy of the risk prediction
model for different subtypes of HPAI from retrospective and
prospective perspective.

MATERIALS AND METHODS

Study Frame
As illustrated in Figure 1, we first investigated the spatial
characteristics of the three subtypes (H5N1, H5N8, and H5N6)
of HPAIv IPs during each epidemic in South Korea. Next, the
prediction model was built from a case-control study on the
HPAI H5N8 epidemic from 2014 to 2016 to identify spatial risk
factors associated with HPAI incidence in chicken or domestic

duck holdings. Finally, with the significant risk factors, the
remaining subtypes of the HPAI outbreaks were predicted using
a statistical and machine learning model, followed by creating a
risk map across the nation.

Three HPAI Subtypes Outbreak Data
In this study, three different subtypes (H5N1, H5N8, and
H5N6) of the HPAI epidemic in South Korea were included
to examine the spatial characteristics of the IPs and predict
the risk of occurrence, as summarized in Table 1. As shown
in Figure 2, the data on IPs during each epidemic, limited to
chicken and domestic duck farm (88 IPs for H5N1, 339 IPs for
H5N8, and 335 IPs for H5N6), which consisted of the date of
confirmation, geographical coordinates, and farm species, were
obtained from the Korea Animal Integrated System (KAHIS) of
the Animal and Plant Quarantine Agency, South Korea. On the
other hand, the data on non-IPs producing either chicken or
domestic duck farms (201 non-IPs for H5N1, 626 non-IPs for
H5N8, and 335 non-IPs for H5N6 epidemic) for each epidemic
contained geographical coordinates and farm species, compiled
from the KAHIS.

Spatial Variable Data
The spatial variables associated with HPAI occurrence on a
poultry farm were selected from previous research on risk factors
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(12–14, 23–27) and epidemiological survey reports issued by the
Ministry of Agriculture, Food and Rural Affairs in South Korea
(28–30). As a result, 12 variables were chosen to examine the
spatial characteristics of the HPAI outbreaks in farms (Table 2).
All spatial variables weremeasured using continuous scale values.
The spatial resolution and time comparability of the data was
central to improving the validity of the analyses. Therefore, we
derived the spatial variables from the various data sources that
provided fine geographical resolution and matched the time
period to each of the HPAI epidemics (2010–2011 for H5N1,
2014–2015 for H5N8, 2016–17 for H5N6) to accommodate the
landscape change, as noted in Table 2.

The elevation of poultry holdings in the study was derived
from the digital elevation model (DEM) data obtained from

TABLE 1 | Overview of highly pathogenic avian influenza epidemics targeted for

comparative risk assessment in South Korea.

Epidemic 2010/11 2014/16 2016/17

Subtype H5N1 H5N8 H5N6

H5-clade 2.3.2.1 2.3.4.4 2.3.4.4

Duration (unit: days) 139 562 108

No. of infected

chicken farms (%)
†

34 (37.4%) 93 (23.7%) 197 (57.4%)

No. of infected

domestic duck

farms (%)
†

54 (59.3%) 294 (74.8%) 138 (40.2%)

No. of infected other

poultry species

farm‡

3 (3.3%) 6 (1.5%) 8 (2.3%)

Total no. of cases 91 393 343

No. of poultry culled

(unit: birds)

6,473 19,311,634 37,870,000

The farm species is defined as the major poultry species raised in the infected premises

in terms of flock size.
†
The percentage in the parenthesis was equal to the proportion

of given species farms over total cases. ‡Other types of poultry farm consisted of quail,

goose, pheasant, and other indigenous species.

the Shuttle Radar Topography Mission of the United States
Geological Survey in 2014. From the DEM data, the topological
wetness index (TWI) across the nation was estimated, and the
value of individual poultry holdings was extracted based on
its geographical coordinates. The TWI index is an indicator of
water accumulation and local drainage, defined as a function
of the total catchment area, flow width and slope gradient
[calculated as ln(α/tanß), where α is the total catchment area
(i.e., a cumulative upslope area that supplies water) per-flow
width, and tanß is the surface slope gradient between the cell
in upstream and a cell further downslope]. It is often used as
a proxy for soil moisture because it integrates the water supply
from upslope and downslope water drainage. The proportion of
the forest, rice paddy fields, water bodies, and wetlands within
a 3km-radius from each study farm were calculated using the
national land cover map at the 5m spatial resolution provided
by the Environmental Spatial Information Service, Ministry of
Environment, South Korea, in 2009 and 2017. The determination
of the radius range (3 km) for the proportion of each type of land
cover was made according to the standard operative procedure
for HPAI, South Korea, where the area within a 3-km radius
from an HPAI-infected premise or localities of HPAI-positive
surveillance area in wild birds was classified as a biosecurity
zone mainly due to the high risk of local spread. Additionally,
data on driveways were retrieved from the Korea National
Transport Information Center in 2010, 2014, and 2016. Human
density data were obtained from an open-source database for
spatial demography (www.worldpop.org) for 2011, 2014, 2016
at a resolution of 1 km. The densities of chicken farms and
domestic duck farms of each study farm were extracted from
a raster map constructed with the geographical coordinates
of chicken and domestic duck farms provided by the Animal
and Plant Quarantine Agency, Ministry of Agriculture, Food
and Rural Affairs in South Korea in 2016 using the ArcGIS
version 10.8.1 (ESRI Co., Redlands, CA, USA). An LBM is
a place to sell live chickens or ducks and is known to play
a major role in distributing viruses (31, 32). The minimum

FIGURE 2 | Geographical distribution of three different subtypes of highly pathogenic avian influenza-infected premises denoted by a red dot: H5N1 subtype (A),

H5N8 subtype (B), and H5N6 subtype (C).
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TABLE 2 | List of spatial variables used for risk prediction of highly pathogenic avian influenza outbreak in poultry farms in South Korea.

Variable (n = 12) Unit Data source (Period) Note

Topology

Elevation m USGS SRTM (2014) All subtype

Topological wetness index
†

All subtype

Land-use/cover

Proportion of forest within a 3 km

radius

% Ministry of Environment, South Korea

(2009, 2017)

2009 data for H5N1, 2017 data for H5N8,

H5N6

Proportion of rice field within a 3 km

radius

%

Proportion of waterbody within a 3 km

radius

%

Proportion of wetland within a 3 km

radius

%

Minimum distance to driveway km National Geographic Information

Institute, South Korea (2010, 2014,

2016)

2010 data for H5N1, 2014 data for H5N8,

2016 data for H5N6

Poultry and human

Human No. of inhabitant/10 km2 Worldpop

(2011, 2014, 2016)

2011 data for H5N1, 2014 data for H5N8,

2016 data for H5N6

Chicken farm No. of farms/km2 Korea Animal Health Integration System

(2016)

Domestic duck farm No. of farms/km2 All subtype

Wildlife and live bird market

Minimum distance to major migratory

birds‘ habitats for wintering

km Ministry of Environment, South Korea

(2014)

All subtype

Minimum distance to live bird market 100m Ministry Agriculture, Food and Rural

affairs, South Korea (2014)

All subtype

USGS, United States Geographical Survey; SRTM, Shuttle Radar Topography Mission.
†
Topological wetness index indicates the level of water accumulation and local drainage as a function of the total catchment area, flow width and slope gradient.

distance to the LBM from each farm was calculated using
the geographical coordinates of 1,904 markets provided by the
Ministry of Agriculture, Food and Rural Affairs in South Korea.
In addition, geographical coordinates of the major wintering
site for migratory wild bird habitats (195 sites, as of 2014)
were obtained from the Ministry of Environment. Details on
the geographic properties of the spatial variables used in this
study can be found in Supplementary Figures S1–S12, the
Supplementary Material.

Investigation of Spatial Characteristics of
HPAI-Infected Premises
Explanatory data analysis for 12 spatial variables was conducted
on H5N1, H5N8, and H5N6 subtypes of HPAIv-infected chicken
and duck holdings (88 IPs for H5N1, 339 IPs for H5N8, and
334 IPs for H5N6) to understand the spatial characteristics.
An analysis of variance test or Kruskal–Wallis test, dependent
on the normality of the variable to be tested, was performed
to compare the mean of the spatial variables among the three
subtypes of HPAIv-IPs (H5N1, H5N8, and H5N6), followed
by a post-hoc analysis on each pair of IPs subtypes. The
normality of spatial variables on a continuous scale was
examined by the Shapiro-Wilk normality test and the Q-Q
plot method. The significance level for the mean difference

was set at P < 0.05. R software (version 4.1.2) was used for
comparison tests.

Construction of Prediction Model From a
Case-Control Study on HPAI H5N8 Virus
Epidemic
To identify spatial risk factors associated with HPAI incidence
in poultry holdings, especially chicken and domestic duck
farms, a case-control study was designed for the 2014–2016
HPAI H5N8 epidemic because it was the most prolonged
nationwide outbreak (three waves with a total duration of 562
days) (28). A case farm was defined as the farms that raised
either chicken or domestic duck and confirmed HPAI infection
with a real-time reverse transcription-quantitative polymerase
chain reaction test, according to the World Organization for
Animal Health. The control group was selected from poultry
farms that had (i) never experienced HPAI outbreak during
the epidemic, (ii) a matching municipality with the case group,
and (iii) species (i.e., chickens and domestic ducks) comparable
to the case group, using a simple random sampling method
with frequency matching at the same proportion for species
and municipalities. Furthermore, farms for which location
information was not available were excluded from the study.
Finally, 339 HPAIv H5N8 positive poultry farms, consisting of
283 HPAI-positive duck farms and 56 chicken farms as the
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case group, and 603 negative poultry farms, which comprised
514 duck farms and 112 chicken farms, were selected as the
control group.

Univariate analysis used a significance level of 0.05 to
validate the mean difference of given variables between the
case and control groups. Correlations among spatial risk
variables were examined to identify interaction and confounding
variables, and variance inflation factors (VIFs) were estimated
to check the degree of multicollinearity. Consequently, the
variables were excluded from the logistic analysis if the
value of VIF value exceeded 3 (33). Subsequently, Bayesian
multiple logistic regression analysis was applied to statistically
significant variables with a P < 0.2 in univariate analysis
(34). Furthermore, a multiple logistic regression model was
built for either chicken or domestic holdings to identify
spatial risk factors associated with HPAI occurrences at
each species farm. The Gelman–Rubin convergence diagnostic
was used to check the MCMC convergence of marginal
posterior distribution of the regression coefficient estimates.
The Morans‘I test on the residual from the Bayesian model
was performed to check whether the spatial autocorrelation
was presented in the data using 999 simulations. R2JAGS R
package version 0.7.1 and ape R package version 5.6 were used
for Bayesian regression analysis and Morans‘I test, respectively
(35, 36).

Finally, the prediction model using the Bayesian multiple
logistic regression analysis was built from the case-control
study on the H5N8 epidemic with significant variables and
non-significant associations because of the generalization of
the model to predict other epidemics where other variables
could be contributable to HPAI infection at poultry holdings.
In addition to statistical approaches to predict other subtypes
of HPAI outbreaks, the extreme gradient boosting (XGBoost)
model was constructed using the same case and control farms
of H5N8 epidemic used in the Bayesian multiple logistic
regression analysis. Then, the XGBoost model predicted the
probability of H5N1 and H5N6 subtypes of HPAI occurrence.
XGBoost is a tree-based method used to model nonlinear
relationships using the boosting technique to adaptively combine
a large number of relatively simple tree models with improving
predictive performance. Boosting refers to an ensemble method
in which sets of models are trained sequentially, with each
model learning from the errors of its predecessor, transforming a
weak classifier into a strong classifier using weights. In addition,
the XGBoost algorithm uses a regularized loss function to
minimize overfitting. This diminishes the effect of a single tree
on the final score by scaling down the weight of each new
tree. Furthermore, it uses a variable selection approach to build
a tree (37). In the XGBoost model, the data should include
the presence and absence of HPAI in poultry farms for binary
classification. We trained the model using hyperparameters
under default settings. Bayesian logistic regression model fits
were assessed using the Deviance information criterion (DIC)
value using the stepwise method. Finally, the fit of the
XGBoost model was assessed using 5-fold cross-validation. The
R software version 1.5.0.2 xgboost package was used for XGBoost
modeling (38).

Prediction of the H5N8 and H5N6 Subtype
Outbreak in Poultry Farms and Risk
Mapping
We predicted the probability of incidence for other subtypes of
HPAI in chicken and domestic duck holdings across the nation.
We used 88 H5N1 IPs, 335 H5N6 IPs, 270 non-IPs, and 335 non-
IPs randomly selected during each corresponding epidemic (see
Supplementary Figure S13 in the Supplementary Materials)
using two different methodological approaches (Bayesian logistic
model and XGBoost model). The predictive performance of
the Bayesian logistic model and XGBoost model on the three
subtypes of HPAI virus infection was estimated using the area
under the curve (AUC) of the receiver operating characteristic
(ROC) curve. Moreover, the sensitivity and specificity of the
model were calculated using the optimal cutoff that maximizes
the distance to the diagonal line of ROC curve. Mapping and
geographical visualization were performed using ArcGIS version
10.8.1. The HPAI risk map was constructed using the empirical
Bayesian kriging interpolation method based on the probability
of HPAIV incidence predicted by the Bayesian logistic regression
model and XGBoost model using ArcGIS 10.8.1 software. The
pROC R package version 1.18.0 was used to calculate the AUC,
sensitivity, and specificity (39).

RESULTS

Overview of Spatial Characteristics of the
Three Subtypes Virus IPs
Table 3 provides a statistical summary of 12 spatial variables
among the H5N1, H5N8, and H5N6 subtypes of HPAIv
IPs. Overall, there were distinctive heterogeneities in the
distribution of all spatial variables except for the proportion
of wetland within a 3 km radius and the minimum distance
to major wintering sites for wild birds. However, comparing
the distributions of spatial variables between two pairs of
subtypes of HPAIv IPs (H5N1-H5N8, H5N1-H5N6, and H5N8-
H5N6) by a post-hoc analysis revealed similar characteristics
in the combination of pairs (Supplementary Figure S14,
Supplementary Materials). For example, the mean difference
of the minimum distance to LBM between H5N1 and H5N8
IPs, H5N8, and H5N6, was not significantly different. Similarly,
H5N1 and H5N6 IPs had comparable densities of chicken and
domestic duck farms.

More specifically, H5N8 IPs were mainly composed of
domestic duck farms (83.5% of total study farms), at lower
elevations with a spacious rice field, very low human density,
and higher domestic duck farm density than other subtypes of
HPAI virus IPs. In contrast, H5N6 IPs with a higher proportion
of chicken farms (58.8% of the total study farms) were placed
at higher elevations with higher forest area, higher human, and
chicken farm density, and closer to driveways. Additionally,
H5N1 IPs, similar proportion in farm species, located in the
medium range of elevations between H5N8 and H5N6 IPs,
had the lowest chicken and duck farm density with the lowest
minimum distance to the wintering site for wild birds and
the LBM.
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TABLE 3 | Overview of spatial variables among three subtypes of highly

pathogenic avian influenza virus infected premises (H5N1, H5N8, and H56) in

South Korea.

Subtype

Variables (unit) H5N1

(n = 88)

H5N8

(n = 339)

H5N6

(n = 335)

p-value

Farm species

Chicken (no. of

farms)

34 56 197 -

Domestic duck

(no. of farms)

54 283 138 -

Topology

Elevation (m) 54.08 (42.03) 50.15 (41.68) 71.03 (49.14) < 0.01*‡

Topological wetness

index
†

10.45 (1.37) 11.07 (1.83) 10.63 (1.59) < 0.01*‡

Land-use/cover

Proportion of

forest within a

3 km radius (%)

25.67 (20.29) 21.08 (17.21) 29.45 (19.47) < 0.01*‡

Proportion of

rice field within a

3 km radius (%)

33.58 (14.81) 37.33 (11.29) 32.09 (13.15) < 0.01*‡

Proportion of

waterbody within a

3 km radius (%)

2.98 (2.73) 2.44 (1.63) 2.77 (1.80) < 0.01*‡

Proportion of

wetland within a

3 km radius (%)

1.13 (1.09) 0.97 (0.89) 1.22 (1.89) 0.07‡

Minimum

distance to

driveway (km)

0.53 (0.47) 0.59 (0.51) 0.43 (0.41) < 0.01*‡

Poultry and human

Human (no. of

inhabitant/10 km2 )

30.40 (42.02) 17.69 (19.61) 31.768

(39.74)

< 0.01*§

Chicken farm

(no. of farms/km2 )

0.34 (0.27) 0.60 (1.20) 0.62 (0.76) < 0.01*§

Domestic duck farm

(no. of

farms/km2 )

0.32 (0.37) 0.89 (1.13) 0.51 (0.97) < 0.01*§

Wildlife and live bird

market

Minimum

distance to major

wintering site for

wild bird (km)

5.55 (5.77) 6.32 (5.56) 6.59 (4.45) 0.23‡

Minimum

distance to live

bird market (100m)

1.04 (0.10) 3.10 (12.8) 2.41 (9.24) <0.04*§

Values are expressed as mean (standard deviation).
†
Topological wetness index indicates the level of water accumulation and local drainage.

‡Using ANOVA test.

§Using Kruskal–Wallis test.

Identification of Spatial Risk Factor in the
H5N8 Subtype Outbreak
Table 4 summarizes the adjusted odds ratio of spatial variables
in the Bayesian multivariate logistic regression analysis on
both chicken and duck farms, following univariate logistic
regression analysis for screening possible associated variables
(see Supplementary Tables S1–S3). The proximity to LBM was

TABLE 4 | Summary of marginal posterior distribution of adjusted odds ratio of

spatial variables in the Bayesian multivariate logistic regression for H5N8

outbreaks.

Variable Mean (95% Crls)

Topological wetness index 1.058 (0.952, 1.182)

Proportion of forest 0.993 (0.972, 1.014)

Proportion of rice field 0.988 (0.960, 1.016)

Minimum distance to driveway 1.163 (0.764, 1.769)

Human density 0.963 (0.782, 1.144)

Domestic duck farm density 1.940 (1.488, 2.624)

Minimum distance to major wintering site for wild bird 1.025 (0.973, 1.079)

Minimum distance to LBM 0.469 (0.457, 0.500)

DIC 682.645

AUC 0.929

Morans‘I (p-value) 0.124 (0.281)

LBM, live bird market; DIC, deviance information criterion; AUC, area under the curve.

identified as a spatial risk factor of H5N8 occurrence in poultry
farms. Indeed, chicken and duck farms closer to LBM had a
higher risk of HPAI during the H5N8 epidemic.

More specifically, for the adjusted odds ratio of spatial
variables in both chicken and duck farms, a higher domestic
duck farm density and lower minimum distance to the LBM
contributed to H5N8 occurrence in farms of these species. When
comparing case and control farms producing only chicken, a
higher chicken farm density and lower minimum distance to
LBM significantly increased the risk for HPAI occurrence (see
Supplementary Table S4). The marginal posterior distribution
of regression coefficients was converged with the Gelman-Rubin
index of < 1.01 (see Supplementary Figure S15). Additionally,
in training the data consisting of eight spatial variables and a
response binary variable for HPAI infection using XGBoost, the
minimum distance to the LBM was the most important factor,
accounting for approximately 71% of the variation in the model,
followed by domestic duck farm density as shown in Figure 3.
Duck farm density showed an increasingly positive correlation
with HPAI occurrence of 1.5 farms /km2, whereas the minimum
distance to LBM had a negative correlation, which decreased to
zero at a point of 1.3 km. For more details on the dependence
between a set of spatial variables and the HPAI outbreak, refer to
Supplementary Figure S16.

H5N8 and H5N6 Subtype Outbreak
Prediction and Risk Mapping
Table 5 presents the predictive performance of the Bayesian
logistic regression and XGBoost models for H5N1, H5N8,
and H5N6 in chicken and domestic duck holdings. With
the model built based on a case-control study of the
H5N8 epidemic, two models generally showed high predictive
performance for different subtypes of HPAI occurrence in
poultry farms. However, the machine learning approach
(XGBoost) outperformed the statistical approach (Bayesian
logistic regression) in predicting all three subtypes of HPAI
occurrences. For example, the XGBoost model reported an AUC
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FIGURE 3 | Importance of spatial variables used in the XGBoost model. The value of importance represents the relative contribution of the corresponding variable to

the prediction of the observed results in the model ranging from zero to one.

TABLE 5 | Predictive performance of two different methodological approaches on three subtypes of highly pathogenic avian influenza outbreaks in poultry farms.

Model Bayesian logistic regression Machine learning algorithm (XGBoost)

Subtype AUC Sensitivity Specificity Cutoff AUC Sensitivity Specificity Cutoff

H5N1 0.818 0.615 0.930 0.285 0.995 1.000 0.980 0.884

H5N8 0.929 0.912 0.851 0.502 0.996 0.973 0.961 0.445

H5N6 0.887 0.803 0.815 0.005 0.968 0.928 0.943 0.239

Sensitivity and specificity are calculated based on the best cut-off.

AUC, area under curve.

of > 0.968 for all types of prediction, whereas the Bayesian
regression model exhibited an AUC of > 0.818. Moreover, there
was a pronounced difference in prediction sensitivity between the
two models. For predicting the H5N1 outbreaks, the XGBoost
model reported a sensitivity of 1.00, whereas the Bayesian
regression model showed a sensitivity of 0.615.

Geographically, both models consistently predicted a higher
probability of HPAI occurrence in Naju, Yeongam, and
Suncheon, which are the southwestern parts, and Anseong,
Cheonan, and Eumseong, which are the central parts of the
nation, irrespective of the subtype (see Figure 4). However, the
risk map generated using the XGBoost showed higher risk in the
southeastern area during the H5N1 epidemic and in the northern
area during the H5N6 epidemic than those of the Bayesian
regression model.

DISCUSSION

With the expectance of the emergence of novel HPAIv, it is
imperative to precisely predict the risk of HPAI occurrence
among poultry farms to implement proper biosecurity measures.
South Korea is one of the countries under the area at high risk of
HPAI occurrence, in the particular winter season, with massive

damages recently even worsening due to the geographical
location adjacent to endemic countries, part of East Asian–
Australasian Flyway, the intensification of poultry production.
Unfortunately, animal health and production authorities in
South Korea have limited knowledge about the common risk
factors related to various subtypes of HPAI epidemics in poultry
farms from a spatial perspective. Therefore, this study aimed to
identify spatial risk factors associated with HPAI infection in
poultry farms, as discussed in previous studies in many other
countries, and subsequently predict the probability of infection in
poultry farms at high risk in order to prevent HPAIV occurrence
in the near future.

In this study, the three subtypes of HPAIv-IPs exhibited

geographically heterogeneous characteristics, although

similarities between the pairs of different subtypes of the

outbreaks were often observed. In particular, land use

surrounding IPs varied across the subtypes of the HPAI

epidemic. This can be partly explained by the difference in

composition of species in infected farms, which is closely related
to the demographic and economic conditions in South Korea.
The domestic duck farms in South Korea are concentrated in
relatively small areas, especially in the southwestern region,
which produced 48% of total ducks in 12,247 square kilometers
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FIGURE 4 | Risk map predicted by Bayesian logistic regression model for H5N1 (A), H5N8 (B), and H5N6 (C) and XGBoost model for H5N1 (D), H5N8 (E), and

H5N6 (F) of highly pathogenic avian influenza outbreaks in poultry holdings.

according to the Korean National Agriculture Statistics, but
chicken farms are evenly distributed throughout the country.

Unlike domestic duck farms, most HPAI cases in chicken
farms are reported in layer farms, which appear to require far
more labor force than domestic duck farms because of a variety
of specialized work, including cage cleaning, egg collection, and
delivery, which is attributed to its location close to human
populated areas where people are easily recruited (30). Also,
the supply chain facilitates the location of layer farms that are
close to the human population for egg sales (24). Therefore,
domestic duck farms, which were the predominant type of

infected farm species during the H5N8 epidemic, are more likely
to be surrounded by a high proportion of rice fields within a 3-
km radius of a poultry farm. In contrast, H5N1 and H5N6 IPs,
which were comparably composed of duck and chicken farms,
were located within a relatively higher human density along with
a lower proportion of rice fields.

Additionally, governmental intervention strategies driven by
the transmision pathway during an epidemic could affect the
disparity in spatial characheristics. For example, during the
2010–2011 H5N1 epidemic, the trade through the LBM, was
not prohibited and became the major source of infection with
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pathogens. After numerous HPAI infection cases were found
to be epidemiologically linked to the LBM, the government
rapidly imposed heavy restriction on live bird sales, such as the
temporary closure of LBMduring the H5N8 andH5N6 epidemic.
Consequently, at higher value for the minimum distance to the
LBM from IPs during theses epidemics was observed compared
with H5N1 IPs.

In a case-control study of the HPAI H5N8 epidemics, duck
farm density andminimum distance to the LBMwere found to be
major predisposing factors for HPAI infection in poultry farms.
The density of domestic duck, as the previous study reported
that there was a strong association between the density of ducks
and HPAI outbreak farms, was also identified as an important
risk factor of HPAI in Korea in this study (40, 41). Generally,
domestic ducks in South Korea are kept indoors in a shed made
with vinyl and temporary plastic panels, comparted with chicken,
resulting in very low biosecurity systems and hygiene levels, even
in places where there is no special facility installed for cleaning
and disinfection because of economic disadvantage (42).

Moreover, all-in-all-out production practices are not usually
adapted to domestic duck farms, where day-old ducklings
were introduced into the farms continuously without the
least downtime (28) because 95% of farms contracted poultry
integrators which are likely to assure income security by
producing certain number of ducks into the market (43).

Additionally, meat ducks that account for more than 90%
of ducks in South Korea have a rearing period of 45 to 48
days, longer than the breeding period of meat chickens (21 to
27 days), which led to longer HPAIv periods (6). This longer
rearing period could make domestic duck farms vulnerable to
exposure to vehicles and medium contaminated with viruses
shed from infected birds and poultry. In addition, domestic
duck shows less severe clinical signs and sheds HPAIv longer
than chickens (44). Therefore, the risk of HPAIv transmission
between domestic duck farms in areas with a high density of
duck farms escalates after virus incursion in the area without
being timely detected in domestic ducks, which increases the
risk of HPAI infection in other farms through local spread (43).
Historically, the southwestern areas in South Korea, where a high
proportion of IPs were domestic duck farms, are agricultural
regions, producing a diverse range of ingredients for food,
becoming a popular place for food (45), where abundant LBMs
and numerous restaurants specialized in duck meat cuisine are
up and running (46). In addition, due to tourists’ and locals’
preference for fresh meat duck dishes, small-scale duck sale
and trade was actively conducted through LBM, where no strict
biosecurity system and surveillance program were generally
administered (31). Consequently, it is plausible that the infected
duck farms in these areas are geographically close to the LBM.

The Bayesian logistic regression and XGBoost model built
based on the H5N8 case-control study demonstrated a relatively
high predictive performance (AUC value > 0.8) for retrospective
(H5N1) and prospective epidemics (H5N6), although they
outperformed the risk prediction for H5N8 outbreak. This
suggests that although the overall spatial characteristics of IPs
among the three subtypes of epidemics showed disparity to some
extent, the distributions of spatial variables of IPs and non-IPs

during the H5N1 and H5N6 epidemics were distinguishable
to clarify either HPAI infection or non-infection. Moreover,
significant key variables of those IPs, such as the minimum
distance to the LBM, had enough values to give weights to the
model for a higher probability of HPAI infection. For instance,
the mean of the minimum distance to the LBM for H5N1 IPs and
H5N6 IPs was 1.04 and 2.41, respectively. This value is lower than
H5N8 IPs, leading to higher odds of HPAI infection in the logistic
model and probability in the XGBoost model. Additionally,
the machine learning algorithm model demonstrated higher
predictive performance than the statistical model, especially for
H5N1 and H5N6. The XGBoost is a tree-based approach that
uses the regularized method, where the number of splits and
depth in the decision tree is restricted by defining the minimum
entropy gain necessary to create further splits (37). Indeed, the
more splits or partitions for the classification rule for predictors,
themore likely themodel is to overfit the training data (47). Thus,
this regularized method functions to prevent the model from
overfitting to the training dataset; in this case, H5N8. Therefore, it
produced comparable predictive performance in the test dataset,
including H5N1 and H5N6.

In addition, from a geographical perspective on the
distribution of poultry holdings at high risk, two regions,
the central and southwest part of the country, were constantly
predicted by the two models to have a higher probability of
infection, which was consistent with the observed data. South
Korea geographically has spacious land with plenty number of
lakes, streams, and rivers in the western part and mountainous
areas in the eastern part. The HPAI H5N8 outbreak in 2014
occurred in the southwestern part of South Korea in the early
stages of the epidemic, with a large number of infections and
continued in the eastern and central parts of the country.
Similarly, the HPAI H5N1 and H5N6 outbreaks began in the
central part of the country, spread to the eastern part of South
Korea, but mostly occurred in the southwestern part, especially
Yeongam, and Naju. This suggests that the occurrence of HPAI is
largely affected by the biological characteristic of HPAIv subtype
and the spatial characteristics associated with the production
system and market chain structure. This is also supported
because H5N1 and H5N6 occur in similar areas and farms where
HPAI recurrences appear even though ownership and trading
affiliates change.

It is important to consider addressing this issue in future work.
First, we used poultry density data from 2016; however, according
to the national livestock statistics, from 2011 to 2017, the number
of duck and chicken farms slightly decreased, and new poultry
farms rarely opened. However, depopulated farms started their
production 6 months later, and density was presumed to remain
similar across the study periods. Additionally, we chose the
spatial variables based on the previous studies with a lack of
elucidation of complex interactions among those variables. Thus,
it is needed to build the prediction model based on the selection
of variables from an understanding of the causal relationship
of the variables with HPAI infection, such as a directed acyclic
graph. Moreover, we used spatial data from diverse sources
inherently with different spatial resolutions due to a diversity
of spatial variables. Basically, the higher the spatial resolution
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of data for the corresponding spatial variables is, the closer the
extracted value of the observation is to the true one. Therefore,
we derived the value of corresponding spatial variables from the
local data source, which provided a higher spatial resolution to
minimize the deviation between the extracted and true value of
spatial variables for study farms. Some variables extracted from a
lower resolution, such as human density, where local data sources
were not available, are likely to deviate from the true value. And
the study farm within the cell of the spatial resolution had an
identical value to the given variables. However, the 1 km spatial
resolution (30 arc-second) was still considered to be high spatial
resolution (46). Thus, given the characteristics of variables at
1 km spatial resolution, the estimation of the variable from the
data source is not significantly biased. Secondly, although this
study placed more weight on spatial variables to identify the
association with HPAI and predict its risk in other epidemics, the
on-farm biosecurity level at poultry holdings, such as adequate
restriction to farm visibility, is a critical adjustment factor for
estimating the direct influence of spatial variables on the risk of
the HPAI outbreak. Therefore, future studies will also need to
investigate biosecurity protocol compliance at the farm level to
identify whether the association of spatial variables with HPAI
infection in this study remains significant. Lastly, 48 farms out
of H5N8 case farms were excluded from the case control study
due to the missing information on their geographical location.
All were small-scale farms (< 50) or backyard farms that might
hinder acquiring the exact information. For this reason, the
model built from the H5N8 case and control farms is likely to
underestimate the risk factors associated with HPAI infection in
small-scale farms and or backyard farm.

Nonetheless, this study was the first to investigate the spatial
risk factors of all subtypes of the HPAIv in South Korea from

2010 to 2017 and predict the risk of occurrence at the farm

level. The results of this study emphasize that the viral and
spatial characteristics of the poultry farm play an essential role
in the development of HPAI. Therefore, to prevent and prepare
for future HPAI occurrence, it is important to study the spatial
characteristics of existing virus-type farms to prepare for the
introduction of new viruses and to establish livestock prevention
and prevention strategies based on this. Therefore, it is necessary
to formulate HPAI prevention and response strategies through
risk-based surveillance.
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